行测资料分析运算题常用方法:十字交叉法

合集下载

行测:十字交叉法的应用

行测:十字交叉法的应用

行测备考:十字交叉法的应用在加权平均数的相关题型中,由于数量关系复杂,列方程做比较困难,十字交叉法能轻松解决这一问题。

十字交叉法经常运用于浓度、比重、人口、平均分等问题的求解,同时也可以运用于某些较为复杂的问题中。

在数学运算及资料分析中经常用到,达到行测考场上的“秒杀”。

下面我们首先学习下十字交叉法的原理。

十字交叉法使用时要注意几点:第一点:用来解决两者之间的比例关系问题。

第二点:得出比例关系是基数的比例关系。

第三点:总均值放中央,右侧对角线上,大数减小数。

下面我们通过例题来看一下十字交叉法在浓度问题中的应用。

【例1】有100克溶液,第一次加入20克水,溶液的浓度变成50%;第二次再加入80克浓度为40%的同种溶液,则溶液的浓度变为( )A. 45%B. 47%C. 48%D. 46%【解析】本题相当于是120克50%的溶液与80克40%的溶液混合,我们利用“十字交叉法”,把选项代入到其中,很明显只有D选项46%得出的比例等于120:80=3:2.【例2】红酒桶中有浓度为68%的酒,绿酒桶中有浓度为48%的酒,若每个酒桶中取若干混合后,酒浓度为52%;若每个酒桶中取酒的数量比原来都多12 升,混合后的酒浓度为53.2%。

第一次混合时,红酒桶中取的酒是( )。

A.17.8 升B.19.2 升C.22.4 升D.36.3 升【解析】运用“十字交叉法”,易知第一次混合前的质量比为1:4,所以假设第一次分别取x,4x升,再用十字交叉得到第二次混合前的质量比为13:37,所以(x+12):(4x+12)=13:37,得到x=19.2,选择B。

【例3】烧杯中装了100克浓度为10%的盐水,每次向该烧杯中加入不超过14克浓度为50%的盐水,问最少加多少次之后,烧杯中的盐水浓度能达到25%?(假设烧杯中盐水不会溢出)( )A.6B. 5C. 4D. 3解析:运用“十字交叉法”,易知所以至少要加60克,每次最多14克,至少5次。

公务员考试数学运算秒杀技:十字交叉法

公务员考试数学运算秒杀技:十字交叉法

公务员考试数学运算秒杀技:十字交叉法十字交叉法是数学运算及资料分析中经常用到的一种解题方法,熟练运用可以大大提高各位考生在考场上的解题速度。

在平时的复习过程中应作为一个专题加以强化练习,以期达到行测考场上的“秒杀”。

十字交叉法最先是从溶液混合问题衍生而来的。

若有两种质量分别为A与B的溶液,其浓度分别为a与b,混合后浓度为r,则由溶质质量不变可列出下式Aa+Bb=(A+B)r,对上式进行变形可得A/B=r-b/a-r,在解题过程中一般将此式转换成如下形式:注意在交叉相减时始终是大的值减去小的值,以避免发生错误。

十字交叉法不仅仅可用于溶液混合问题,也可以应用于两部分混合增长率问题、平均分数、平均年龄等问题。

只要能符合Aa+Bb=(A+B)r 这个式子的问题均可应用十字交叉法,交叉相减后的比值为对应原式中的A和B的比值。

例1 甲容器中有浓度为4%的盐水150克,乙容器中有某种浓度的盐水若干,从乙中取出450克盐水,放入甲中混合成浓度为8.2%的盐水。

问乙容器中盐水的浓度是多少?【解析】A。

【例2】某市现有70万人口,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%,那么这个市现有城镇人口()。

【解析】A。

A.34B.36C.35D.37【解析】C。

除了在数学运算中可以用到十字交叉法,在一些资料分析的题目中也可以运用十字交叉法,例如:【例4】(2011年917联考)2010年1~6月,全国电信业务收入总量累计完成14860.7亿元,比上年同期增长21.4%;电信主营业务收入累计完成4345.5亿元,比上年同期增长5.9%。

