行列式的应用讲解
行列式知识点

行列式知识点行列式是线性代数中的重要概念之一,广泛应用于数学、物理、工程和计算机科学等领域。
本文将介绍行列式的基本概念、性质和计算方法,帮助读者更好地理解和应用行列式知识。
一、行列式的定义行列式是一个与矩阵相关的数值。
对于一个n阶方阵A,它的行列式表示为det(A),其中n表示方阵的阶数。
行列式的计算涉及到矩阵的元素和排列的概念,下面将详细介绍。
二、行列式的性质1. 行列式的对角线规则:对于一个n阶方阵A,行列式det(A)等于主对角线元素相乘的积减去次对角线元素相乘的积。
2. 行列式的性质之一:交换行(列)位置,行列式的值不变。
3. 行列式的性质之二:若行(列)中有两行(列)元素成比例,行列式的值为0。
4. 行列式的性质之三:行列式的某一行(列)乘以一个数k,等于行列式的值乘以k。
三、行列式的计算方法1. 二阶和三阶行列式的计算:对于二阶行列式A,可以用交叉相乘法计算,即ad-bc。
对于三阶行列式A,可以用Sarrus法则计算。
2. 高阶行列式的计算:对于n阶行列式A,可以利用拉普拉斯展开定理进行计算。
具体步骤是选择一行(列)作为展开行(列),将行列式展开为以该行(列)元素为首的n个代数余子式的乘积之和。
四、行列式的应用1. 线性方程组的解:行列式可以用于求解线性方程组的解。
若系数矩阵的行列式不为0,则方程组有唯一解;若行列式为0,则方程组无解或有无穷解。
2. 矩阵的逆:若一个n阶方阵A的行列式不为0,则矩阵A可逆,且其逆矩阵A^{-1}的元素可以用A的伴随矩阵元素和行列式的倒数表示。
3. 坐标变换:在几何学中,行列式可以用于坐标变换。
例如,二维平面上坐标变换时,坐标的旋转、平移和缩放可以用行列式进行表示。
五、总结本文介绍了行列式的基本概念、性质和计算方法,并提供了行列式在线性方程组、矩阵逆和坐标变换中的应用。
行列式作为线性代数中的基础知识,对于深入理解和应用相关领域的知识具有重要作用。
通过学习和掌握行列式的知识点,读者可以更好地理解相关的数学和科学问题,并灵活运用行列式进行问题求解和分析。
行列式在高等数学中的应用

行列式在高等数学中的应用行列式是高等数学中的重要概念,它在许多数学问题的求解中起到了关键作用。
本文将从几个方面介绍行列式在高等数学中的应用。
一、线性方程组的解在线性代数中,我们经常需要求解线性方程组的解。
而行列式可以用来判断线性方程组是否有解以及计算解的个数。
具体来说,对于一个n元线性方程组,我们可以将其系数矩阵A的行列式记为|A|,方程组的常数向量记为b。
如果|A|≠0,那么方程组有唯一解;如果|A|=0且b≠0,那么方程组无解;如果|A|=0且b=0,那么方程组有无穷多解。
二、矩阵的逆在矩阵论中,行列式也被用来计算矩阵的逆。
对于一个n阶方阵A,如果它的行列式|A|≠0,那么A存在逆矩阵A^-1,满足AA^-1=A^-1A=I,其中I为单位矩阵。
逆矩阵在很多问题中有着重要的应用,如线性方程组的求解、矩阵的变换等。
三、向量的线性相关性行列式还可以用来判断向量的线性相关性。
对于n个n维向量组成的矩阵A,如果其行列式|A|≠0,那么这n个向量线性无关;如果|A|=0,那么这n个向量线性相关。
线性相关性的判断对于研究向量空间的性质以及解决相关问题都起到了重要的作用。
四、二次型的正定性在矩阵论中,二次型是一个重要的概念。
行列式可以被用来判断二次型的正定性。
对于一个n元二次型,我们可以将其用矩阵形式表示为Q(x)=x^TAX,其中x为n维列向量,A为n阶实对称矩阵。
如果A的所有顺序主子式都大于0,那么二次型Q(x)是正定的;如果A的所有顺序主子式都小于0,那么二次型Q(x)是负定的;如果A的顺序主子式正负交替,那么二次型Q(x)是不定的。
正定性的判断在优化问题、极值问题等方面有着重要的应用。
五、平面与立体几何行列式在平面与立体几何中也有着重要的应用。
例如,在平面几何中,我们可以用行列式计算两条直线的交点坐标;在立体几何中,我们可以用行列式计算线段、向量的长度,以及计算平面的面积和体积等。
行列式在高等数学中的应用非常广泛。
行列式的计算方法及应用

行列式的计算方法及应用行列式是线性代数中一个重要的概念,它是一个正方形矩阵的特殊的函数,用于描述线性方程组的解的唯一性、可解性以及一些几何性质。
本文将介绍行列式的计算方法及其应用。
