数学建模作业
数学建模作业43950

题目:某种电子系统由三种元件组成,为了使系统正常运转,每个元件都必须工作良好,如果一个或多个元件安装备用件将会提高系统的可靠性,已知系统运转的可靠性为各元件可靠性的乘积,而每一个元件的可靠性是备用元件函数,具体数值见下表。
若全部备用件费用限制为150元,重量限制为20公斤,问每个元件安装多少备用件可使系统可靠性达到极大值?要求:①作出全局最优解②列出这个问题的整数规划模型假设:系统在运转过程中相互间没有影响,并且系统在增加备用件后可靠性可以相互叠加。
建模:设原件1,2,3需要的备用件各为x,y,z,可靠性为p分别为xp,yp,zp,整个设备的可靠性为p,则由题意可得到:p=xp*yp*zp;2x+4y+6z<=20;20x+30y+40z<=150;x,y,z均为整数;求出适当的x,y,z使p的值最大。
运用穷举法,编写C++程序如下:#include<iostream>void main(){using namespace std;int x=0,y=0,z=0;//备À?用®?零¢?件t数ºy目?double xp[6]={0.5,0.6,0.7,0.8,0.9,1},yp[4]={0.6,0.75,0.95,1},zp[3]={0.7,0.9,1};double p=0,temp=0;//可¨¦靠?性?int i=0,j=0,k=0;cout<<"x\ty\tz\tp\n";for(i=0;i<6;i++){ y=0;for(j=0;j<4;j++){ z=0;for(k=0;k<3;k++){if((x+2*y+3*z<=10)&&(2*x+3*y+4*z<=15)){temp=p;p=xp[x]*yp[y]*zp[z];cout<<x<<"\t"<<y<<"\t"<<z<<"\t"<<p<<endl;if(p<temp)p=temp;z++;}else z++;}y++;}1 02 0.36 1 1 0 0.315 1 1 1 0.405 1 1 2 0.45 1 2 0 0.399 1 2 1 0.513 1 3 0 0.42 1 3 1 0.54 20.29420 1 0.378 2 0 2 0.42 2 1 0 0.3675 2110.4725x++;}cout<<endl<<p<<endl;}运行程序结果如下:x y z p 0 0 0 0.21 0 0 1 0.27 0 0 2 0.3 0 1 0 0.2625 0 1 1 0.3375 0 1 2 0.375 0 2 0 0.33250 2 1 0.4275 0 2 2 0.475 0 3 0 0.35 0 3 1 0.45 1 0 0 0.252 10 10.324得到最大可靠系数为0.6075,对应1,2,3零件数为4,1,1模型应用:在资源一定的条件下,这种解决方式可使资源的最佳利用率提高。
数学建模作业及答案

数学建模作业姓名:叶勃学号:班级:024121一:层次分析法1、 分别用和法、根法、特征根法编程求判断矩阵1261/2141/61/41A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的特征根和特征向量(1)冪法求该矩阵的特征根和特征向量 程序为:#include<iostream> #include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){cout<<"**********幂法求矩阵最大特征值及特征向量***********"<<endl; int i,j,k;double A[n][n],X[n],u,y[n],max;cout<<"请输入矩阵:\n"; for(i=0;i<n;i++) for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i<n;i++)cin>>X[i]; //输入初始向量 k=1; u=0;while(1){ max=X[0]; for(i=0;i<n;i++) {if(max<X[i]) max=X[i]; //选择最大值 }for(i=0;i<n;i++)y[i]=X[i]/max; for(i=0;i<n;i++)X[i]=0;for(j=0;j<n;j++)X[i]+=A[i][j]*y[j]; //矩阵相乘}if(fabs(max-u)<err){cout<<"A的特征值是 :"<<endl; cout<<max<<endl; cout<<"A的特征向量为:"<<endl; for(i=0;i<n;i++) cout<<X[i]/(X[0]+X[1]+X[2])<<" ";cout<<endl;break;}else{if(k<N) {k=k+1;u=max;} else {cout<<"运行错误\n";break;}}} }程序结果为:(2)和法求矩阵最大特征值及特征向量程序为:#include<stdio.h>#include<iostream>#include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j,k;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********和法求矩阵的特征根及特征向量*******"<<endl;cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 //计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;} //求特征向量w[0]=0;w[1]=0;w[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){w[i]+=W[i][j];}cout<<"特征向量为:"<<endl; for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征根为:"<<endl;cout<<max/n<<endl; }运行结果为:(3)根法求矩阵最大特征值及特征向量:程序为:#include<stdio.h>#include<iostream>#include<math.h>using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********根法求矩阵的特征根及特征向量*******"<<endl; cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵//计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;}//求特征向量//w[0]=A[0][0];w[1]=A[0][1];w[2]=A[0][2];w[0]=1;w[1]=1;w[2]=1;for(i=0;i<n;i++){for(j=0;j<n;j++){w[i]=w[i]*W[i][j];}w[i]=pow(w[i], 1.0/3);}cout<<"特征向量为:"<<endl;for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征值为:"<<endl; cout<<max/n;}运行结果为:2、编程验证n阶随机性一致性指标RI:运行结果:3、考虑景色、费用、居住、饮食、旅途五项准则,从桂林、黄山、北戴河三个旅游景点选择最佳的旅游地。
小学数学建模练习题

小学数学建模练习题在小学数学教学中,数学建模是一种培养学生综合应用数学解决实际问题的能力的有效方法。
通过数学建模,学生可以运用所学的数学知识和技能,将数学运用到生活实际中,培养他们的创新思维和问题解决能力。
为了提高学生的数学建模能力,以下是一些小学数学建模练习题,供大家练习和思考。
题目一:小明放风筝小明想放风筝,他站在一个长方形草坪的一角,正北方向有一面墙,南边是一条宽为10米的小溪,他希望风筝飞向墙上方,但是又不希望风筝落入小溪中。
现在假设整个草坪的长和宽分别是100米和50米,请问小明站在哪个位置放风筝比较好呢?题目二:水果销售某水果店的负责人想要通过一些促销活动提高水果的销量。
经过分析,他发现在夏季,顾客特别喜欢购买西瓜和橙子。
为了促进销售,他决定对这两种水果进行优惠。
西瓜的售价为每斤2元,而橙子的售价为每斤1元。
他希望考虑到顾客的购买力和需求情况,从而设置一个合理的促销策略,使得总销售额最大化。
请帮助他确定西瓜和橙子的最佳促销比例。
题目三:花坛设计小学的花坛设计已经老旧不堪,学校决定对花坛进行翻新。
花坛的形状为一个等腰梯形,底边长为4米,上底边长为2米,高为3米。
学校希望设计一个新的花坛,使得花坛内尽可能多地摆放花朵。
已知每平方米花坛能够容纳8朵花,请计算这个新花坛最多可以摆放多少朵花。
题目四:学校跑步比赛学校要举办一场跑步比赛,共有4个年级的学生参加,每个年级的学生人数分别为100人、150人、120人和80人,比赛规则是每个年级选择3名参赛选手代表该年级参加比赛。
