行测资料分析技巧:十字交叉在资料分析中的应用

合集下载

十字交叉在行测资料分析解题中的妙用

十字交叉在行测资料分析解题中的妙用

在近几年的行测资料分析部分,往往会涉及到部分和整体的增长率,此时,十字交叉就能成功的解答此类问题。

十字交叉的原理我们在这就不详细的讲解了,红麒麟公考专家提醒你,在行测资料分析使用十字交叉,一般应用于求整体(部分)的增长率或者是求比重的试题中,且要活学活用。

一、十字交叉最浅显应用资料分析的试题往往会涉及到三个指标,两个部分、一个整体,我们依据十字交叉可以得到,整体的增长率必然处于部分增长率之间,此时,比较仁慈的考官,就会在设置选项的时候,让我们能够很容易的排除三个选项,直接得到答案,来看个试题。

******************************************************************************* ******【例1】2008年1~8月,公路客运量比上年同期增长()。

A.6.9% B.7.4% C.7.9% D.11.7% 整体:1~9月公路客运量;部分:1~8月公路客运量增长11.4%;9月公路客运量增长7.4%;整体的在7.4%~11.4%之间,选C。

******************************************************************************* ******二、十字交叉稍变态应用虽说,整体的增长率处于部分的增长率之间,但是有的时候,试题往往给出的选项,只允许我们排除其中的两个,剩下的也无法排除,此时就要稍稍分析一下基期各部分占整体的比重的大小,来分析整体的增长率到底是偏向哪个部分,即可以将剩余的两个选项,排除掉一个,剩下的一个就是正确答案。

在这肯定注意到,为什么要分析基期的比重,而不是末期的比重呢?因为在这里面涉及了增长率,这就暗含着增长量这个等式,我们具体来看一下。

******************************************************************************* ******整体:末期增长率:r,基期值:R;部分:末期增长率a、b,基期值:A、B;等量关系:A×a+B×b=R×r,A×a+B×b=(A+B)×r;变形:A:B=(r-b):(a-r)。

行测资料分析技巧:十字交叉法

行测资料分析技巧:十字交叉法

⾏测资料分析技巧:⼗字交叉法 任何⼀场考试取得成功都离不开每⽇点点滴滴的积累,下⾯由店铺⼩编为你精⼼准备了“⾏测资料分析技巧:⼗字交叉法”,持续关注本站将可以持续获取更多的考试资讯!⾏测资料分析技巧:⼗字交叉法 ⼗字交叉法主要解决的就是⽐值的混合问题,在公务员考试的过程中,资料分析部分解题经常⽤的⼀种解题⽅法。

它应⽤起来快速、准确、⽅便,为我们考试中秒杀题⺫提供了很⼤的助⼒。

那么接下来跟⼤家⼀起来学习⼗字交叉法。

⼀、⼗字交叉法概述 ⼗字交叉法是解决⽐值混合问题的⼀种⾮常简便的⽅法。

这⾥需要⼤家理解“⽐值”“混合”这两个概念。

⽐值:满⾜C/D的形式都可以看成是⽐值;混合:分⼦分⺟具有可加和性。

平均数问题、浓度问题、利润问题、增⻓率问题、⽐重等混合问题,都可以⽤⼗字交叉法来解决。

⼆、⼗字交叉法的模型 在该模型中,需要⼤家掌握以下⼏个知识点: 1、a和b为部分⽐值、r为整体⽐值、A和B为实际量 2、交叉作差时⼀定要⽤⼤数减去⼩数,保证差值是⼀个正数,避免出现错误。

这⾥假定a>b 3、实际量与部分⽐值的关系 实际量对应的是部分⽐值实际意义的分⺟。

如:平均分=总分/⼈数,实际量对应的就是相应的⼈数;浓度=溶质/溶液,实际量对应的就是相应的溶液质量;增⻓率=增⻓量/基期值,实际量对应的就是相应的基期值。

4、在这⾥边有三组计算关系 (1)第⼀列和第⼆列交叉作差等于第三列 (2)第三列、第四列、第五列的⽐值相等 (3)第1列的差等于第三列的和 三组计算关系是我们应⽤⼗字交叉法解题的关键,⼀定要记住并且灵活应⽤。