一、行列式的计算方法1.二阶行列式的计算方法对于一个二阶的矩阵A=[[a,b],[c,d]],其行列式的计算方法为:det(A) = ad - bc。
2.三阶行列式的计算方法对于一个三阶的矩阵A=[[a,b,c],[d,e,f],[g,h,i]],其行列式的计算方法为:det(A) = aei + bfg + cdh - ceg - afh - bdi。
3.一般的行列式计算方法对于一个n阶的矩阵A,其行列式的计算方法可以通过展开定理进行计算。
展开定理的思想是通过将行列式展开为更小规模的行列式的和来计算。
假设A为n阶矩阵,其元素为a[i][j],行列式记为det(A),则行列式的计算方法为:det(A) = a[1][1] * A[1][1] + (-1)^(1+2) * a[1][2] * A[1][2] + ... + (-1)^(1+n) * a[1][n] * A[1][n]其中,A[1][k]为将矩阵A的第1行和第k列删去后的(n-1)阶矩阵,det(A)为其中的行列式。
二、行列式的应用1.线性方程组的解的唯一性和可解性判断对于一个线性方程组Ax=b,其中A为系数矩阵,x为未知数向量,b 为常数向量。
若A的行列式不为0,则方程组有唯一解;若A的行列式为0,则方程组可能有无穷多个解或无解。
2.矩阵的可逆性判断一个矩阵A为可逆矩阵的充分必要条件是其行列式不为0。
可逆矩阵在数值计算和理论推导中有着重要的应用,例如求解线性方程组的解、求逆矩阵以及解线性变换等。
3.几何性质的判断行列式可以用来判断空间中向量的线性相关性和共面性。
对于一个n 维空间中的n个向量,若这些向量的行列式为0,则说明这些向量线性相关,存在一些向量可以由其他向量线性表示;若行列式不为0,则说明这些向量线性无关,对应n维空间中的一个n维平行体。
行列式的性质与运算法则

行列式的性质与运算法则行列式是线性代数中的一个重要概念,它在矩阵运算中起着至关重要的作用。
行列式的性质和运算法则是我们学习和应用行列式的基础,本文将围绕这一主题展开阐述。
一、行列式的定义和基本性质行列式是一个数,它是一个方阵中元素的一种特殊组合。
对于一个n阶方阵A,它的行列式记作det(A)或|A|,其中n表示方阵的阶数。
行列式具有以下基本性质:1. 方阵A的行列式等于其转置矩阵A^T的行列式,即det(A) = det(A^T)。
2. 对调方阵A的两行(或两列),其行列式的值不变,即行列式具有行对换性质。
3. 如果方阵A的某一行(或某一列)的元素全为0,则行列式的值为0。
4. 行列式的值与方阵的行列式的值成正比,即如果一个方阵的某一行(或某一列)的元素都乘以一个常数k,那么行列式的值也将乘以k。
二、行列式的运算法则行列式的运算法则包括加法法则、数乘法则、乘法法则和转置法则。
1. 加法法则对于两个n阶方阵A和B,它们的行列式之和等于行列式分别取和的结果,即det(A + B) = det(A) + det(B)。
2. 数乘法则对于一个n阶方阵A和一个数k,方阵A的行列式乘以k等于行列式乘以k的结果,即det(kA) = k^n * det(A)。
3. 乘法法则对于两个n阶方阵A和B,它们的乘积的行列式等于行列式分别取乘积的结果,即det(AB) = det(A) * det(B)。
4. 转置法则对于一个n阶方阵A,它的转置矩阵A^T的行列式等于原方阵A的行列式,即det(A^T) = det(A)。
三、行列式的应用行列式的应用广泛,它在线性代数、微积分、几何学等领域都有重要的应用。
1. 判断方阵的可逆性一个n阶方阵A可逆的充要条件是其行列式不等于0,即det(A) ≠ 0。
利用这一性质,我们可以通过计算方阵的行列式来判断其可逆性。
2. 求解线性方程组对于一个n元线性方程组,我们可以将其系数矩阵表示为一个方阵A,并将常数项表示为一个列向量b。
行列式的性质及应用知识点总结

行列式的性质及应用知识点总结行列式是线性代数中的一个重要概念,它在数学、物理、工程等领域都有着广泛的应用。
下面我们来详细总结一下行列式的性质及应用方面的知识点。
一、行列式的定义首先,我们来了解一下行列式的定义。
对于一个 n 阶方阵 A =(aij ),其行列式记为|A| 或 det(A) ,它的值是一个确定的数。
对于二阶行列式,有|A| =|a 11 a 12 ; a 21 a 22 |= a 11 a 22 a 12 a 21 。
