高中数学 第三讲 柯西不等式与排序不等式 3.1 二维形式的柯西不等式 3.2 一般形式的柯西不等式目标导引素材
第三讲柯西不等式的基本方法与排序不等式(柯西不等式的一般形式)

作业:P41
2、 4、 5、 6
问题:已知A、B都是锐角, 且cosA+cosB-cos(A+B)=
2 3
,
求A、B的值
当且仅当bi=0(i=1 ,2 ,3 , …,n)或
bi≠0(i=1 ,2 ,3 , … ,n)时,
等号成立.
a1 a 2 = = b1 b2
an = bb
问题:已知a1 ,a 2 , a n ∈ R +,求证 n 1 1 + + a1 a 2 a1 + a 2 + ≤ 1 n + an + an
使得ai=kbi(i=1 ,2 ,3 , … ,n)时,等号成立.
注:简记;积和方不大于方和积
定理:设a1,a2 ,a3 , … ,an ,b1 ,b2 ,b3 , …,bn 是实数,则
2 2 2 2 2 3 2 2 (a1 +a2 +a + +a )(b + b + b + + b ) (a b +a b + +a b ) 2 3 n 1 2 3 n 1 1 2 2 n n
定理:设a1,a2 ,a3 , … ,an ,b1 ,b2 ,b3 , …,bn 是实数,则
2 2 2 2 2 3 2 2 (a1 +a2 +a + +a )(b + b + b + + b ) (a b +a b + +a b ) 2 3 n 1 2 3 n 1 1 2 2 n n
当且仅当bi=0(i=1 ,2 ,3 , …,n)或存在一个数k
+a
高中数学 第三讲 柯西不等式与排序不等式 3.1 二维形式的柯西不等式 3.2 一般形式的柯西不等式素材1 新人教

二 一般形式的柯西不等式庖丁巧解牛知识·巧学一、二维形式的柯西不等式定理1 (二维形式的柯西不等式)已知a 1,a 2,b 1,b 2∈R ,则(a 1b 1+a 2b 2)2≤(a 12+a 22)2(b 12+b 22)2,当且仅当a 1b 2-a 2b 1=0时取等号.由二维形式的柯西不等式推导出两个非常有用的不等式: 对于任何实数a 1,a 2,b 1,b 2,以下不等式成立:22212221b b a a +•+≥|a 1b 1+a 2b 2|; 22212221b b a a +•+≥|a 1b 1|+|a 2b 2|.联想发散不等式中等号成立⇔a 1b 2-a 2b 1=0.这时我们称(a 1,a 2),(b 1,b 2)成比例,如果b 1≠0,b 2≠0,那么a 1b 2-a 2b 1=0⇔2211b a b a =.若b 1·b 2=0,我们分情况说明:①b 1=b 2=0,则原不等式两边都是0,自然成立;②b 1=0,b 2≠0,原不等式化为(a 12+a 22)b 22≥a 22b 22,也是自然成立的;③b 1≠0,b 2=0,原不等式和②的道理一样,自然成立.正是因为b 1·b 2=0时,不等式恒成立,因此我们研究柯西不等式时,总是假定b 1b 2≠0,等号成立的条件可以写成2211b a b a =,这种写法在表示一般形式(n 维)的柯西不等式等号成立的条件时更是方便、简洁的.定理2 (柯西不等式的向量形式)设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立. 学法一得定理2 中等号成立的充分必要条件是向量α和β平行(如α,β为非零向量,则定理2中等号成立的充分必要条件为向量α与β的夹角为0或π,即α与β对应的坐标分量成比例),从而可以推知定理1中等号成立的充分必要条件为2211b a b a =(b i 为零时,a i 为零,i=1,2).定理 3 (二维形式的三角不等式)设x 1,x 2,y 1,y 2∈R ,那么22122122222121)()(y y x x y x y x -+-≥+++.二维形式的三角不等式的变式:用x 1-x 3代替x 1,用y 1-y 3代替y 1,用x 2-x 3代替x 2,用y 2-y 3代替y 2,代入定理3,得232231231231)()()()(y y x x y y x x -+-+-+-221221)()(y y x x -+-≥二、一般形式的柯西不等式 定理 设a i ,b i ∈R (i=1,2, …,n),则(∑∑∑===≤ni ini ini ii ba b a 121212)(.当数组a 1,a 2,…,a n ,b 1,b 2,…,b n 不全为0时,等号成立当且仅当b i =λa i (1≤i≤n).即(a 1b 1+a 2b 2+…+a n b n )2≤(a 12+a 22+…+a n 2)2(b 12+b 22+…+b n 2)2(a i ,b i ∈R ,i=1,2,…,n )中等号成立的条件是2211b a b a ==…=nn b a. 记忆要诀这个式子在竞赛中极为常用,只需简记为“积和方小于和方积”.