其中,移动通信收入累计完成2979亿元,比上年同期增长11.2%,比重提升到68.55%,增加了3.24%,固定通信收入累计完成1366.5亿元,比重下降到31.45%.119. 2010年1~6月,我国固定通信收入比上年同期减少约:A.3%B.11%C.4%D.31%【解析】C。

公务员考试行测技巧:十字交叉法

公务员考试行测技巧:十字交叉法

公务员行政职业能力测验考试每道题目平均做题时间约为50秒,时间紧,出题范围广,是考生公认的难度较大的考试。

而行测考试中的数量关系模块由于计算较多,难度较大成为众多考生的梦魇,因此必须转化思维,利用一些解题技巧来简化计算,提高解题速度。

十字交叉法在处理数学运算中的“加权平均问题”时可以明显简化运算,提高运算速度,本文就详细介绍一下十字交叉法的应用。

一、十字交叉法简介当数学运算题最终可以通过下式解出解出,我们就称这类问题为“加权平均问题”。

Aa+Bb=(A+B)r 此式可变化为A/B=(r-b)/(a-r)对于上式这种式子我们可以采用十字交叉的方法来计算,如下所示:A:a r-b\ /r =>A/B=(r-b)/(a-r)/ \B:b a-r二、适用题型十字交叉法最初在浓度问题上应用广泛,但在实际计算过程中,十字交叉法并没有将浓度问题有所简化,而是在以下几种题型中有更广泛的应用,解题速度也有明显提高。

1、数量分别为A与B的人口,分别增长a与b,总体增长率为r。

2、A个男生平均分为a,B个女生平均分为b,总体平均分为r。

3、农作物种植问题,A亩新品种的产量为a,B亩原来品种的产量为b,平均产量为r。

当然还有其他类似的问题,这类问题本质上都是两个不同浓度的东西混合后形成了一个平均浓度,这类问题都可以运用十字交叉法快速解题。

三、真题解析例1、某市现有70万人,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%,那么这个市现有城镇人口()A、30万B、31.2万C、40万D、41.6万解析:城镇人口:4% 0.6% x\ /4.8%/ \农村人口:5.4% 0.8% 70-x所以0.6%/0.8%= x/(70-x),解得x=30,所以答案为A。

例2、某班男生比女生人数多80%,一次考试后,全班平均成绩为75分,而女生的平均分比男生的平均分高20%,则此班女生的平均分是()。

A.84分B.85分C.86分D.87分解析:男生:x 1.2x-75 1.8\ /75/ \女生:1.2 x 75-x 1所以有(1.2x-75) /(75-x)=1.8,解得x=70,所以女生平均分为70×1.2=84,答案为A。

资料分析:速算技巧之十字交叉法

资料分析:速算技巧之十字交叉法

资料分析:速算技巧之十字交叉法今天带大家一起学习一个特殊的速算技巧——十字交叉法,这种方法主要用于解决两个部分混合成一个整体的题型。

满足关系式:,则可写成十字交叉的形式,常见应用:(1)已知两部分平均数和整体平均数,求两部分人数之比;(2)已知两部分某指标的占比和整体中该指标的占比,求两部分数量之比;(3)已知两部分增长率和整体增长率,求两部分基期量之比或者某部分基期量占比。

练习题:【例1】2018 年国家统计局组织开展了第二次全国时间利用的随机抽样调查,共调查48580 人。

结果显示,受访居民在一天的活动中,有酬劳动平均用时4 小时24 分钟。

其中,男性 5 小时15 分钟,女性 3 小时35 分钟;城镇居民 3 小时59 分钟,农村居民 5 小时1 分钟;工作日4 小时50 分钟,休息日3 小时19 分钟。

受访的男性居民约有:A.2.38 万人B.2.43 万人C.2.65 万人D.2.91 万人【例2】2018 年11 月中旬,某市统计局对全市2000 名18~65 周岁的常住居民进行了有关“双11”网购情况的电话调查。

调查结果显示,47.5%的受访者参与了2018 年“双11”的网购,其中64.4%的男性和67.2%的女性表示“有实际购物需求”是其参与“双11”网购的原因之一。