对于三阶行列式,有|A| =|a 11 a 12 a 13 ; a 21 a 22 a 23 ; a31 a 32 a 33 |= a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31 a 12 a 21 a 33 a 11 a 23 a 32 。
对于n 阶行列式,其定义相对复杂,但可以通过递归的方式来理解。
二、行列式的性质1、行列式转置值不变若将行列式 A 的行与列互换得到的行列式称为 A 的转置行列式,记为 A T ,则有|A| =|A T |。
2、两行(列)互换,行列式的值变号例如,交换行列式 A 中的第 i 行和第 j 行,行列式的值变为|A| ;交换第 i 列和第 j 列,行列式的值也变为|A| 。
3、某行(列)乘以 k,行列式的值乘以 k若行列式 A 的某一行(列)的元素都乘以同一个数 k ,则行列式的值等于原来的行列式的值乘以 k 。
4、若某行(列)是两组数之和,则行列式可拆成两个行列式之和例如,若 A 的第 i 行元素为 b i + c i ,则|A| =|B| +|C| ,其中 B 是将 A 的第 i 行换成 b i 得到的行列式,C 是将 A 的第 i 行换成 c i 得到的行列式。
5、某行(列)乘以 k 加到另一行(列),行列式的值不变例如,将行列式 A 的第 j 行乘以 k 加到第 i 行,行列式的值不变;将第 j 列乘以 k 加到第 i 列,行列式的值也不变。
线性代数PPT行列式

性质
行列式的计算公式具有高度的对称性,可以方便地 计算出n阶行列式的值。
计算方法
根据行列式的展开式,将n阶行列式展开成n 个代数余子式的乘积之和。
特殊行列式的计算
01
对角线型行列式
如果一个n阶行列式的主对角线上的元素都是1,其他元素都是0,则该
该行列式称为下三角型行列式。下三角型行列式的值等于副对角线上元
素的乘积的相反数。
03
行列式在几何中的应用
行列式与向量叉积的关系
01
行列式可以表示为三个向量的叉积的线性组合,即行列式值 等于三个向量叉积的代数和。
02
当行列式值为零时,三个向量共面,即它们之间存在线性关 系。
03
行列式可以用来判断向量的叉积是否为零,从而判断三个向 量是否共面。
消元法
将方程组中的系数行列式化为0, 然后利用代数余子式求出方程组 的解。
递推法
利用递推关系式求解方程组,通 过将系数行列式展开,得到一系 列递推关系式,从而求解方程组。
克拉默法则
克拉默法则是一种利用行列 式解线性方程组的方法,其 基本思想是将方程组的解表
示为系数行列式的比值。
1
克拉默法则的前提是系数行列 式不为0,否则方程组无解。
程组无解或有无穷多解。
行列式可以用来判断方程组的解 的情况,也可以用来求解方程组 的解。
03
行列式的性质和计算方法在方程 组的求解过程中具有重要的作用
。
04
05
行列式的应用实例
利用行列式求平面上的点
确定点的位置
通过给定的行列式,我们可以确定平面上的一个点。例如,给 定一个行列式$D$和两个向量$vec{a}$和$vec{b}$,我们可以 使用行列式来找到满足$vec{a} cdot vec{x} = D$和$vec{b} cdot vec{x} = 0$的点$vec{x}$。
行列式求解方法及应用

行列式求解方法及应用1. 引言在高等数学中,行列式是一种非常重要的算法工具,具有广泛的应用价值。
本文将介绍行列式的求解方法和应用,旨在帮助读者更好地掌握行列式的背景知识和实际运用能力。
2. 行列式的定义行列式是一个数学术语,通常用于表示线性方程组的解的唯一性。
简单地说,行列式是由一个矩阵中根据一定规律选取的元素所组成的一个标量。
行列式的计算方法可以按照矩形展开法、初等行变换法、拉普拉斯展开法等多种方式来进行计算。
在行列式的计算过程中,可以通过简单的数学运算方法来推导出一阶、二阶和三阶等级的方程等式。
3. 行列式的应用行列式在科学和工程领域中有非常广泛的应用,例如线性代数,微积分和概率等领域。
在线性代数领域中,行列式被广泛应用于线性方程组的求解和矩阵的逆运算中。
在方程组求解中,行列式通常用来计算出线性方程组的唯一解,从而帮助进行各种数据处理和计算,例如经济学、工程学和金融学等领域。
在微积分领域中,行列式通常被用来计算多元函数的导数,从而求出曲线和曲面的各种参数。
例如,对于三维空间的平面曲面,可以通过行列式来计算出它的面积,并进一步推导出其表达式和特征等分析。