等号成立的条件比较特殊,要牢记.此外应注意在这个式子里不要求各项均是正数,因此应用范围较广. 一般形式的柯西不等式有两个很好的变式:变式 1 设a i ∈R ,bc>0(i=1,2, …,n),则∑∑∑≥=ii ni i ib a b a 212)(,等号成立当且仅当b i =λa i (1≤i≤n).变式2 设a i ,b i 同号且不为0(i=1,2,…,n ),则∑∑∑≥=i i i ni iib a a b a 212)(,等号成立当且仅当b 1=b 2=…=b n .深化升华要求a i ,b i 均为正数.当然,这两个式子虽常用,但是记不记住并不太重要,只要将柯西不等式原始的式子记得很熟,这两个式子其实是一眼就能看出来的,这就要求我们对柯西不等式要做到活学活用.柯西不等式经常用到的几个特例(下面出现的a 1, …,a n ;b 1, …,b n 都表示实数)是:(1)a 12+a 22+…+a n 2=1,b 12+b 22+…+b n 2=1,则|a 1b 1+a 2b 2+…+a n b n |≤1;(2)a 1a 2+a 2a 3+a 3a 1≤a 12+a 22+a 32;(3)(a 1+a 2+…+a n )2≤n(a 12+a 22+…+a n 2);(4)(a+b)(a 1+b1)≥4=(1+1)2,其中a 、b∈R +; (5)(a+b+c)(a 1+b 1+c1)≥9=(1+1+1)2,其中a 、b 、c∈R +.柯西不等式是一个重要的不等式,有许多应用和推广,与柯西不等式有关的竞赛题也频频出现,这充分显示了它的独特地位. 典题·热题知识点一: 用柯西不等式证明不等式 例1 设a 1>a 2>…>a n >a n+1,求证:11132211111a a a a a a a a n n n -+-++-=-++Λ>0.思路分析:这道题初看起来似乎无法使用柯西不等式,但改变其结构就可以使用了,我们不妨改为证: (a 1-a n+1)·[13221111+-++-+-n n a a a a a a Λ]>1.证明:为了运用柯西不等式,我们将a 1-a n+1写成a 1-a n+1=(a 1-a 2)+(a 2-a 3)+ …+(a n -a n+1),于是[(a 1-a 2)+(a 2-a 3)+…+(a n -a n+1)]·(13221111+-++-+-n n a a a a a a Λ)≥n 2>1.即(a 1-a n+1)·(13221111+-++-+-n n a a a a a a Λ)>1,∴11132211111++->-++-+-n n n a a a a a a a a Λ,故11132211111a a a a a a a a n n n -+-++-+-++Λ>0.方法归纳我们进一步观察柯西不等式,可以发现其特点是:不等式左边是两个因式之和,其中每一个因式都是项平方和,右边是左边中对立的两两乘积之和的平方,证题时,只要能将原题凑成此种形式,就可以引用柯西不等式来证明. 知识点二: 用柯西不等式证明条件不等式 例2 (经典回放)设x 1,x 2, …,x n ∈R +,求证:123221x x x x x x x x nn ++++Λ≥x 1+x 2+…+x n . 思路分析:在不等式的左端嵌乘以因式(x 2+x 3+…+x n +x 1),也即嵌以因式(x 1+x 2+…+x n ),由柯西不等式即可得证.证明:(123221x x x x x x x x nn ++++Λ)·(x 2+x 3+…+x n +x 1) =[(21x x )2+(22x x )2+…+(nn x x 1-)2+(1x x n )2] [(2x )2+(3x )2+…+(n x )2+(1x )2]≥(21x x ·2x +22x x ·3x +…+nn x x 1-·n x +1x x n ·1x ) =(x 1+x 2+…+x n )2,于是123221x x x x x x x x nn ++++Λ≥x 1+x 2+…+x n . 巧解提示柯西不等式中有三个因式∑∑∑===ni ii ni ini iba b a 11212,,,而一般题目中只有一个或两个因式,为了运用柯西不等式,我们需要设法嵌入一个因式(嵌入的因式之和往往是定值),这也是利用柯西不等式的技巧之一.知识点三: 用柯西不等式求函数的极值例3 已知实数a,b,c,d 满足a+b+c+d=3,a 2+2b 2+3c 2+6d 2=5,试求a 的最值. 思路分析:本题求极值问题从表面上看不能利用柯西不等式,但只要适当添加上常数项或和为常数的各项,就可以应用柯西不等式来解. 解:由柯西不等式得,有 (2b 2+3c 2+6d 2)(613121++)≥(b+c+d)2, 即2b 2+3c 2+6d 2≥(b+c+d)2.由条件可得,5-a 2≥(3-a)2. 