三、四种考查题型 1、求a,即已知总体⽐值、第⼆部分⽐值、实际量之⽐,求第⼀部分⽐值。

例某班有⼥⽣30⼈,男⽣20⼈。

期中的数学考试成绩如下,全班总的平均分为76,其中男⽣的平均分为70。

求全班⼥⽣的平均分为多少? 解析:平均分=总分/⼈数,是⽐值的形式。

此题中,男⽣的平均分和⼥⽣的平均分混合成了全班的平均分,是⽐值的混合问题,可以⽤⼗字交叉法来解题。

行测备考-资料分析答题技巧

行测备考-资料分析答题技巧

行测备考-资料分析答题技巧
经过一段时间的复习备考,考生对于资料分析的基础知识都有了比较扎实的掌握,但是很多考生却发现模拟答题的紧张状态下很难快速有效的确定正确答案。

中公网校的辅导专家会结合广东省考真题特点,陆续帮大家分析、总结资料分析的答题技巧,提高大家的得分能力!中公网校每周也做同步公开课与大家分享学习方法,帮助大家快速提分!
一、利用十字交叉巧计算
十字交叉法是数学运算解题很重要的方法,在资料分析中很多数据之间也满足十字交叉的关系,巧用十字交叉可快速得答案。

例1.
二、用好同位比较法巧判断
分析广东省考真题,资料分析题型中考查比较类题目比较多,用同位比较法解决这类题目会收到事半功倍的效果。

例2.
2005-2009年全市卫生机构情况
问题:与前一年相比,B市卫生机构数量增幅最大的年份是()
A.2006
B.2007
C.2008
D.2009
资料分析的答题技巧暂时分析到这里,大家可以密切关注2014年广东省考答题技巧汇总,学习更多的内容。

公务员行测资料分析技巧:十字交叉法

公务员行测资料分析技巧:十字交叉法

公务员行测资料分析技巧:十字交叉法行测资料分析技巧有哪些?正在备考行测考试的朋友可以来看看,下面由小编为你准备了“公务员行测资料分析技巧:十字交叉法”,仅供参考,持续关注本站将可以持续获取更多的内容资讯!公务员行测资料分析技巧:十字交叉法在行测资料分析中应用时,主要有三层结论,前两层结论主要用于定性判断,而第三层结论用于定量计算。

在前两篇文章中,我带着考生们分别探讨了十字交叉法在资料分析中的应用环境以及两层应用技巧,今天带大家一起来学习学习资料分析的最后一层应用,定量计算:结论一:整体平均数处在部分平均数之间,即部分平均数有些比整体平均数大,有些比整体平均数小。

结论二:整体平均数靠近“分母”较大的那个分平均。

结论三:求部分量分母之比今天我们要讨论的结论三,关于它的内容表述方式和前两种有所不同,我们上面的黑字是在说明它的作用,是用来求部分量的分母之比。

而具体怎么求,因为不太好用一句话的文字表述。

所有并没有表述在上面的黑体字中。

具体内容展开详解:1.解决问题:求部分量分母之比我们知道,十字交叉法是用来解决研究整体平均数和部分平均数之间的关系的题目的。

比如进出口总额的增长率和进口与出口的增长率,就分别是整体平均数和部分平均数。

由于任何一个平均数都是除法计算得来,比如出口的增长率=出口的增长率/出口的基期量、进口的增长率=进口的增长率/进口的基期量,则每一个平均数在求解时都有其分母。

当一个整体只分成两个部分,如果题目让我们求这两个部分的平均数,分母的量的比,即为求部分量分母之比,也就是我们结论三的应用环境。

如下题:例题:2018年某市中学生有13.2万人,增长率1.2%,其中女生人数增长了0.8%,男生人数增长了1.5%。

问:2017年该市中学生男生人数与女生人数的比例是?A.4:3B.3:4C.5:5D.5:6解析:题目中的“平均数”概念是增长率,全体中学生人数和女生人数男生人数构成了整体和部分间的关系。