在概率领域中,行列式通常被用于计算各种随机变量的统计概率值,例如协方差矩阵和特征向量。
这些统计数据通常是人们进行各种预测和决策的依据之一。
4. 行列式的实际应用下面以社交网络中的用户关系分析为例,阐述行列式的实际应用。
社交网络是现代社会中非常重要的一个信息交换渠道。
在社交网络中,用户关系网络可以通过行列式进行分析。
例如,假设有100个用户,他们之间的关系可以表示成一个100x100的矩阵。
如果要对这个关系网络进行分析,可以通过计算该矩阵的行列式,从而得到不同的统计数据。
例如,该行列式的值可以用于判断该关系网络的稳定性和互动性,以及预测不同用户的行为习惯和潜在动机等。
5. 结论通过本文的介绍,可以发现行列式具有广泛的应用和实践价值。
在实际应用中,行列式不仅是一个强有力的数学工具,同时也是现代科学和工程领域的重要组成部分。
行列式在中学数学中的应用

行列式在中学数学中的应用行列式是线性代数中的基本概念之一,它是一种对于方阵的特殊函数,用于描述和计算矩阵的各种性质。
在中学数学中,我们常常遇到一些看似与行列式无关的问题,但实际上,巧妙地运用行列式能够简化解题过程,提高解题效率。
本文将介绍行列式的基本概念及其在中学数学中的应用,旨在帮助读者更好地理解行列式的意义和作用。
在介绍行列式的应用之前,我们需要先了解一下行列式的定义和性质。
行列式是由矩阵的行和列构成的,表示为一个标量,记作D。
对于一个n阶方阵A,其行列式可以定义为:D = a11 * a22 *... * ann其中aij表示矩阵A中的元素。
行列式具有以下基本性质:行列式与矩阵的阶数有关,即D(A) = D(n);行列式是唯一确定的,即对于同一个矩阵A,其行列式D(A)是唯一值;行列式的值与矩阵中的元素有关,元素不同则行列式的值也不同。
在中学数学中,行列式可以应用于解线性方程组、求逆矩阵、证明定理等方面。
以下是一些具体应用示例:线性方程组是中学数学中的重要内容,使用行列式可以简化解题过程。
例如,对于以下线性方程组:a1x + b1y = c1 a2x + b2y = c.. anx + bny = cn我们可以将其系数构成一个n阶矩阵A,将其右侧的常数项构成一个列向量b,则该方程组可以表示为Ax = b。
使用克莱姆法则,我们可以求解出x的值,其中行列式D(A)起到了关键作用。
在中学数学中,我们学习了逆矩阵的概念及其求法。
对于一个n阶方阵A,其逆矩阵A-1满足AA-1 = I,其中I是单位矩阵。
利用行列式,我们可以快速求解逆矩阵。
由D(A) = 0以及D(I) = 1,可得D(AA-1) = D(A)D(A-1) = 0,因此有D(A-1) = 1/D(A)。
在一些定理的证明过程中,行列式也能够发挥重要作用。
例如,对于一个n阶方阵A,如果D(A) ≠ 0,则A可逆。
这个定理的证明就涉及到行列式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要行列式是数学研究中一类重要的工具之一,行列式最早出现在16世纪,用于解决线性方程组的求解问题。
现在,行列式经过几世纪的发展已经形成了一整套完备的理论,并且在数学这门学科中占有很重要的位置。
本论文通过对行列式理论和行列式在线性方程组和中学数学中的应用展开研究。
首先论述了行列式的历史意义,其次展示了行列式在线性方程组中的应用以及在中学数学中的应用,重点论述了行列式在中学代数领域以及中学几何领域的应用。
论文以求解线性方程组和解中学几何与代数问题为例,论述了行列式在实际中的应用。
主要通过文献研究的方法对行列式的应用进行研究,充分阐释了行列式在不同方面的应用。
关键词:行列式,线性方程组,中学代数,中学几何The Application of The DeterminantAbstractThe determinant is one of a kind of important tools in mathematical research, determinant first appeared in the 16th century, used to solve linear equations to solve the problem. now, the determinant after centuries of development has formed a set of complete theory, and