解得,1≤a≤2,当且仅当6/163/132/12dc b ==时等号成立. 代入b=1,c=31,d=61时,a max =2; b=1,c=32,d=31时,a min =1.巧妙变式为了给运用柯西不等式创造条件,经常引进一些待定的参数,其值的确定由题设或者由等号成立的充要条件共同确定,也有一些三角极值问题我们可以反复运用柯西不等式进行解决.而有些极值问题的解决需要反复利用柯西不等式才能达到目的,但在运用过程中,每运用一次前后等号成立的条件必须一致,不能自相矛盾,否则就会出现错误.这多次反复运用柯西不等式的方法也是常用技巧之一. 如:已知a,b 为正常数,且0<x<2π,求y=x b x a cos sin +的最小值. 解:利用柯西不等式,得)(32323232b a b a +=+(sin 2x+cos 2x)≥(3a sinx+3b cosx)2.当且仅当33cos sin bxax=时等号成立.于是33232a b a ≥+sinx+3b cosx.再由柯西不等式,得3232b a +(xb x a cos sin +) ≥(3a sinx+3b cosx)(xb x a cos sin +) ≥(x b x b x a x a cos cos sin sin 66+)2=(a 32+b 32)2. 当且仅当33cos sin bxax=时等号成立.从而y=x bx a cos sin +≥(a 32+b 32)32. 于是y=xbx a cos sin +的最小值是(a 32+b 32)32. 问题·探究 思想方法探究问题 试探究用柯西不等式导出重要公式.如n 个实数平方平均数不小于这n 个数的算术平均数,即若a 1,a 2,…,a n ∈R ,则na a a n a a a nn2222121+++≤+++ΛΛ.探究过程:由柯西不等式可知(a 1+a 2+…+a n )2≤(a 1·1+a 2·1+…+a n ·1)2≤(a 12+a 22+…+a n 2)·(12+12+…+12)=(a 12+a 22+…+a n 2)·n,所以na a a n 221)(+++Λ≤a 12+a 22+…+a n 2,故na a a n a a a nn2222121+++≤+++ΛΛ.不等式na a a na a a nn2222121+++≤+++ΛΛ,把中学教材中仅有关于两个正数的“算术平均”,“几何平均”问题拓广到了“二次幂平均”问题,即nn a a a Λ21≤na a a n a a a nn2222121+++≤+++ΛΛ,这不仅拓宽了中学生的眼界,而且为解决许多不等式的问题开辟了一条新路.探究结论:柯西不等式不仅在高等数学中是一个十分重要的不等式,而且它对初等数学也有很好的指导作用,利用它能方便地解决一些中学数学中的有关问题. 交流讨论探究问题 柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,试交流讨论使用柯西不等式的技巧,试举例归纳.探究过程:人物甲:构造符合柯西不等式的形式及条件可以巧拆常数,如:设a 、b 、c 为正数且各不相等.求证cb a ac c b b a ++>+++++9222.我们可以如此分析:∵a、b 、c 均为正,∴为证结论正确只需证2(a+b+c)[ac c b b a +++++111]>9.而2(a+b+d)=(a+b)+(b+c)+(c+a),又9=(1+1+1)2.人物乙:构造符合柯西不等式的形式及条件可以重新安排某些项的次序,如:a 、b 为非负数,a+b=1,x 1,x 2∈R +,求证(ax 1+bx 2)(bx 1+ax 2)≥x 1x 2.我们可以如此分析:不等号左边为两个二项式积,a,b∈R -,x 1,x 2∈R +,直接用柯西不等式做得不到预想结论,当把第二个小括号的两项前后调换一下位置,就能证明结论了.人物丙:构造符合柯西不等式的形式及条件可以改变结构,从而能够使用柯西不等式,如:若a>b>c ,求证c b b a -+-11≥ca -4.我们可以如此分析:初式并不能使用柯西不等式,改造结构后便可使用柯西不等式了.∵a -c=(a-b)+(b-c),a>c,∴a -c>0,∴结论改为(a-c)(cb b a -+-11)≥4. 人物丁:构造符合柯西不等式的形式及条件可以添项,如:若a,b,c∈R +,求证b ac a c b c b a +++++≥23.我们可以如此分析:左端变形c b a ++1+ac b++1+b a c ++1=(a+b+c)(b a a c c b +++++111),∴只需证此式≥29即可. 探究结论:使用柯西不等式的技巧主要就是使用一些方法(巧拆常数、重新安排某些项的次序、添项等)构造符合柯西不等式的形式及条件.。
人教版高中数学选修4-5《第三讲柯西不等式与排序不等式一般形式的柯西不等式》

3 3 =3 ( x 0)
6
复习引入