为了公平起见,学校希望每个年级参加比赛的总成绩最好的选手之和尽可能接近。
请帮助学校确定每个年级的3名代表选手。
题目五:果园采摘小明去果园采摘水果,他发现果园里有苹果、橘子和桃子,他看到的苹果数是橘子数的2倍,橘子数又是桃子数的3倍。
小明准备采摘苹果和橘子,但是由于时间有限,他只能采摘400个水果,请问他应该采摘多少个苹果和多少个橘子才能使得采摘的水果总重量最大?以上是五道小学数学建模练习题,通过这些练习题,学生可以锻炼他们的数学思维和解决问题的能力。
数学建模作业题+答案

数学建模MATLAB 语言及应用上机作业11. 在matlab 中建立一个矩阵135792468101234501234A ⎡⎤⎢⎥⎢⎥=⎢⎥-----⎢⎥⎣⎦答案:A = [1,3,5,7,9;2,4,6,8,10;-1,-2,-3,-4,-5;0,1,2,3,4]2. 试着利用matlab 求解出下列方程的解(线性代数22页例14)123412423412342583692254760x x x x x x x x x x x x x x +-+=⎧⎪--=⎪⎨-+=-⎪⎪+-+=⎩ 答案:A=[2 ,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6]; B=[8;9;-5;0]; X=A\B 或A=[2,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6] b=[8,9,-5,0]' X=inv(A)*b3. 生成一个5阶服从标准正态分布的随机方阵,并计算出其行列式的值,逆矩阵以及转置矩阵。
答案:A=randn(5) det(A) inv(A) A'4. 利用matlab 求解出110430002A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦的特征值和特征向量。
答案:A=[-1,1,0;-4,3,0;0,0,2] [V,D]=eig(A)5.画出衰减振荡曲线3sin3t y et -=在[0,4]π上的图像。
要求,画线颜色调整为黑色,画布底面为白色。
(在实际中,很多打印机时黑白的,因此大多数作图要考虑黑白打印机的效果。
) 给出恰当的x ,y 坐标轴标题,图像x 轴的最大值为4π。
6. 生成一个0-1分布的具有10个元素的随机向量,试着编写程序挑选出向量中大于0.5的元素。
数学建模和Matlab 上机作业2(2016-9-20)跟老师做(不用整合进作业中):上机演示讲解:函数,递归的两个例子的写法。
附:1. Fibonacci Sequence (斐波那契数列)在数学上,费波那西数列是以递归的方法来定义: F1= 1;F2= 1;F (n )=F (n-1)+F (n-2) 2. 阶乘举例:数学描述:n!=1×2×……×n ;计算机描述:n!=n*(n-1)!自己做(需要整合进作业中,提交到系统中):1. 写一个m 文件完成分值百分制到5分制的转换(即输入一个百分制,转换后输出一个5级对应的得分,联系条件控制语句)。
数学建模作业(1)

数学建模作业(1)
数模
数模
1.学校共学校共1000名学生,235人住在宿名学生,人住在A宿名学生人住在人住B宿舍人住在C宿舍舍,333人住宿舍,432人住在宿舍人住宿舍,人住在宿舍.学生们要组织一个10人的委员会人的委员会,学生们要组织一个人的委员会,试用下列办法分配各宿舍的委员数:列办法分配各宿舍的委员数:(1)按比例分配取整数的名额后,剩下的名按比例分配取整数的名额后,按比例分配取整数的名额后额按惯例分给小数部分较大者。
额按惯例分给小数部分较大者。
(2)用Q值方法。
值方法。
用值方法
数模
如果委员会从10人增至人如果委员会从人增至15人,用以上人增至2种方法再分配名额。
将2种方法两次分配种方法再分配名额。
种方法再分配名额种方法两次分配的结果列表比较。
的结果列表比较。
(3)你能提出其它的方法吗?用你的方你能提出其它的方法吗?你能提出其它的方法吗法分配上面的名额。
法分配上面的名额。
数模
2.考察模拟水下爆炸的比例模型.爆炸物质量m,在距爆炸点距离r处设置仪器,接收到的冲击波压强为p,记大气初始压强p0,水的密度ρ,水的体积弹性模量k,用量纲分析法已经得到
p0ρrp=p0(,)km3
数模
设模拟实验与现场的p0,ρ,k相同,而爆炸物模型的质量为原模型的1/1000.为了使实验中接收到与现场相同的压强p,问实验时应如何设置接收冲击波的仪器,即求实验仪器与爆炸点之间的距离是现场的多少倍?