the mathematics occupies very important position in the subject. This paper based on the theory and determinant determinant in the system of linear equations and the application of the middle school mathematics study. First discusses the historical significance of determinant, the second shows the determinant in the application of linear equations, and the middle school mathematics, the application of the determinant is emphasized in the field of high school algebra and applied in the field of high school geometry. Paper to solve the linear system of equations and middle school geometry and algebra problem as an example, this paper discusses the determinant in the actual application. Mainly through the literature research methods to study the application of the determinant, fully illustrates the application of determinant in different aspects.Key words: determinant, system of linear equations, algebraic secondary school, high school geometry目录一、引言 (1)(一)研究背景与问题 (1)(二)文献综述 (1)(三)研究意义 (2)(四)研究目标 (2)二、行列式理论研究 (2)(一)行列式理论发展史 (3)(二)行列式的现代理论 (4)1.行列式的一些基本性质 (5)2.行列式的展开 (6)三、行列式在线性方程组中的应用 (7)四、行列式在中学几何领域的应用 (9)(一)应用行列式解决空间几何问题 (9)(二)行列式在平面几何中的应用 (13)(三)行列式在解析几何中的应用 (15)五、行列式在中学代数领域中的应用 (18)(一)应用行列式分解因式 (18)(二)应用行列式解决代数不等式问题 (19)(三)应用行列式求解方程 (21)(四)应用行列式分母有理化 (23)六、结束语 (24)致谢 ........................................... 错误!未定义书签。
参考文献 . (24)一、引言(一)研究背景与问题行列式起源于解二、三元线性方程组,然而它的应用早已超过代数的范围、成为研究数学领域各分支的基本工具。
不管是在高等数学领域里的高深理论,还是在现实生活中的实际性问题,都或多或少的与行列式有着直者间接的联系。
其中有些问题都依赖于行列式来解决。
归根结底这些问题的研究,也就是行列式在某些方面的研究。
行列式是高等数学领域中的一个极其重要的组成部分,同时也使得行列式成为高等代数的一个重要的研究对象。
高等数学应该重视学生数学思维能力的培养,重视数学思想和方法的形成过程,让学生既学习数学知识又学习数学思想,学习用数学知识和思想表达与解现实世界一般问题的方法和技能。
因此,关于数学思想展开的研究,尤其是行列式的重要思想在线性方程组和中学数学中的应用进行的研究就显得更加重要。
本文主要研究行列式理论在线性方程组和中学数学代数领域及几何领域中的应用[1]。
(二)文献综述行列式的概念最初是伴随着方程组的求解而发展起来的,十七世纪,日本数学家关孝和德国数学家莱布尼茨几乎是同时提出的。
十八世纪开始,行列式开始作为独立的数学概念被研究。
十九世纪以后,行列式理论得到了进一步发展和完善。
行列式的主要应用就是解线性方程组。