设<m, n , 则m n | m | | n | cos | m n || m | | n | | cos || m | | n | | m n || m | | n | 当且仅当m // n时,等号成立. m (a, b, c), n (d , e, f ) m n ad be cf
2 2
1 1 2 (1 x 2 y ) 5 5
1 2 (当 x , y ) 5 5
4
复习引入 下面我们来做几个巩固练习: 1 2 3.设 x, y R ,且 x+2y=36,求 的最小值. x y
1 2 1 1 2 ( )( x 2 y) x y 36 x y 1 2 y 2x (1 4 ) 36 x y 1 2 y 2x (5 2 ) 36 x y
(a b c d ) (a b c d )(b c d a )
2 2 2 2 2 2 2 2 2 2 2 2
(ab bc cd da )
2 2 2 2
2
(ab bc cd da )
即 a b c d ab bc cd da
同样这个不等式也有着向量(n维向量)及几何背景, 其应用广泛。
9
一般形式的柯西不等式示例源自例 1 已知 a1 , a2 , , an 都是实数,求证: 1 2 2 2 2 (a1 a2 an ) ≤ a1 a2 an n 1 1 2 2 ( a a a ) (1 a 1 a 1 a ) 证明: 1 2 n 1 2 n n n 1 2 2 2 2 2 (1 1 12 )(a1 a2 an ) n
高中数学 第三讲 柯西不等式与排序不等式 3.2 一般形式的柯西不等式知识导学案 新人教A版选修45

二 一般形式的柯西不等式知识梳理1.三维形式的柯西不等式设a 1,a 2,a 3,b 1,b 2,b 3是实数,则(a 12+a 22+a 32)(b 12+b 22+b 32)≥__________,当且仅当_______或存在一个数k ,使得a i =kb i (i=1,2,3)时等号成立. 2.一般形式的柯西不等式设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3, …,b n 是实数,则 (a 12+a 22+…+a n 2)(b 12+b 22+…+b n 2)≥_______,当且仅当_______或存在一个数k ,使得a i =kb i (i=1,2, …,n)时,等号成立. 知识导学由二维形式的柯西不等式到一般形式的柯西不等式,是从特殊到一般的认识过程,其中三维形式的柯西不等式是过渡的桥梁,三维形式的柯西不等式可以对比二维形式的柯西不等式来理解和记忆,一般形式的柯西不等式又可以参照三维形式的柯西不等式来理解和推广.这样易于记忆不等式的结构与特征.对不等式成立的条件及等号取到的条件更要对比来研究.一般形式的柯西不等式注意整体的结构特征,因此,要从整体结构上认识这个不等式,形成一定的思维理解模式,在应用其解决问题时才能灵活应用. 疑难突破1.一般形式的柯西不等式的应用我们主要利用柯西不等式来证明一些不等式或求值等一些问题,但往往不能直接应用,需要对数学式子的形式进行变化,拼凑出与一般形式的柯西不等式相似的结构,才能应用,因而适当变形是我们应用一般形式的柯西不等式的关键,也是难点.我们要注意在数学式子中,数或字母的顺序要对比柯西不等式中的数或字母的顺序,以便能使其形式一致起来,然后应用解题. 2.“1”的利用数字“1”的利用非常重要,为了利用柯西不等式,除了拼凑应该有的结构形式外,对数字、系数的处理往往起到某些用字母所代表的数或式子所不能起的作用.这要求在理论上认识柯西不等式与实际应用时二者达到一种默契,即不因为“形式”与“面貌”的影响而不会用柯西不等式,教材例1中数字“1”的利用说明了处理问题与变形中的灵活性,因此,不应对“1”视而不见. 典题精讲【例1】 已知a,b,c∈R +,求证:(b a +c b +a c )(a b +b c +ca)≥9. 思路分析:对应三维形式的柯西不等式,a 1=b a ,a 2=c b ,a 3=a c ,b 1=a b ,b 2=b c ,b 3=ca ,而a 1b 1=a 2b 2=a 3b 3=1,因而得证. 证明:由柯西不等式,知左边=[(b a )2+(c b )2+(a c )2]×[(a b )2+(b c )2+(ca )2] ≥(a b ×b a +c b ×b c )+a c ×ca )2=(1+1+1)2=9.∴原不等式成立.绿色通道:由a,b,c 构成新的数字,而形成三维形式的柯西不等式,需要有较高的观察能力,从所给的数学式的结构中看出来.【变式训练】 已知a,b,c∈R +,且a+b+c=1,求证:cb a 111++≥9. 思路分析:利用“1”的代换来构造柯西不等式. 证法一:c b a 111++=(a+b+c)(cb a 111++) =[(a )2+(b )2+(c )2]×[(a 1)2+(b 1)2+(c1)2] ≥(a ×a 1+b ×b 1+c ×c1)2=(1+1+1)2=9. 