该市参与2018 年“双11”网购的受访者中,男、女人数的比值最接近:A.0.47B.0.51C.0.59D.0.65【例3】2017 年1—12 月,全国内燃机累计销量5645.38 万台,同比增长 4.11%,累计完成功率266879.47 万千瓦,同比增长9.15%,其中柴油内燃机功率同比增长34%。

从燃料类型来看,柴油机增幅明显高于汽油机,柴油机累计销量556 万台,同比增长13.04%;汽油机累计销量5089 万台。

2017 年,汽油内燃机累计销量同比增速:A.低于−4%B.在−4%~0%之间C.在0%~4%之间D.超过4%答案【例1】【答案】A【解析】出现了两个部分和一个整体的平均数,求解某部分人数。

国家公务员考试行测备考:十字交叉法

国家公务员考试行测备考:十字交叉法

国家公务员考试行测备考:十字交叉法
国家公务员考试行测备考:十字交叉法
十字交叉法主要解决公务员考试行测数量关系中的混合平均量问题,运用过程中往往涉及到五列数字:第一列:部分的平均量;第二列:总体的平均量;第三列:部分平均量与总体平均量交叉做差的差值;第四列:差值的最简比;第五列:求得部分平均量的分母所对应的实际量。

若题中已知其中四个量,对应其位置,便可以求出五个量中的任意一个量,是解决数量关系问题中非常实用的一种方法,下面中公教育专家为大家进行详细讲解。

一、两者十字交叉
常见题型一:平均分问题
[模板] 已知一个班级,男生人数为x 人,平均分为A,女生人数为 y 人,平均分为 B,求这个班级的总体平均分。

(A>B)
[例题] 某学校对其120 名学生进行随机抽查体能测验,平均分是73 分,其中男生的平均分是 75 分,女生的平均分是 63 分,男生比女生多多少人?
A.70
B.80
C.60
D.85
常见题型二:溶液问题
【模板】已知A瓶溶液的浓度为 A%,B瓶的溶液浓度为 B%,分别取 x 和 y 份进行混合,求得到的溶液浓度为多少。

(A>B) 【例题】已知在浓度为90%的甲瓶中取40g 溶液,在浓度为60%的乙瓶中取 20g 溶液,进行混合,得到的溶液的浓度为多少?
A.75%
B.80%
C.85%
D.90%。

十字交叉计算法

十字交叉计算法

一、十字交叉法十字交叉法是公务员考试数算里面的一个重要方法,很多比例问题,都可以用十字交叉法来很快地解决,而在资料分析中,也能够派上很大用场,所以应该认真掌握它。

(一)原理介绍通过一个例题来说明原理。

例:某班学生的平均成绩是80分,其中男生的平均成绩是75,女生的平均成绩是85。

求该班男生和女生的比例。

方法一:男生一人,女生一人,总分160分,平均分80分。

男生和女生的比例是1:1。

方法二:假设男生有A,女生有B。

(A*75+B85)/(A+B)=80 整理后A=B,因此男生和女生的比例是1:1。

方法三:男生:75580女生:85 5男生:女生=1:1。

一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。

平均值为C。

求取值为A的个体与取值为B的个体的比例。

假设A有X,B有(1-X)。

AX+B(1-X)=CX=(C-B)/(A-B)1-X=(A-C)/(A-B)因此:X:(1-X)=(C-B):(A-C)上面的计算过程可以抽象为:A C-BCB A-C这就是所谓的十字相乘法。

十字相乘法使用时要注意几点:第一点:用来解决两者之间的比例关系问题。

第二点:得出的比例关系是基数的比例关系。

第三点:总均值放中央,对角线上,大数减小数,结果放对角线上。

(二)例题与解析1.某体育训练中心,教练员中男占90%,运动员中男占80%,在教练员和运动员中男占82%,教练员与运动员人数之比是A.2:5B.1:3C.1:4D.1:5答案:C分析:男教练:90%2%82%男运动员:80%8%男教练:男运动员=2%:8%=1:42.某公司职员25人,每季度共发放劳保费用15000元,已知每个男职必每季度发580元,每个女职员比每个男职员每季度多发50元,该公司男女职员之比是多少A.2∶1B.3∶2 C. 2∶3D.1∶2答案:B分析:职工平均工资15000/25=600男职工工资:58030600女职工工资:63020男职工:女职工=30:20=3:23.某城市现在有70万人口,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%。