p0,ρ,k。
数学建模第四套

徐州工程学院个性化教育数学建模(大作业)试卷班级 学号 姓名 得分1、某农场饲养的某种动物所能达到的最大年龄为15岁,将其分成三个年龄组:第一组,0~5岁;第二组,6~10岁;第三组,11~15岁。
动物从第二年龄组开始繁衍后代,经过长期统计,第二组和第三组的繁殖率分别为4和3,第一年龄和第二年龄组的动物能顺利进入下一个年龄组的存活率分别为1/2和1/4。
假设农场现有三个年龄段的动物各100头,问15年后农场三个年龄段的动物各有多少头?解:由于年龄分为五岁一段,所以时间周期取5年。
设(k)i x 表示第k 个时间周期,第i 组年龄阶段动物的数量。
因为某一时间周期第二年龄组和第三年龄组的动物数量是由上一周期上一年龄组存活下来的动物的数量决定的,所以有(k)(k 1)(k)(k 1)213211,22x x x x --== 又因为某一时间周期,第一年龄组的动物数量是由上一时间周期各个年龄组出生的动物数量决定的,所以有(k)(k 1)(k 1)12343x x x --=+由此得到递推关系式: (k)(k 1)(k 1)123(k)(k 1)21(k)(k 1)32431214x x x x x x x ----⎧=+⎪⎪⎪=⎨⎪⎪=⎪⎩ 用矩阵表示为: (k)(k 1)11(k)(k 1)22(k)(k 1)3304310021004x x x x x x ---⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦即(k)(k 1)x Lx -=,其中(n)043100100,10021001004L x ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦则有()()()(3)(2)(1)(0)1437.5137.587.5x Lx L Lx L L Lx ⎡⎤⎢⎥====⎢⎥⎢⎥⎣⎦计算过程代码如下: >> x0=[100;100;100];>> L=[0,4,3;1/2,0,0;0,1/4,0]; >> x1=L*x0; >> x2=L*x1; >> x3=L*x2x3 =1.0e+03 * 1.4375 0.1375 0.0875结果分析:由于动物的数量不可能出现小数,所以根据实际,15年后农场饲养动物的数量2、深洞的估算: 假如你站在洞口且身上仅带着一只具有跑秒功能的计算器,你出于好奇心想用扔下一块石头听回声的方法来估计洞的深度,假定你捡到一块质量是1KG 的 石头,并准确的测定出听到回声的时间T=5S ,就下面给定情况,分析这一问题,给出相应的数学模型,并估计洞深。
数学建模

数学建模短学期作业11、利用药物中毒施救模型,完成以下问题:(1)确定对于孩子(血液总量为2000ml)及成人(血液总量4000ml)服用氨茶碱能引起严重中毒及致命的最小剂量;答:2000ml*1*10^-4g/ml=0.2g.小孩:0.2g至严重中毒,0.4g致命;成人:0.4g至严重中毒,0.8g致命。
(2)如果采用体外血液透析的办法,求解药物中毒施救模型的血液中药量的变化并作图。
解:由文献得,采用体外血液血液透析法,μ可增至0.1155*6=0.693,血液中药量记作z(t),带入数据计算得出方程z(t)=275e^(-0.1386t)+112.27e^(-0.693t)t=0为小孩误服药的时刻。
在MA TLAB命令窗口输入:>> t =0:0.01:25;z=275*exp(-0.1386*t)+112.27*exp(-0.693*t)plot(t,z)grid得2、 运用Logistic 模型)1()(m x x rx x x r dt dx -==或rt m m e x x x t x --+=)1(1)(0,用最小二乘原理计算参数m x r ,,并作图。
人口数据见pot.txt.解:function f= mylogistic(x,t) f=x(1)./(1+(x(1)/31.4-1)*exp(-x(2).*t));endt=0:14;y=[31.4 38.6 50.2 62.3 77.1 91.2 106.1 122.3 140.1 158.5 179.3 204.0 226.5 251.4 281.4]x0=[33.8,0.3];[x,norm,res]=lsqcurvefit(@mylogistic,x0,t,y)plot(t,y,'+r');hold on;y1=mylogistic(x,t);plot(t,y1,'*b');得到结果:x =409.2188 0.2285norm =259.4564res =Columns 1 through 60 0.1001 -2.7159 -4.3500 -6.8255 -6.6110 Columns 7 through 12-5.1492 -2.9857 -0.5936 2.7155 4.6981 3.3090 Columns 13 through 154.0501 1.7302 -6.8762。