证法二:a 1+b 1+c 1=(a+b+c)(a 1+b 1+c 1) =1+b a +c a +a b +1+c b +a c +bc +1=3+(b a +c a +c b +a c +b c +ab)≥3+66a b b c a c c b c a b a ⨯⨯⨯⨯⨯=3+6=9.【例2】 已知a 1,a 2, …,a n 都是正实数,且a 1+a 2+…+a n =1.求证:1212132222121a a a a a a a a a a a a n n n n n ++++++++-- ≥21. 思路分析:已知条件中a 1+a 2+…+a n =1,可以看作“1”的代换,而要证的不等式的左侧,“数式”已经可以看出来,为,,322211a a a a a a ++, …,所以a 1+a 2+…+a n =1.应扩大2倍后再利用,本题还可以利用其他的方法证明.证法一:根据柯西不等式,得左边=1212132222121a a a a a a a a a a a a n n n n n ++++++++-- =[(a 1+a 2)+(a 2+a 3)+(a 3+a 4)+ …+(a n-1+a n )+(a n +a 1)]× [(211a a a +)2+(322a a a +)2+(433a a a +)2+…+(n n n a a a +--11)2+(1a a a n n +)2]×21=[(21a a +)2+(32a a +)2+…+(n n a a +-1)2+(1a a n +)2]×[(211a a a +)2+(322a a a +)2+…+(n n n a a a +--11)2+(1a a a n n +)2]×21≥[(21a a +×211a a a +)+(32a a +×322a a a +)+…+(n n a a +-1×n n n a a a +--11)+(1a a n +×1a a a n n +)]2×21=(a 1+a 2+…+a n )2×21=21=右边.∴原不等式成立.证法二:∵a∈R +,则a+a1≥2, a≥2-a1. 利用上面的结论,知4)22(22221121121112121a a a a a a a a a a a a a +-=+-≥+⨯=+ 同理,有43223222a a a a a a +-≥+,…411121n n n n n n a a a a a a +-≥+----,4121a a a a a a n n n n n +-≥+-. 以上式子相加整理,得1212132222121a a a a a a a a a a a a n n n n n ++++++++-- ≥21(a 1+a 2+…+a n )=21. 证法三:对于不等式左边的第一个分式2121a a a +,配制辅助式k(a 1+a 2),k 为待定的正数,这里取k=41,则412121++a a a (a 1+a 2)≥)(412212121a a a a a +⨯+=a 1. 同理,413222++a a a (a 2+a 3)≥a 2.……41121++--n n n a a a (a n-1+a n )≥a n-1,4112++a a a n n (a n +a 1)≥a n .以上式子相加整理,得1212132222121a a a a a a a a a a a a n n n n n ++++++++-- ≥21(a 1+a 2+…+a n ). ∵a 1+a 2+…+a n =1,∴1212132222121a a a a a a a a a a a a n n n n n ++++++++-- ≥21. 绿色通道:通过以上不同的证明方法可以看出,无论用柯西不等式或其他重要不等式来证明,构造出所需要的某种结构是证题的难点,因此,对柯西不等式或其他重要不等式,要熟记公式的特点,能灵活变形,才能灵活应用.【变式训练】 设x 1,x 2,x 3, …,x n 都是正实数,且x 1+x 2+x 3+…+x n =S.求证:12222121-≥-++-+-n Sx S x x S x x S x n n . 思路分析:对比例2及本题要证明的不等式,知需要构造出S-x 1+S-x 2+…+S-x n .证法一:根据柯西不等式,得左边=nn x S x x S x x S x -++-+-2222121=[(S-x 1)+(S-x 2)+ …+(S-x n )]×S n x S x x S x x S x S n n n )1(1][)1(12222121-=-++-+-- nn n x S x x S x x S x x S x S x S -++-+-⨯-++-+- 221122221][])()()[(≥2222111)]()()[()1(1nn n x S x x S x S x x S x S x x S S n -⨯-++-⨯-+-⨯--=S n )1(1-(x 1+x 2+…+x n )2=S n )1(1-×S 2=1-n S =右边.