2019国家公务员考试行测数量关系十字交叉法

2019国家公务员考试行测数量关系十字交叉法

2019国家公务员考试行测数量关系十字交叉法针对十字交叉法具体可以解决的问题做一个简要的概述。

一.十字交叉法解决的题目特征题目当中既描述各个部分的比值情况又描述了整体的比值情况,我们就可以使用十字交叉法解决该类问题。

二.十字交叉模型2.利润问题例.一批商品按期望获得50%的利润来定价,结果只销售掉70%的商品,为尽早销售掉剩下的商品,商店决定按定价打折销售,这样所获得的最终利润为41%%,问打了多少折?4.增长率问题例.2009年北京市完成全社会固定资产投资4858.4亿元,分城乡看,城镇投资完成4378.2亿元,增长23.2%;农村投资完成480.2亿元,增长63.5%,则2009年北京市全社会固定资产投资增长了百分之几( )A.12.0%B.26.2%C.41.3%D.85.7%中公解析:根据题目描述我们可以得到全社会固定资产投资是由城镇和农村共同构成的,且题目中分别给出了部分的情况,则整体一定是介于城镇和农村之间的数据,所以答案排除A,D。

又由于城镇投资为4378.2亿元,远远多于农村的480.2亿元,则更加靠近23.2%,即正确选B。

以上对于十字交叉法应用的举例,不是结束而是开始,对于十字交叉法如果各位小伙伴有机会进行系统的学习,你会发现它可以解决的是一类问题,在资料分析当中小伙伴会见到一些非常见的概念产销率,上座率等等,都可以应用十字交叉法。

做好时间战略安排,赢得行测考试1.数量关系要重视根据每次考试考生的反馈,可以发现许多考生不喜欢数学,对数学运算有些排斥,甚至把数学干脆放弃,在此提醒考生朋友数学运算和资料分析是行测高手必争之地,千万不能轻视,否则很难取得高分。

在进行数学运算时,读完题目不要急于动笔,先看选项不失为一种良策,因为有些答案可以结合奇偶性、整除等快速得出答案,这样的题目在每次考试中基本都会出现,可以省去不少时间。

千万不要急于列方程计算,在考前练习的基础上能断则断,不要死算,否则浪费时间,得不偿失。

公务员—行测—十字交叉法的原理

公务员—行测—十字交叉法的原理

一、十字交叉法的原理(这个有的前辈和大侠有比较详细的讲解,简单易懂,在这里就直接用前辈写的东西来说明了,但是为了符合我的一些习惯,还是做了一定的修改)首先通过例题来说明原理。

某班学生的平均成绩是80分,其中男生的平均城市75分,女生的平均城市85分,求该班男生和女生的比例。

方法一:搞笑(也是高效)的方法。

男生一人,女生一人,总分160分,平均分80分,男生和女生的比例是1:1。

月月讲解:这个就是咱常用的特殊值法吧,不过思路稍微特殊一点。

方法二:假设男生有X,女生有Y。

有(X×75+Y×85)/(X+Y)=80,整理有X=Y,所以男生和女生的比例是1:1。

月月讲解:这个就是常用的列方程法方法二:假设男生有X,女生有Y。

男生:X 75 85-80=580女生:Y 85 80-75=5男生:女生=X:Y=1:1。

月月讲解:这一步前辈说的不是很清楚,补充修正了一下,其实说白了,十字交叉的左侧是各部分的量,右侧是混合后的量。

总结一下,一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。

平均值为C。

求取值为A的个体与取值为B的个体的比例。

假设A有X,B有(1-X)。

AX+B(1-X)=CX=(C-B)/(A-B)1-X=(A-C)/A-B因此:X:(1-X)=(C-B):(A-C)上面的计算过程可以抽象为:A C-BCB A-C这就是所谓的十字相乘法。