行测备考:十字交叉法在资料分析中的应用

行测备考:十字交叉法在资料分析中的应用

行测备考:十字交叉法在资料分析中的应用中公教育研究与辅导专家柴杏子在资料分析考试当中,部分题目运用十字交叉法求解更加简便,接下来中公教育给大家介绍一下十字交叉法在资料分析中的运用。

例1.2013年上半年,全国汽车生产1075.17万辆,同比增长12.83%,同比增幅提高8.75个百分点;1、2季度汽车销量分别为542.42万辆和535.73万辆,1季度同比增长13.11%,2季度同比增长11.55%。

问题:与去年同期相比,2013年上半年全国汽车销量增长百分之几?A.19.1%B.14.5%C.12.3%D.10.4%【答案】C。

【考点点拨】题干中已知第一季度增长率为13.11%,第二季度增长率为11.55%,根据十字交叉法可知整体比值应介于部分比值之间,所以上半年的增长率大于11.55%,小于13.11%,选C。

例2.2015年我国货物进出口总额245741亿元,同比下降7%。

其中货物出口额同比下降1.8%。

一般贸易出口75456亿元,占出口总额的比重为53.4%。

货物进口额104485亿元,同比下降13.2%,一般贸易进口57323亿元,占进口总额的比重为54.9%。

问题:2015年我国一般贸易进出口总额占我国货物进出口总额的比重为多少?A.52.1%B.54.0%C.55.2%D.56.3%【答案】B。

【考点点拨】一般贸易出口占出口总额的比重为53.4%,一般贸易进口占进口总额的比重为54.9%,整体比值介于部分比值之间,选B。

例 3.2011年8月新疆全区规模以上工业实现增加值235.25亿元,比上年同期增长10.6%,其中轻工业实现增长15.4%,重工业实现增长10.2%。

问题:2010年8月规模以上重工业增加值是轻工业增加值的多少倍?A.8.3B.12C.23D.1.3【答案】B。

【考点点拨】轻工业增长率15.4%,重工业增长率10.2%,整体增长率10.6%,交叉作差可得:轻工业 15.4% 0.4% 1 规模以上工业10.6%重工业10.2% 4.8% 12交叉作差后的比值等于两个部分比值分母的比,而增长率=增长量÷基期值,分母为其对应的基期值,所以重工业与轻工业的基期值比值为12:1。

十字交叉法在数学运算以及资料分析中的妙用

十字交叉法在数学运算以及资料分析中的妙用

十字交叉法在数学运算以及资料分析中的妙用一、十字交叉法的原理首先通过例题来说明原理。

例题:某班学生的平均成绩是80分,其中男生的平均城市75分,女生的平均城市85分,求该班男生和女生的比例。

方法一:特殊值法男生一人,女生一人,总分160分,平均分80分,男生和女生的比例是1:1。

方法二:列方程法假设男生有X,女生有Y。

有(X×75+Y×85)/(X+Y)=80,整理有X=Y,所以男生和女生的比例是1:1。

方法三:十字交叉法假设男生有X,女生有Y。

男生:X7585-80=580女生:Y8580-75=5男生:女生=X:Y=1:1。

******************************************************************************十字交叉法用溶液问题来讲解更加浅显易懂,怎么说呢,我们还是通过例题来讲解。

有两种溶度浓度的溶液A、B,其浓度为x、y,现将这些溶液混合到一起得到浓度为r 的溶液,那么这两种溶液的浓度之比为多少?假设A溶液的质量为X,B溶液的浓度为Y,则有:Xx+Yy=(X+Y)r,整理有X(x-r)=Y(r-y);所以有X:Y=(r-y):(x-r)上面的计算过程就抽象为:Xxr-yrYyx-r******************************************************************************十字相乘法使用时要注意几点:第一、用来解决两者之间的比例关系问题。