∴原不等式成立. 证法二:∵a∈R +,则a+a1≥2. ∴a≥2-a1. ∴22)1(12])1(2[1)1(1----=---⨯-≥--⨯-=-n x S n x x n x S n x x S x n n x x S x i i i i i i i i i . n 个式子相加,有])1()1()1([12121222221212222121--++--+----++-+-≥-++-+-n x S n x S n x S n x n x n x x S x x S x x S x n n n n =1)1(122-=----n Sn S nS n S .∴原不等式成立. 证法三:22)1(1-+-n x S x i i (S-x i )≥ 12)()1(1222-=--∙-n x x S n x S x i ii i . ∴22)1()1(2----≥-n x S n x x S x i i i i , ∴1)1()1(12)1(12212112-=----=----≥-∑∑∑===n S n S n n S n x S n x x S x ni i n i i ni i i . ∴原不等式成立.问题探究问题:全班同学的体重与年龄有某种关系,如果让每人的体重都去乘所有人的年龄,再求其和,就可以比较得出各班之间体重间的一些问题,问这种值最小是多少? 导思:设其人数及年龄,利用柯西不等式解答.探究:设全班为60人,年龄设为x 1,x 2, …,x 60,对应的体重为y 1,y 2,…,y 60.则 (x 1+x 2+…+x 60)(y 1+y 2+…+y 60) ≥(60602211y x y x y x +++)2.∴最小值是(60602211y x y x y x +++ )2.。
第三讲.柯西不等式与排序不等式

三.排序不等式
探 究 如 图3.3 1,设AOB ,
自 点O沿OA边 依 次 取n个 点A1, A2,
B
Bn
, An,沿OB 边 也 依 次 取 点B1 , B2 ,
Bj
, Bn.选 取 某 个 点Ai i 1,2, n与 B2
某 个 点Bj j 1,2, , n连 结,得 到
定理 设 a1, a2 , a3,..., an ,b1,b2 ,b3,..., bn 是实数,则
(a12 a22 ... an2 ) (b12 b22 ... bn2 ) (a1b1 a2b2 ... anbn )2
当且仅当 bi 0 (i=1,2,…,n) 或 存在一个
例3.设a,b∈R+,a+b=1,求证
11 4 ab
注意应用公式: (a b)( 1 1 ) 4
ab
练习:
1.已知2x2 3y2 6, 求证x 2 y 11
2.已知a2 b2 1,
求证|a cos b sin | 1
作业
第37页,第1,5,6题
定理3(二维形式的三角不等式)
设
x1,
y, 1
x
,
22 x22 y22 (x1 x2 )2 ( y1 y2 )2
例题
例1.已知a,b为实数,证明: (a4+b4) (a2+b2)≥ (a3+b3)2
例2.求函数y 5 x 1 10 2x的最大值.
例1 已知 a1, a2 , a3,..., an 都是实数,求证:
1 n
(a1
a2
...
第三讲 柯西不等式与排序不等式

第三讲 柯西不等式与排序不等式2.熟悉一般形式的柯西不等式,理解柯西不等式的证明;.会应用柯西不等式解决函数最值,方程、不等式等的一些问题一、课前准备 知识情景:1. 柯西主要贡献简介: 柯西(Cauchy ),法国人,生于1789年,是十九世纪前半叶最杰出的分析家. 他奠定了数学分析的理论基础. 数学中很多定理都冠以柯西的名字,如柯西收敛原理、柯西中值定理、柯西积分不等式、柯西判别法、柯西方程等等.2.如果,a b R ∈, 那么222a b a b +≥. 当且仅当a b =时, 等号成立. 当0,0a b >>时,由222a b a b +≥⇒基本不等式: 二、新课导学(一)二维形式的柯西不等式1. 柯西不等式:若,,,a b c d R ∈,则22222()()()a b c d a c b d +++.当且仅当 时, 等号成立.此即二维形式的柯西不等式. 证法1.(综合法)222222222222()()a b c d a c a db c b d++=+++222()()()a c b d =++当且仅当 时, 等号成立.证法2.(构造法)分析:22222()()()a c b d a b c d +++⇐22222[2()]4()()0a c b d a b c d +-++而22222[2()]4()()a c b d a b c d +-++的结构特征 那么, 证:设22222()()2()f x a b x a c b d x c d =+-+++, ∵ 22()()()f x a x c b x d =-+- 0 恒成立.