月月讲解:这个是大侠的,不过我个人觉得,十字交叉法用溶液问题来讲解更加浅显易懂,怎么说呢,我们还是通过例题来讲解。

有两种溶度浓度的溶液A、B,其浓度为x、y,现将这些溶液混合到一起得到浓度为r的溶液,那么这两种溶液的浓度之比为多少?假设A溶液的质量为X,B溶液的浓度为Y,则有:X*x+Y*y=(X+Y)*r整理有X(x-r)=Y(r-y);所以有X:Y=(r-y):(x-r)上面的计算过程就抽象为:X x r-yrY y x-r这样就看着清楚多了吧,知道是哪个比哪个等于什么值了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行测资料分析运算题常用方法:十字交叉法
十字交叉法主要解决的就是比值的混合问题,在广东公务员考试的过程中,资料分析部分解题经常用的一种解题方法。

它应用起来快速、准确、方便,为我们考试中秒杀题目提供了很大的助力。

那么接下来中公教育专家跟大家一起来学习十字交叉法。

一、十字交叉法概述
十字交叉法是解决比值混合问题的一种非常简便的方法。

这里需要大家理解“比值”“混合”这两个概念。

比值:满足C/D的形式都可以看成是比值;混合:分子分母具有可加和性。

平均数问题、浓度问题、利润问题、增长率问题、比重等混合问题,都可以用十字交叉法来解决。

二、十字交叉法的模型:
在该模型中,需要大家掌握以下几个知识点:
1、a和b为部分比值、r为整体比值、A和B为实际量
2、交叉作差时一定要用大数减去小数,保证差值是一个正数,避免出现错误。

这里假定a>b
3、实际量与部分比值的关系
实际量对应的是部分比值实际意义的分母。

如:平均分=总分/人数,实际量对应的就是相应的人数;浓度=溶质/溶液,实际量对应的就是相应的溶液质量;增长率=增长量/基期值,实际量对应的就是相应的基期值。

4、在这里边有三组计算关系
(1)第一列和第二列交叉作差等于第三列
(2)第三列、第四列、第五列的比值相等
(3)第1列的差等于第三列的和
三组计算关系是我们应用十字交叉法解题的关键,一定要记住并且灵活应用。

三、四种考查题型
1、求a,即已知总体比值、第二部分比值、实际量之比,求第一部分比值。

例某班有女生30人,男生20人。

期中的数学考试成绩如下,全班总的平均分为76,其中男生的平均分为70。

求全班女生的平均分为多少?
中公解析:平均分=总分/人数,是比值的形式。

此题中,男生的平均分和女生的平均分混合成了全班的平均分,是比值的混合问题,可以用十字交叉法来解题。

2、求b,即已知总体比值、第一部分比值、实际量之比,求第二部分比值。

例某班有女生30人,男生20人。

期中的数学考试成绩如下,全班总的平均分为76,其中女生的平均分为80。

求全班男生的平均分为多少?
中公解析:平均分=总分/人数,是比值的形式。

此题中,男生的平均分和女生的平均分混合成了全班的平均分,是比值的混合问题,可以用十字交叉法来解题。

3、求r,即已知第一部分比值、第二部分比值、实际量之比,求整体比值。

例某班有女生30人,男生20人。

期中的数学考试成绩如下女生的平均分为80,男生的平均分为70。

求全班的平均分为多少?
中公解析:平均分=总分/人数,是比值的形式。

此题中,男生的平均分和女生的平均分混合成了全班的平均分,是比值的混合问题,可以用十字交叉法来解题。

4、求实际量之比,即已知第一部分比值、第二部分比值、整体比值,求实际量之比。

例某班期中的数学考试成绩如下:全班平均分为76,女生的平均分为80,男生的平均分为70。

求班级中女生与男生的人数之比?
中公解析:平均分=总分/人数,是比值的形式。

此题中,男生的平均分和女生的平均分混合成了全班的平均分,是比值的混合问题,可以用十字交叉法来解题。

再利用十字交叉法解决问题时,需要深刻理解模型中的每个概念以及相关的计算关系和注意的点。

中公教育专家希望大家能够灵活运用并且能在考试中快速解题。

相关文档
最新文档