19 世纪末,现代国际教育的奠基人菲利克斯·克莱因主张在现代数学观点指导下研究“高数”与“中数”之间的联系。
高等数学的方法,可以和中学数学相通,也可以迁移到中学数学中。
高等数学的思想、方法不仅可以帮助我们从更高的层面上理解初等数学问题,确定解题思路,还能帮助我们进一步探索初等问题的实质,寻求更简捷的解决问题的方法。
21 世纪以来,国内相继展开关于高等代数应用的研究,很多人相继撰写了相关文章,通过例子说明了高等代数作为一种工具在线性方程组和解析几何以及中学数学中的一些应用。
行列式作为高等代数中的一个重要概念,对线性方程组和解析几何以及中学数学领域中的很多问题的解决提供了很好的解决方法,它将使学生从中学的解题思维定势中走出来,用一种更广阔的眼光来看数学问题。
本文将针对行列式在线性方程组和中学数学中的应用而展开讨论。
(三)研究意义不管是在高等数学领域里的高深理论,还是在现实生活中的实际性问题,都或多或少的与行列式有着直接或者间接的联系。
甚至还有好多问题都与行列式是紧密相关的。
这一切表明行列式是高等数学领域中的一个极其重要的组成部分。
本文通过分析行列式的应用从而了解到无论是线性方程组,还是在中学数学,行列式作为最基本的数学工具之一,都有着非常重要的应用。
(四)研究目标通过对行列式的理论进行研究,进一步提出行列式作为一种工具来解决线性方程组以及中学数学中的问题,并不是简单的一题多解,而是一种知识的融会贯通和发展学生的发散、联想思维。
行列式的应用让学生对高等代数产生兴趣,更重要的是使学生认识到数学的每一个分支都是一种工具,而且各分支之间是有联系的,体会知识的融会贯通,同时培养学生数学知识的迁移能力。
二、行列式理论研究行列式的概念是由莱布尼兹最早提出来的。
日本著名的“算圣”关孝和在1683 年的著作《解伏题之法》中就提出了行列式的概念及算法。
与莱布尼茨从线性方程组的求解入手不同,关孝和从高次方程组消元入手对这一概念进行阐述。
行列式的发明应归功于莱布尼兹和关孝和两位数学家,他们各自在不同的地域以不同的方式提出了这个概念。
(一)行列式理论发展史1683 年,日本数学家关孝和在《解伏题之法》中第一次提出了行列式这个概念。
该书中提出了22⨯,33⨯乃至55⨯的行列式,行列式被用来求解高次方组。
1693 年,德国数学家莱布尼茨从三元一次方程的系统中消去两个未知量得到了一个行列式。
这个行式不等于零,就意味着有一组解同时满足三个方程。
由于当时没有矩阵这个概念,莱布尼茨用数对来表示行式中元素的位置:i j代表第 i 行第 j 列。
1730 年,苏格兰数学家科林·麦克劳林在他的《论代数》中已经开始阐述行列式的理论,其间记载了用行列式解二元、三元和四元一次方程组的解法,并给出了四元一次方程组一般解的正确形式[2]。
1750 年,瑞士的加布里尔·克莱姆首次在他的《代数曲线分析引论》给出了n元一次方程组求解的法则,用于确定经过五个点的一般二次曲线的系数,但并没有给出证明。
此后,行列式的相关研究逐渐增加。
1764 年,法国的艾蒂安·裴蜀在论文中提出的行列式的计算方法简化了克莱姆法则,给出了用结式来判别线性方程组的方法。
法国人的亚历山德·西奥菲勒·范德蒙德在 1771 年的论著中首次将行列式和解方程理论分离,对行列式单独作出阐述。
此后,数学家们开始对列式本身进行研究。
1772 年,皮埃尔-西蒙·拉普拉斯在论文《对积分和世界体系的探讨》中推广了范德蒙德著作里面将行列式展开为若干个较小的行列式之和的方法,提出了子式的定义。
1773 年,约瑟夫·路易斯·拉格朗日了33⨯列式与空间中体积之间的联系:原点和空间中三个点所构成的四面体的体积,是它们的坐标所组成的行列式的六分之一。
行列式被称为“determinant”最早是由卡尔·弗里德里希·高斯在他的《算术研究》中提出的。
“determinant”有“决定”意思,这是由于高认为行列式能够决定二次曲线的性质。
高斯还提出了一种通过系数之间加减来求解多元一次方程组的方法,即现在的高斯消元法。
十九世纪,行列式理论得到进一步地发展并完善。
此前,高斯只不过将“determinant”这个词限定在二次曲线所对应的系数行列式中,然而奥古斯丁·路易·柯西在 1812 年首次将“determinant”一词用来示行列式。
柯西也是最早将行列式排成方阵并将其元素用双重下标表示的数学家。
柯西还证明了曾经在雅克菲利普·玛利·比内的书中出现过但没有证明的行列式乘法定理。