第二、得出的比例关系是基数的比例关系。

第三、总均值放中央,对角线上,大数减小数,结果放对角线上。

二、十字交叉法在数学运算中的应用十字交叉在数学运算中相对比较简单,主要是直接根据材料中的数量关系来计算,下面的这些试题,具有一定的代表性,速速的呈现给大家。

******************************************************************************【例1】要将浓度分别为20%和5%的A、B两种食盐水混合配成浓度为15%的食盐水900克,问5%的食盐水需要多少克?A.250 B.285 C.300 D.325【分析】这个很简单吧,就是咱们上面讲解到的内容,直接将试题中的数量嵌套在十字交叉表。

行测冲刺巧用十字交叉法

行测冲刺巧用十字交叉法

行测冲刺巧用十字交叉法在备战行测考试中,复习时间有限,如何更高效地掌握各个知识点成为考生们共同面临的问题。

而在此过程中,十字交叉法成为了一种行之有效的复习方法。

本文将介绍行测冲刺阶段,如何巧用十字交叉法来进行针对性的复习,从而提高备考效果。

一、什么是十字交叉法十字交叉法是一种系统性的复习方法,通过分析不同知识点之间的关联和交叉,帮助考生全面理解各个知识点,并且快速记忆,有助于形成知识网络。

其核心思想是将各个知识点画成一个个节点,然后通过交叉线连接,形成一个复习图谱,方便考生进行查漏补缺和联想记忆。

二、如何巧用十字交叉法进行行测冲刺1. 确定核心知识点在行测冲刺阶段,时间有限,需要将注意力集中在核心考点上。

根据往年真题和教材内容,确定你觉得重要的知识点,将其列为核心知识点。

例如,言语理解与表达、判断推理、数量关系、资料分析等是行测考试中常出现的题型和知识点。

2. 绘制十字交叉法图谱将核心知识点绘制成十字交叉法图谱。

首先,在纸上绘制一个大十字图,将行测考试的核心知识点写在四个方向上。

然后,在每个节点中,进一步细分相关的知识点,并通过交叉线连接。

例如,在言语理解与表达节点下,可以写入同义词、反义词、词义辨析、修辞手法等相关知识点。

3. 建立知识网络通过绘制十字交叉法图谱,不仅可以直观看到各个知识点之间的联系,还可以帮助建立知识网络。

在每个节点中,不仅可以写入具体的知识点,还可以附带相关例题、解题方法和技巧。

例如,在数量关系节点下,可以写入数列、概率、几何等具体的知识点,并在每个知识点旁边写入例题和解题思路。

4. 查漏补缺和联想记忆。

十字交叉法在资料分析中的应用

十字交叉法在资料分析中的应用

十字交叉法在资料分析中的应用公务员考试数量中考察方程法的题目每年都会涉及,部分能用方程法解决的题目我们也可以用十字交叉法来做,尤其在资料分析中,数字往往比较大,解方程不是很现实,那么在考试中如何掌握这类题目的做法呢?这就需要我们掌握一定的解题技巧。

要熟练掌握十字交叉法来做题,就要明白这种方法适用的题型特征是什么,步骤如何操作,需要注意什么等等。

下面就进行一一阐述。

适用的题型特征:只要能列出方程Aa+Bb=(A+B )r ,就可以用十字交叉法来解题。

解题思路:根据方程Aa+Bb=(A+B )r ,可得b-r r -a B A =,用十字交叉法来表示就有:,其实会发现十字交叉法的本质还是方程思维。

接下来,我们就看一下具体的例题。

2013年1-7月份,全市完成销售产值6258.1亿元,同比增长12.7%,其中,完成国内销售产值4995.2亿元,同比增长15.7%;完成出口交货值1262.9亿元。

