河南-邓俊朋-十字交叉法在资料分析当中的应用

合集下载

十字交叉在行测资料分析解题中的妙用

十字交叉在行测资料分析解题中的妙用

在近几年的行测资料分析部分,往往会涉及到部分和整体的增长率,此时,十字交叉就能成功的解答此类问题。

十字交叉的原理我们在这就不详细的讲解了,红麒麟公考专家提醒你,在行测资料分析使用十字交叉,一般应用于求整体(部分)的增长率或者是求比重的试题中,且要活学活用。

一、十字交叉最浅显应用资料分析的试题往往会涉及到三个指标,两个部分、一个整体,我们依据十字交叉可以得到,整体的增长率必然处于部分增长率之间,此时,比较仁慈的考官,就会在设置选项的时候,让我们能够很容易的排除三个选项,直接得到答案,来看个试题。

******************************************************************************* ******【例1】2008年1~8月,公路客运量比上年同期增长()。

A.6.9% B.7.4% C.7.9% D.11.7% 整体:1~9月公路客运量;部分:1~8月公路客运量增长11.4%;9月公路客运量增长7.4%;整体的在7.4%~11.4%之间,选C。

******************************************************************************* ******二、十字交叉稍变态应用虽说,整体的增长率处于部分的增长率之间,但是有的时候,试题往往给出的选项,只允许我们排除其中的两个,剩下的也无法排除,此时就要稍稍分析一下基期各部分占整体的比重的大小,来分析整体的增长率到底是偏向哪个部分,即可以将剩余的两个选项,排除掉一个,剩下的一个就是正确答案。

在这肯定注意到,为什么要分析基期的比重,而不是末期的比重呢?因为在这里面涉及了增长率,这就暗含着增长量这个等式,我们具体来看一下。

******************************************************************************* ******整体:末期增长率:r,基期值:R;部分:末期增长率a、b,基期值:A、B;等量关系:A×a+B×b=R×r,A×a+B×b=(A+B)×r;变形:A:B=(r-b):(a-r)。

”十字交叉法“的原理和应用

”十字交叉法“的原理和应用

化学计算中“十字交叉法”的数学原理和应用一. “十字交叉法”简介“十字交叉法”是二元混合物(或组成)计算中的一种特殊方法,若已知两组分量和这两个量的平均值,求这两个量的比例关系等,多可运用“十字交叉法”计算。

十字交叉法在化学计算中是一种常用的方法,在很多习题中采用十字交叉法可以简化计算过程,提高计算效率。

下面先从一道简单的例题来介绍何为十字交叉法。

例1、50克10%的硫酸溶液和150克30%的硫酸溶液混合后,所得硫酸溶液的质量分数是多少?采用十字交叉法计算的格式如下:设混合后溶液的质量分数为x%,则可列出如下十字交叉形式所得的等式:10%的溶液 10 30 — xX30%的溶液 30 x — 1050g(10%的溶液质量) 150(30%的溶液质量)由此可得出x = 25,即混合后溶液的质量分数为25%。

以上习题的计算过程中有一个十字交叉的形式,因此通常将这种方法叫做“十字交叉法”。

然而怎样的计算习题可以采用这种方法?且在用“十字交叉法”时,会涉及到最后差值的比等于什么的问题,即交叉后所得的差值之比是实际中的质量之比还是物质的量之比?这些问题如果不明确,计算中便会得出错误的结论。

针对以上问题,在以前的教学中,可能往往让学生从具体的习题类型死记差值之比的实际意义。

由于十字交叉法常用于:①核素“丰度”与元素相对原子质量的计算;②混合气体不同组分体积之比和混合气体平均相对分子质量的计算;③不同浓度的同种溶液混合后质量分数与组分溶液质量之比的计算等类型的习题中。

因此可以简单记忆为前两种类型中,差值之比为物质的量之比,第三种类型差值之比为质量之比。

这种记忆方法束缚了学生的思维,同时也限制了“十字交叉法”的使用范围。

实质上“十字交叉法”的运用范围很广,绝不仅仅只能在以上三种类型的习题中才可运用。

然而不同情况下,交叉后所得的差值之比的实际意义是什么?该怎样确定其实际意义?是我们应该探讨和明了的问题。

要解决此问题,就要明了“十字交叉法”的数学原理,然后再从原理的角度去分析,便能确定差值之比在何时为组分的质量之比,何时为组分的物质的量之比。

公务员—行测—十字交叉法的原理

公务员—行测—十字交叉法的原理

一、十字交叉法的原理〔这个有的前辈和大侠有比较详细的讲解,简单易懂,在这里就直接用前辈写的东西来说明了,但是为了符合我的一些习惯,还是做了一定的修改〕首先通过例题来说明原理。