数学建模作业及答案

数学建模作业姓名:叶勃学号:班级:024121一:层次分析法1、 分别用和法、根法、特征根法编程求判断矩阵1261/2141/61/41A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的特征根和特征向量(1)冪法求该矩阵的特征根和特征向量 程序为:#include<iostream> #include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){cout<<"**********幂法求矩阵最大特征值及特征向量***********"<<endl; int i,j,k;double A[n][n],X[n],u,y[n],max;cout<<"请输入矩阵:\n"; for(i=0;i<n;i++) for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i<n;i++)cin>>X[i]; //输入初始向量 k=1; u=0;while(1){ max=X[0]; for(i=0;i<n;i++) {if(max<X[i]) max=X[i]; //选择最大值 }for(i=0;i<n;i++)y[i]=X[i]/max; for(i=0;i<n;i++)X[i]=0;for(j=0;j<n;j++)X[i]+=A[i][j]*y[j]; //矩阵相乘}if(fabs(max-u)<err){cout<<"A的特征值是 :"<<endl; cout<<max<<endl; cout<<"A的特征向量为:"<<endl; for(i=0;i<n;i++) cout<<X[i]/(X[0]+X[1]+X[2])<<" ";cout<<endl;break;}else{if(k<N) {k=k+1;u=max;} else {cout<<"运行错误\n";break;}}} }程序结果为:(2)和法求矩阵最大特征值及特征向量程序为:#include<stdio.h>#include<iostream>#include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j,k;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********和法求矩阵的特征根及特征向量*******"<<endl;cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 //计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;} //求特征向量w[0]=0;w[1]=0;w[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){w[i]+=W[i][j];}cout<<"特征向量为:"<<endl; for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征根为:"<<endl;cout<<max/n<<endl; }运行结果为:(3)根法求矩阵最大特征值及特征向量:程序为:#include<stdio.h>#include<iostream>#include<math.h>using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********根法求矩阵的特征根及特征向量*******"<<endl; cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵//计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;}//求特征向量//w[0]=A[0][0];w[1]=A[0][1];w[2]=A[0][2];w[0]=1;w[1]=1;w[2]=1;for(i=0;i<n;i++){for(j=0;j<n;j++){w[i]=w[i]*W[i][j];}w[i]=pow(w[i], 1.0/3);}cout<<"特征向量为:"<<endl;for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征值为:"<<endl; cout<<max/n;}运行结果为:2、编程验证n阶随机性一致性指标RI:运行结果:3、考虑景色、费用、居住、饮食、旅途五项准则,从桂林、黄山、北戴河三个旅游景点选择最佳的旅游地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模第一次综合练习班级:数学123班成员:蒋滢蓥(12170310)汤丽娅(12170321)吴瑞(12170322)2.建立不允许缺货的生产销售存贮模型。