【例1】2013年1~7月份该市完成出口交货值比上年约增长了:A.-2.6%B.2.2%C.9.7%D.18.7%【解析】全市完成销售产值包括国内销售产值和出口交货值两部分,有近似等式关系4995.2×15.7%+1262.9×r=6258.1×12.7%(部分增长量之和等于整体的增长量,r 为出口交货值的增长率),解方程比较麻烦,符合十字交叉法解题的特征,则有:国内销售产值:4995.2 15.7% 12.7%-r12.7%出口交货值:1262.9 r 15.7%-12.7%, 可得:149.12622.4995%3r -%7.12≈=,解得r=0.7%,和B 选项更接近,答案为B 选项。

2011年,民航行业完成运输总周转量577.44亿吨公里,比上年增长7.2%。

其中旅客周转量403.53亿吨公里,增长12.2%,货邮周转量173.91亿吨公里。

【例2】2011年货邮周转量比去年( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行测资料分析技巧:十字交叉在资料分析
中的应用
在行测数量关系中的十字交叉模型已被大家所熟知,十字交叉模型解决的是比值的混合问题,在数量关系中主要解决溶液的混合问题。

而十字交叉模型在资料分析中也发挥着至关重要的作用,主要应用于增长率﹑比重﹑平均数等的混合问题。

笔者在此进行分析。

一、十字交叉模型
二、十字交叉在增长率中的应用
问题:与去年同期相比,2013年5-6月我国三种专利受理量累计增长了百分之几?
A.9%
B.16%
C.23%
D.30%
【答案】B。

解析:2013年5-6月我国三种专利受理量的累计增长率一定介于10%~22%之间,只有B符合条件。

例2.2010年1-5月,石油石化行业实现利润1645亿元,同比增长76.4%,上年同期为下降35.4%。

其中,石油天然气开采业利润1319亿元,同比增长1.67倍,上年同期为下降75.8%;炼油行业利润326亿元,同比下降25.7%,上年同期为增长1.8倍。

问题:2009年1-5月,石油天然气开采业利润比炼油行业利润多( )倍。

A.1.13
B.0.13
C.1.80
D.0.80
三、十字交叉在比重中的应用
2012年1-12月深圳海关进出口总额746135万美元,占全国进出口总额的比重为19.3%,其中进口额占全国进口总额的比重为15.9%,出口额占全国出口总额的比重为22.3%。

问题:2012年1-12月全国进口总额与出口总额的比值是多少?
A.18∶14
B.17∶15
C.15∶17
D.13∶16
3%:3.4%=实际量之比,实际量对应比值的分母,比重=部分/整体,分母是整体,则3%:3.4%=2012年全国进口总额与出口总额的比值,即15∶17。

四、十字交叉在平均数中的应用
2016年全国二手车交易量1039万辆,平均交易价格5.8万元/辆;2017年全国二手车交易量1240万辆,平均交易价格6.5万元/辆。

问题:2016-2017年,全国二手车平均交易价格在6.1~6.15万元之间。

(判断正误)
【答案】错误。

解析:2016年和2017年的二手车交易量为1039万辆,1240万辆;平均交易价格为5.8万元/辆,6.5万元/辆,所求为2016-2017年的平均交易价格,根据十字交叉思想可知,2016-2017年的平均交易价格应介于5.8~6.5万元之间,且偏向于二手车交易量较大的一方,即2016-2017年的平均交易价格应在
与6.5万元之间,错误。

总结:增长率﹑比重﹑平均数等比值的混合问题,混合之后的比值介于部分比值之间,当题较复杂时要代入十字交叉模型求解就可以,尤其注意的是十字交叉最后一列实际量是指比值的分母。

相关文档
最新文档