某班学生的平均成绩是80分,其中男生的平均城市75分,女生的平均城市85分,求该班男生和女生的比例。

方法一:搞笑〔也是高效〕的方法。

男生一人,女生一人,总分160分,平均分80分,男生和女生的比例是1:1。

月月讲解:这个就是咱常用的特殊值法吧,不过思路稍微特殊一点。

方法二:假设男生有X,女生有Y。

有〔X×75+Y×85〕/〔X+Y〕=80,整理有X=Y,所以男生和女生的比例是1:1。

月月讲解:这个就是常用的列方程法方法二:假设男生有X,女生有Y。

男生:X 75 85-80=580女生:Y 85 80-75=5男生:女生=X:Y=1:1。

月月讲解:这一步前辈说的不是很清楚,补充修正了一下,其实说白了,十字交叉的左侧是各部分的量,右侧是混合后的量。

总结一下,一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。

平均值为C。

求取值为A的个体与取值为B的个体的比例。

假设A有X,B有〔1-X〕。

AX+B〔1-X〕=CX=〔C-B〕/〔A-B〕1-X=〔A-C〕/A-B因此:X:〔1-X〕=〔C-B〕:〔A-C〕上面的计算过程可以抽象为:A C-BCB A-C这就是所谓的十字相乘法。

月月讲解:这个是大侠的,不过我个人觉得,十字交叉法用溶液问题来讲解更加浅显易懂,怎么说呢,我们还是通过例题来讲解。

有两种溶度浓度的溶液A、B,其浓度为x、y,现将这些溶液混合到一起得到浓度为r的溶液,那么这两种溶液的浓度之比为多少?假设A溶液的质量为X,B溶液的浓度为Y,则有:X*x+Y*y=〔X+Y〕*r整理有X〔x-r〕=Y〔r-y〕;所以有X:Y=〔r-y〕:〔x-r〕上面的计算过程就抽象为:X x r-yrY y x-r这样就看着清楚多了吧,知道是哪个比哪个等于什么值了。

农信社备考:资料分析之巧用十字交叉法解题

农信社备考:资料分析之巧用十字交叉法解题

农信社备考:资料分析之巧用十字交叉法解题版权所有翻印必究中公金融人出品十字交叉法是一种理科生非常熟悉的方法,在高中化学的学习过程中常常用这种方法来解决不同浓度的混合问题。

在近几次的农信社行测考试中,需要运用十字交叉法解决的数量关系类试题也经常出现,但是各位考生可能不是很了解,其实十字交叉法在资料分析中也经常被考查到。

那么在资料分析中十字交叉法是如何来快速解题的?十字交叉法是一种用以解决平均量混合的问题:比如男生的平均生50分,女生的平均分60,全班的平均分53分之类的题目。

在资料分析中利用十字交叉法需要熟悉:整体平均量必须介于部分平均量之间。

【例题】2006,我国的出口额为54321亿元,同比增长9.3%,进口额为42321亿元,同比增长7.1%。

问:2006年我国的进出口贸易总额同比增长了百分之几?A.5%B.8.2%C.8.5%D.9.7%【答案】C。

解析:对这么一道题,各位考生千万不能直接就以增长率的公式带入进行计算,因为带入公式计算,这道题目就会算得极其复杂,我们可以利用十字交叉法:整体的增长率应该是介于部分的增长量之间这样一个规律来排除选项,因为进口部分和出口部分的增长率分别为7.1%和9.3%,所以进出口的增长率应该是介于这两个增长率之间的,可以排除AD两个选项,在B与C两个选项中,我们认真观察,发现选项B刚好是9.3%与7.1%的平均数,那么当进口量与出口量相等时应该选B,但是目前是出口量大于进口量,所以进出口的增长率应该就会更偏向于出口的增长率9.3%,所以通过定性的分析,可以确定这道题的答案选C。