∴ . 得证. 证法3.(柯西不等式的向量形式) 设向量(,)ma b =,(,)n c d =, 则||m =,||n =.∵ m n⋅=,且><⋅⋅=⋅n m n m n m ,cos ||||,有||||||n m n m ⋅⋅.∴ . 得证. 2. 二维柯西不等式的变式:变式1.若,,,a b c d R ∈,则_a c b d +_a c b d +;变式2.若,,,a b c d R ∈;变式3. (三角不等式)若1122,,,x y x y R∈推论:若123123,,,,,x x x y y y R ∈,则≥3. 二维柯西不等式的应用:例1.(1)已知,a b 为实数,求证: 4422332()()()a b a b a b ++≥+ (2)设,,1a b R a b +∈+=,求证:114ab+≥例2.(1)求函数y =(2)若231x y +=,求2249x y +的最小值,并求最小值点。
高中数学 第三讲 柯西不等式与排序不等式 3.1 二维形式的柯西不等式课堂探究学案 新人教A版选修45

3.1 二维形式的柯西不等式课堂探究1.对柯西不等式的理解剖析:柯西不等式的几种形式,都涉及对不等式的理解与记忆,因此,二维形式的柯西不等式可以理解为四个有顺序的数来对应的一种不等关系,或构造成一个不等式,如基本不等式是由两个数来构造的,但怎样构造要仔细体会.(a 2+b 2)(c 2+d 2)≥(ac +bd )2,(a 2+b 2)(d 2+c 2)≥(ad +bc )2,谁与谁组合、联系,要有一定的认识.2.柯西不等式取“=”的条件剖析:柯西不等式取“=”的条件,也不易记住,我们可以多方面联系来记忆,如(a 2+b 2)(c 2+d 2)≥(ac +bd )2,取“=”的条件是“ad =bc ”,有点像a ,b ,c ,d 成等比时,ad =bc ;柯西不等式的向量形式中|α·β|≤|α||β|,取“=”的条件是β=0或存在实数k ,使α=k β.我们可以从向量的数量积的角度来理解和记忆.题型一 柯西不等式等号成立的条件【例1】求证:点P (x 0,y 0)到直线Ax +By +C =0的距离为d =|Ax 0+By 0+C |A 2+B 2. 证明:设Q (x ,y )是直线上任意一点,则Ax +By +C =0.因为|PQ |2=(x -x 0)2+(y -y 0)2,A 2+B 2≠0.由柯西不等式,得(A 2+B 2)[(x -x 0)2+(y -y 0)2]≥[A (x -x 0)+B (y -y 0)]2=[(Ax +By )-(Ax 0+By 0)]2=(Ax 0+By 0+C )2,所以|PQ |≥|Ax 0+By 0+C |A 2+B2. 当且仅当x -x 0A =y -y 0B 时,取等号,|PQ |取得最小值|Ax 0+By 0+C |A 2+B 2. 因此,点P (x 0,y 0)到直线Ax +By +C =0的距离为d =|Ax 0+By 0+C |A 2+B 2. 反思 利用二维形式的柯西不等式(a 2+b 2)(c 2+d 2)≥(ac +bd )2,取“=”的条件是ad=bc .因此,在解题时,对照柯西不等式,必须弄清要求的问题中相当于柯西不等式中的“a ,b ,c ,d ”的数或代数式,否则容易出错.题型二 利用柯西不等式证明某些不等式【例2】设a ,b >0,且a +b =2.求证:a 22-a +b 22-b ≥2. 分析:利用柯西不等式前,需要观察不等式的结构特点,本题可以看作求a 22-a +b 22-b 的最小值,因而需出现(a 2+b 2)(c 2+d 2)结构.把a 22-a +b 22-b视为其中的一个括号内的部分,另一部分可以是(2-a )+(2-b ).证明:根据柯西不等式,有 [(2-a )+(2-b )]⎝ ⎛⎭⎪⎫a 22-a +b 22-b =[(2-a )2+(2-b )2]⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a 2-a 2+⎝ ⎛⎭⎪⎫b 2-b 2 ≥⎝⎛⎭⎪⎫2-a ·a 2-a +2-b ·b 2-b 2 =(a +b )2=4.∴a 22-a +b 22-b ≥4(2-a )+(2-b )=2. 当且仅当2-a ·b2-b =2-b ·a2-a , 即a =b =1时等号成立.∴原不等式成立.反思 利用柯西不等式证明某些不等式时,有时需要将数学表达式做适当的变形.这种变形技巧往往要求很高,必须善于分析题目的特征,根据题设条件,综合地利用添、拆、分解、组合、配方、变量代换、数形结合等方法才能发现问题的本质,找到突破口.。
高中数学 第三讲 柯西不等式与排序不等式 3.1 二维形