设生产速率为常数k ,销售速率为常数r ,k>r 。
在每个生产周期T 内,开始的一段时间(0<t<0T ),一边生产一边销售,后来的一段时间(T t T <<0)只销售不生产,画出贮存量q (t )的图形。
设每次生产准备费为1C ,单位时间每件产品贮存费为2C ,以总费用最小为目标确定最优生产周期。
讨论k>>r 和k ≈r 的情况。
解:1.模型假设:① 每天生产速率为常数k ,销售速率为常数r ;② 每次生产准备费为1C ,单位时间每件产品贮存费为2C ; ③ 当贮存量降到0时,立即又重新开始生产,即不允许缺货。
2.模型建立:将贮存量表示为时间t 的函数q (t ),开始时贮存量以单位时间(k-r )的速率增加,后一段时间以单位时间r 的速率减少直至0,即q (T )=0 。
如图: 总量 q(t)r*T 生产 销售(k-r)*T0k-r r时间t 时间t T0 T T0 T 图1 图2其中图1为生产销售模型,T r To k **=图2为贮存量模型q(t), 且⎩⎨⎧≤<-+--≤<-=T t To r k To To t r To t t r k t q ),(*)(*0,*)()( 而总费用=生产准备费+贮存费,即⎰⎰+=++=To TToc To T c c dt t q c dt t q c c c 02/2***21)(*2)(*21)(总平均费用kr k T r c T c T r k T To c c 2)(***212/)(***21)(c -+=-+=均 3.模型求解:k r k r c T c c 2)(**22^1)'(-+-=均令c(均)’=0,则T=)(**21*21*2)(**21r k r c c k c k r k r c -=- ①当k>>r 时,rc c k r c c k T *212**21*2==,此时模型相当于不考虑生产的情况。
②当k ≈r 时,∞→T ,此时模型相当于一边生产一边销售,且无法贮存产品,储存量q(t)=0。
4.模型分析:从公式T=)(**21*21*2)(**21r k r c c k c k r k r c -=-中可以看出:①当c1增加时,周期T 也随之变长,而当c2增加时,周期T 反而变短。
这反映出一次性的生产费增加时,能够维持更多的生产,因此整一个周期变长;而c2贮存费增加时,贮存费用变大,从经济角度考虑,因此生产出来的产品要快速销售处理掉,因此周期变短。
②当生产速率常数k 增加,销售速率r 减少时,周期T 变长,而当常数k 减小,r 增加时,周期T 变短。
这反映出生产速率增加,销售速率减小时,会生产出更多的产品,需要更多的时间去销售完生产出来的产品,因此周期变长;而生产速率减小,销售速率增大时,生产出的产品能在短时间内被销售完全,因此周期变短。
以上内容均符合客观事实情况,符合常识。
7、要在雨中的一处沿直线跑到另一处,若雨速为常数且保持方向不变,试建立数学模型讨论是否跑得越快淋雨量越少。
将人简化为一个长方体,高m a 5.1=(颈部以下),宽m b 5.0=,厚m c 2.0=,设跑步距离1000,跑步最大速度m v =5m/s ,雨速s m u /4=,降雨量h cm /2=ω,记跑步速度为v 。
(1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量。
(2)雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1,建立总淋雨量与速度v 及参数,,,,,u d c b a θω,之间的关系,问速度多大,总淋雨量最少,计算︒=︒=30,0θθ时的总淋雨量。
(3)雨与从背面吹来,雨线方向与跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v 及参数,,,,,u d c b a θω,之间的关系,问速度多大,总淋雨量最少,计算︒=︒=30,0θθ时的总淋雨量。
(4)以总淋雨量为纵轴,速度v 为横轴,对(3)作图(考虑α的影响),并解释结果的实际意义。
(5)若雨线方向与跑步方向不在同一平面内,模型会有什么样的变化。
图1 图2解:1.问题的分析总的淋雨量等于人体的各个面上的淋雨量之和。
每个面上的淋雨量等于单位面积, 单位时间的淋雨量与面积以及时间的乘积。
面积由已知各边长乘积得出,时间为总路程与人前行速度的比值。
再由速度分解,合成,相对速度等知识确定各面淋雨量公式,列出总的方程,根据各变量关系,得出最优解。
当雨线方向和跑步方向不在同一平面时,我们设出雨线方向角,按照上述方法将其分解,同样可以解决问题。
2.模型的假设(1)把人体视为长方体,人体行走过程中的震荡引起的误差可忽略不计。
ν大小与方向恒定,即沿直线匀速前进。
(2)问题1中不考虑雨下落的方向,假设为自由落体。
人体各个方向均匀接受雨量,即单位时间、单位面积上接受雨量恒定。
(3)问题2、3雨线与跑步方向在同一平面内,并且雨线与人体夹角不变。
在此过程中左右两侧因与雨速平行而不沾雨。