版权所有 翻印必究通过以上这道题的解析,考生们应该会有一个直观的印象,这道题目在不需要任何计算的前提下,通过定性的分析可以直接判断选项。

其实在行测科目的考试中,资料分析部分真正纯粹考察计算能力的题目并不是特别多,考察考生判断分析能力的题目却在逐渐增加。

十字交叉法在解决这种由多部分构成整体的题目的办法中应当引起考生的重视,希望考生在平时复习打好基本功,在考试时能够做到快速分析,准确判断。

行测备考:十字交叉法在资料分析中的应用

行测备考:十字交叉法在资料分析中的应用

行测备考:十字交叉法在资料分析中的应用中公教育研究与辅导专家柴杏子在资料分析考试当中,部分题目运用十字交叉法求解更加简便,接下来中公教育给大家介绍一下十字交叉法在资料分析中的运用。

例1.2013年上半年,全国汽车生产1075.17万辆,同比增长12.83%,同比增幅提高8.75个百分点;1、2季度汽车销量分别为542.42万辆和535.73万辆,1季度同比增长13.11%,2季度同比增长11.55%。

问题:与去年同期相比,2013年上半年全国汽车销量增长百分之几?A.19.1%B.14.5%C.12.3%D.10.4%【答案】C。

【考点点拨】题干中已知第一季度增长率为13.11%,第二季度增长率为11.55%,根据十字交叉法可知整体比值应介于部分比值之间,所以上半年的增长率大于11.55%,小于13.11%,选C。

例2.2015年我国货物进出口总额245741亿元,同比下降7%。

其中货物出口额同比下降1.8%。

一般贸易出口75456亿元,占出口总额的比重为53.4%。

货物进口额104485亿元,同比下降13.2%,一般贸易进口57323亿元,占进口总额的比重为54.9%。

问题:2015年我国一般贸易进出口总额占我国货物进出口总额的比重为多少?A.52.1%B.54.0%C.55.2%D.56.3%【答案】B。

【考点点拨】一般贸易出口占出口总额的比重为53.4%,一般贸易进口占进口总额的比重为54.9%,整体比值介于部分比值之间,选B。

例 3.2011年8月新疆全区规模以上工业实现增加值235.25亿元,比上年同期增长10.6%,其中轻工业实现增长15.4%,重工业实现增长10.2%。

问题:2010年8月规模以上重工业增加值是轻工业增加值的多少倍?A.8.3B.12C.23D.1.3【答案】B。

【考点点拨】轻工业增长率15.4%,重工业增长率10.2%,整体增长率10.6%,交叉作差可得:轻工业 15.4% 0.4% 1 规模以上工业10.6%重工业10.2% 4.8% 12交叉作差后的比值等于两个部分比值分母的比,而增长率=增长量÷基期值,分母为其对应的基期值,所以重工业与轻工业的基期值比值为12:1。

“十字交叉法”的原理及应用

“十字交叉法”的原理及应用

“十字交叉法”的原理及应用摘要:本文分析了学生不易掌握“十字交叉法”的原因。

应用平均值概念推导出“十字交叉法”原理,从平均值概念分析“十字交叉法”应用的条件和范围,给出了一种适用解答格式,并从三类二元混合体系和平均值角度对常见题型进行了归纳。

关键词:十字交叉法、平均值“十字交叉法”是平均值法的技巧方法,即利用平均值求解二元混合体系的混合比的一种图解方法。

利用此法求解二元混合体系的混合比具有准确、简便、快速的特点。

因此,它是高考化学计算重要方法之一。

教学实际中,许多同学对此法掌握得不好。

学生出现的问题主要有两种情况:一种情况是遇到可用“十字交叉法”求解的问题,却不知道怎样用“十字交叉法”来求解;第二种情况是虽然知道用“十字交叉法”求解,但却不明确所得到的比值的化学意义,得出错误的计算结果。

我们认为主要原因是在教学中没有抓住平均值概念去推导“十字交叉法”原理、分析应用范围和应用条件,没有给出解题的规范格式,也没从二元混合体系及其平均值角度来归纳常见题型。

本文应用平均值概念推导“十字交叉法”原理、分析其应用条件和范围、归纳主要应用题型,并给出一种较适用的解题规式。

一、“十字交叉法”原理1.用平均值概念推导“十字交叉法”原理以A、B二组分混合物的平均摩尔质量为例推导“十字交叉法”原理。

设混合物平均摩尔质量为M,A、B的物质的质量分别为n(A)和n(B),摩尔质量分别为M(A)和M(B)混合物的总质量为:m(混)= n(A)×M(A) + n(B)×M(B)混合物的总物质的量为:n(混)= n(A) + n(B)根据摩尔质量定义可知混合物的平均摩尔质量为:)()(混混n m M = …… ①将A 和B 混合物的总物质的量n(混)和总质量m(混)代入①式得:)B (n )A (n )B (M )B (n )A (M )A (n M +⨯+⨯= …… ②将②式变形得混合物中两种成分的物质的量之比的数学表达式:M)A (M )B (M M )B (n )A (n --= …… ③ 将③式写成直观的图解形式,即“十字交叉法”的形式:A :M(A) |M - M(B)|╲ ╱ …… ④╱ ╲B :M(B) |M(A) - M |2.“十字交叉法”的应用条件从上述二组分混合物平均摩尔质量推导“十字交叉法”原理得出其应用条件为: ⑴n(A)和n(B)具有加合性,即n(混)= n(A) + n(B)。