3.1 二维形式的柯西不等式预习导航1.认识柯西不等式的几种不同形式,理解其几何意义.2.通过运用柯西不等式分析解决一些简单问题.1.二维形式的柯西不等式(1)若a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时,等号成立.(2)二维形式的柯西不等式的推论:(a +b )(c +d a ,b ,c ,d 为非负实数); a 2+b 2·c 2+d 2≥|ac +bd |(a ,b ,c ,d ∈R );a 2+b 2·c 2+d 2≥|ac |+|bd |(a ,b ,c ,d ∈R ).【做一做1】已知a ,b >0,且a +b =1,则(4a +1+4b +1)2的最大值是( )A .2 6B . 6C .6D .12解析:(4a +1+4b +1)2=(1×4a +1+1×4b +1)2≤(12+12)(4a +1+4b +1)=2[4(a +b )+2] =2×(4×1+2)=12,当且仅当4b +1=4a +1,即a =b =12时等号成立. 答案:D2.柯西不等式的向量形式设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立.【做一做2】设a =(-2,1,2),|b |=6,则a ·b 的最小值为__________,此时b =__________.解析:根据柯西不等式的向量形式,有|a ·b |≤|a |·|b |,∴|a ·b |≤(-2)2+12+22×6=18,当且仅当存在实数k ,使a =k b 时,等号成立.∴-18≤a ·b ≤18.∴a·b的最小值为-18,此时b=-2a=(4,-2,-4).答案:-18 (4,-2,-4)3.二维形式的三角不等式(1)设x1,y1,x2,y2∈R,那么x21+y21+x22+y22≥(x1-x2)2+(y1-y2)2.(2)推论:(x1-x3)2+(y1-y3)2+(x2-x3)2+(y2-y3)2≥(x1-x2)2+(y1-y2)2(x1,x2,x3,y1,y2,y3∈R).归纳总结解决柯西不等式的应用问题,关键是把原有式子巧妙地转化为柯西不等式的形式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一 二维形式的柯西不等式
二 一般形式的柯西不等式
一览众山小
诱学·导入
材料:柯西不等式∑∑==n i i n i i
b a 1212
≥(∑=n i i i b a 1
)2是柯西在1931年研究数学分析中的“留数”问题时得到的.表面上看,这一不等式并不难理解,也很容易验证它的正确性,特别是
它的二阶形式(a 2+b 2)(c 2+d 2)≥(ac+bd)2,几乎是不证自明的.但是,我们能看出这一平凡无
奇的不等式成立,是因为事先已经知道两边是什么式子,而最先发现这样的不等关系,则是一个创造的过程,并不是那么容易的.
问题:为何要将柯西不等式列为“不等式选讲”的重要内容?
导入:柯西不等式的几种形式都有较为深刻的背景和广泛的应用.向量形式|α||β|≥|α·β|不仅直观地反映了这一不等式的本质,而且和物理学中的矢量、高等数学中的内积空间、赋范空间内在地联系在一起;一般形式
∑∑==n i i n i i b a 1212≥(∑=n i i i b a 1)2有一个推广形式:(a 1p +a 2p +…+a np )p 1
(b 1q +b 2q +…+b n q )q 1≥a 1b 1+a 2b 2+…+a n b n (q
p 11+=1)(该不等式称为赫尔德(Holder )不等式,当p=q=2时,即为柯西不等式),是数学分析中最有用的不等式之一.此外,平面三角不等式是柯西不等式的等价形式,它的推广形式∑∑∑===+≥+n i i i n i i n i i y x y x
121212)((闵可夫斯基不等式)
也是数学分析中的经典不等式.所以将柯西不等式列为“不等式选讲”的重要内容,正是看中它的这一数学背景. 温故·知新
1.我们知道绝对值|a|有着很明确的几何意义,即数轴上坐标为a 的点到原点的距离.那么不等式|x-c|+|x-b|≥a 的几何意义是什么呢?
答:不等式|x-c|+|x-b|≥a 的解可以直接理解为数轴上满足到坐标为c 的点的距离与到坐标为b 的点的距离之和大于等于a 的点的坐标,而上述距离之和的最小值显然为|b-c|(在c ,b 之间的点取到),因此,不等式的解取决于|b-c|与a 的大小关系.用类似的方法也不难证明|a-b|≤|a -c|+|c-b|,实际上只需要注意到a ,b ,c 在数轴上的位置关系即可.利用绝对值的几何意义,可以很好地证明和求解一些基本的含绝对值的不等式.
2.任意两个向量α,β的夹角<α,β>的余弦值是什么?
答:任意两个向量α,β的夹角<α,β>的余弦cos<α,β>=||||βαβα••.。