(4)假设雨的密度相同,雨滴大小、形状相同,雨速均匀不变(5)假设单位时间内接收雨的量与雨速成正比。
(6)设总淋雨量为Q3.模型的建立与求解问题一:全身面积)(2ac bc ab s ++=跑完全程的时间s v d t m 200/==降雨量s m h cm /1810/24-==ω淋雨量Q = tsw ≈2.44升问题二:雨从迎面吹来,因为雨线与跑步方向在同一平面内,左右两面与雨的方向平行,所以雨只淋在头顶和前面。
总淋雨量21Q Q Q +=, 1Q 为头顶淋雨量,2Q 为前面淋雨量。
先计算1Q :头顶面积bc s =1 淋雨时间v d t =雨速在竖直方向的分量θcos 1u u =降雨量ωϖu u 11=111ϖt s Q ==θωcos v bcd再计算2Q前面面积ab s =2v dt =雨速在水平方向的分量θsin 2u u =雨相对人的速度v u +=2μ 降雨量ωμϖu =222ϖts Q ==()uv v u abd +θωsin∴总淋雨量=+=21Q Q Q θωcos v bcd +()uv v u abd +θωsin容易看出总淋雨量Q 关于v 单调递减,所以当s m v v m /5==时,Q 取到最小值,即淋雨量最少,当,0︒=θQ =1.15升,当,30︒=θQ =1.55升。
问题三:雨从背面吹来,因为雨线与跑步方向在同一平面内,左右两面与雨的方向平行,所以雨只淋在头顶和前面或前面。
正面:当v u <αsin 时,人速大于垂直于人前后面的雨速,雨会沾到人的前面。
先计算1Q头顶面积bc s =1 淋雨时间v d t =雨速在竖直方向的分量αcos 1u u = 降雨量ωϖu u 11=111ϖt s Q ==αωcos v bcd再计算2Q前面面积ab s =2v dt =雨速在水平方向的分量αsin 2u u =雨相对人的速度2u v -=μ 降雨量ωμϖu =2222ϖts Q ==()uv u v abd αωsin -∴总淋雨量=+=21Q Q Q αωcos v bcd +()uv u v abd αωsin - v u <αsin反面:当v u ≥αsin 时,人速小于垂直于人前后面的雨速,雨会沾到人的后面,故总淋雨量等于头顶淋雨量加上背部淋雨量。
1Q 与前面的一样,1Q =αωcos v bcd再计算2Q前面面积ab s =2v dt =雨速在水平方向的分量αsin 2u u =雨相对人的速度v u -=2μ 降雨量ωμϖu =2222ϖts Q ==()uv v u abd -αωsin∴总淋雨量=+=21Q Q Q αωcos v bcd +()uv v u abd -αωsin αsin u v ≤综上=Q分析:当0sin cos <-ααa c 时,即:a c>αtan ,则αsin u v =时,淋雨量Q 最少;否则,当s m v v m /5==时,淋雨量Q 最少。
(如下图)当α= ︒30时,5.12.0tan >α,所以当αsin u v ==2m/s 时,Q ≈0.24升最少。
问题四:图形如上。
实际意义是:当雨从背后吹来时,要看雨吹的方向,如果雨线方向与人跑步方向在同一平面上,且与人体的夹角α的正切大于人的厚度与高度之比,跑步速度以雨速与α的正弦之积最好,淋雨量最少;否则就以最大速度跑步,这样淋雨量才最少。
问题五如下图,为人体模型的俯视图。
需要分三部分计算,在前后面上,雨垂直方向分速度为βcos u ,相对速度为βθcos sin u v -,乘上垂直受雨的面积ab 以及时间v d,即为前后侧受雨量2Q 。
因为垂直于左右面人的分速度为0,左右两面上相对速度为βθcos sin u 乘上面积ac 以及时间v d,即为左右受雨量3Q 。
而头顶受雨与雨速和人速夹角大小无关,因此1Q 仍按(2)、(3)问的算法做。
由321Q Q Q Q ++=可得雨量求法公式。
应用问题三的结论:θcos 1v bcdw Q =前后侧,当βθcos sin u v ≤时,相对速度βθcos sin u v -,vu u v abd Q )cos sin (2βθω-=可总结为vu u v abd Q βθωcos sin 2-= 同理可得左右两侧淋雨量vu u acd Q βθωcos sin 3=总淋雨量Q =1Q +2Q +3Q =θcos v bcdw +vu u v abd βθωcos sin -+vu u acd βθωcos sin4.模型的评价(1)模型优点通过模型的建立,相对客观的对人在雨中奔跑的各个情况进行了分析,可知人在雨中奔跑的淋雨量不仅与跑步速度有关,还与雨线与人跑步方向的夹角,雨速以及人跑步速度等因素有关。
对人在雨中奔跑于淋雨量的关系有了一定的了解(2)模型缺点本文忽略了一些客观存在但不易计算或影响较小的因素,如降雨密度不均匀、风向不稳定、人体与长方体的差距等次要因素,在实际问题中的限制性因素远远超过这些,但一些因素对研究问题的影响较小,因此此文的分析方法仍存在一定的局限性,有待改进和提高。