行测资料分析技巧 十字交叉法

行测资料分析技巧 十字交叉法

行测资料分析技巧十字交叉法任何一场考试取得成功都离不开每日点点滴滴的积累,下面由为你精心准备了“行测资料分析技巧:十字交叉法〞,持续将可以持续获取更多的考试资讯!十字交叉法主要解决的就是比值的混合问题,在的过程中,资料分析局部解题经常用的一种解题方法。

它应用起来快速、准确、方便,为我们考试中秒杀题目提供了很大的助力。

那么接下来跟大家一起来学习十字交叉法。

十字交叉法是解决比值混合问题的一种非常简便的方法。

这里需要大家理解“比值〞“混合〞这两个概念。

比值:满足C/D的形式都可以看成是比值;混合:分子分母具有可加和性。

平均数问题、浓度问题、利润问题、增长率问题、比重等混合问题,都可以用十字交叉法来解决。

在该模型中,需要大家掌握以下几个知识点:1、a和b为局部比值、r为整体比值、A和B为实际量2、交叉作差时一定要用大数减去小数,保证差值是一个正数,防止出现错误。

这里假定a>b3、实际量与局部比值的关系实际量对应的是局部比值实际意义的分母。

如:平均分=总分/人数,实际量对应的就是相应的人数;浓度=溶质/溶液,实际量对应的就是相应的溶液质量;增长率=增长量/基期值,实际量对应的就是相应的基期值。

4、在这里边有三组计算关系(1)第一列和第二列交叉作差等于第三列(2)第三列、第四列、第五列的比值相等(3)第1列的差等于第三列的和三组计算关系是我们应用十字交叉法解题的关键,一定要记住并且灵活应用。

1、求a,即总体比值、第二局部比值、实际量之比,求第一局部比值。

例某班有女生30人,男生20人。

期中的数学考试成绩如下,全班总的平均分为76,其中男生的平均分为70。

求全班女生的平均分为多少?解析:平均分=总分/人数,是比值的形式。

此题中,男生的平均分和女生的平均分混合成了全班的平均分,是比值的混合问题,可以用十字交叉法来解题。

2、求b,即总体比值、第一局部比值、实际量之比,求第二局部比值。

例某班有女生30人,男生20人。

资料分析中的“十字交叉法”

资料分析中的“十字交叉法”

资料分析中的“⼗字交叉法” ⼗字交叉法作为初中化学计算的重要技巧之⼀,⼀直以来都是解决浓度问题的常⽤⽅法,但很少有同学了解到这个⽅法在我们公考中也同样占据重要的地位。

⼗字交叉思想是公务员⾏政职业能⼒测验中解答题⽬的⼀种快速锁定答案的⽅法。

⼀、 “⼗字交叉法”原理简介⼗字交叉法最初是根据溶液混合问题得到的,即如果有A、B两种溶液的浓度分别为a和b(此处假设a>b),则A、B混合在⼀起的混合溶液的浓度r肯定介于之间。

上述例⼦,我们可以⽤如下的关系表⽰:⼗字交叉法不仅仅在数学运算模块中能够帮助同学们快速解决浓度问题、利润问题,同样在资料分析的解题过程当中也可以有效的利⽤。

⼆、 “⼗字交叉法”在资料分析中的应⽤我们在解浓度问题的时候运⽤⼗字交叉的原理是混合溶液浓度介于原始浓度之间,那么同样在资料分析中该原理为:部分的增长量的和等于整体的增长量,则整体的增长率介于部分增长率之间,哪部分占的⽐重⼤就偏向哪个部分。

所以在资料分析中出现:给出了各部分(⼀般是两部分)现期的值以及增长率,求解整体的增长率。

我们可以利⽤⼗字交叉法中计算出相应结果,接下来我们看⼀下资料分析中“⼗字交叉”法是如何运⽤的。

1、部分与整体思想-混合增长率【例1】 2009年第四季度,某地区实现⼯业增加值828亿元,同⽐增加12.5%。

在第四季度的带动下,全年实现的⼯业增加值达到3107亿元,增长8.7%。

请问该地区前三季度⼯业增加值同⽐增长率为( )A.7.4%B.8.8%C.9.6%D.10.7% 【答案】A【解析】如果根据相关增长率计算公式进⾏计算,题⽬相当复杂。

但是根据部分与整体的思想就很简单了,全年由前三季度和第四季度两部分组成,全年增长率为8.7%,第四季度增长率为12.5%,全年的必然介于前三季度和第四季度增长率之间,故前三季度应该低于8.7%,直接选择A选项。

【例2】12⽉份宾馆平均开房率为74.02%。

同⽐增长0.06%;全年累计宾馆平均开房率为62.37%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十字交叉法在资料分析中的应用
中公教育研究与辅导专家+邓俊朋
对于资料分析,偶尔会出现增长率混合的相关题目,对于这种问题,该如何快速解题呢,现在就让中公教育专家来给大家详细讲解一下十字交叉法在资料分析当中的应用。

一、规律
基期值
增长量增长率=,溶液质量溶质质量浓度=,增长率和浓度的本质都是比值,我们可以用溶液混合来推导增长率混合问题。

若将浓度为30%的盐溶液100克和浓度为50%的盐溶液100克均匀混合,那么混合之后的浓度应为%40200
80100100%50100%30100==+⨯+⨯,即混合之后的溶液浓度介于混合之前的两个部分浓度之间。

可类比为混合之后的增长率介于混合之前的两个部分增长率之间。

若将浓度为30%的盐溶液10000克和浓度为50%的盐溶液1克均匀混合,那么混合之后的溶液浓度一定介于30%——50%之间,又因为30%的盐溶液质量远远大于50%的盐溶液质量,所以混合之后的浓度应该极其接近于30%,即混合之后的溶液浓度应该更偏向于混合之前溶液质量更大的那个浓度。

可类比于混合之后的增长率应该更偏向于混合之前基期值更大的那一个增长率。

总结:混合之后的增长率介于两个部分增长率之间,且更偏向于混合之前基期值更大的那一个增长率。

二、例题展示
例1.2014年全国进出口总额41603亿美元,其中,出口22100亿美元,增长7.9%,进口19503亿美元,增长7.3%。

问题:2014年,全国进出口总额同比增长率是多少:
A.7.2%
B.7.7%
C.8.0%
D.8.4%
【答案】B 。

解析:由题意可知,出口22100亿美元,增长7.9%,进口19503亿美元,增长7.3%,那么混合之后的全国进出口总额同比增长率一定介于7.3%和7.9%之间,答案选择B 项。

例2.2014年全国社会物流总额213.5万亿元,同比增长7.9%,其中上半年101.5万亿元,同比增长8.7%。

问题:2014年下半年社会物流总额比上年同期增长百分之几:
A.7.2%
B.8.0%
C.8.6%
D.9.3%
【答案】A。

解析:由题意可知,2014年全国社会物流总额213.5万亿元,同比增长7.9%,其中上半年101.5万亿元,同比增长8.7%。

混合之后的增长率为7.9%,其中一个部分增长率为8.7%,说明另外一个部分增长率即2014年下半年社会物流总额比上年同期的增长率一定小于7.9%,答案选择A项。

例3.2018年某地贸易总额为3536亿元,同比增长率为7.4%,其中进口额为1468亿元,同比增长率为7.8%。

问题:2018年该地出口额比上年增长百分之几:
A.6.9%
B.7.1%
C.7.4%
D.7.7%
【答案】B。

解析:由题意可知,2018年某地贸易总额为3536亿元,同比增长率为7.4%,其中进口额为1468亿元,同比增长率为7.8%。

混合之后的增长率为7.4%,其中一个部分的增长率7.8%,说明另外一个部分的增长率的增长率一定小于7.4%,排除C、D选项。

若混合之后的增长率7.4%刚好介于正中间,说明另外一个部分增长率应为
4.7=
⨯。

又因为出口额基期值更大,所以根据混合之后的增长率偏向于基
8.7-2
%
%
%
0.7
期值更大的那一个可知,另外一个部分增长率应该略大于7.0%,答案选择B项。

通过上面的例题解析,想必大家已经对混合增长率有一个更为清晰的认知,只要大家能够勤加练习,对于这种题目完全不成问题。

相关文档
最新文档