2015年四川省广安市中考数学试题及解析
2015年四川省广安市岳池县中考数学二诊试卷(解析版)

2015年四川省广安市岳池县中考数学二诊试卷一、选择题1.(3分)﹣的倒数是()A.8 B.﹣8 C.﹣ D.2.(3分)将点M(﹣1,﹣5)向右平移3个单位长度得到点N,则点N所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)去年国庆假期,天安门接待游客日平均为10.7万人,这个假期7天共接待的游客人数用科学记数法可表示为()A.1.07×105人 B.7.49×104人 C.7.49×105人 D.7.49×106人4.(3分)已知关于x的方程x2+kx+6=0的一个根为x=﹣2,则实数k的值为()A.5 B.﹣5 C.4 D.﹣35.(3分)在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D,如果△ABC的周长是16,面积是12,那么△DEF的周长、面积依次为()A.8,3 B.8,6 C.4,3 D.4,66.(3分)如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米 B.10米C.12米D.14米7.(3分)若x,y为实数,且|x+2|+=0,则()2015的值为()A.1 B.﹣1 C.2 D.﹣28.(3分)若一组数据3,5,7,8,x,11的众数是5,则这组数据的中位数是()A.4 B.5 C.6 D.7.59.(3分)如图,直线y=mx与双曲线y=交于A、B两点,过点A作AM⊥x轴,=2,则k的值是()垂足为M,连接BM,若S△ABMA.2 B.m﹣2 C.m D.410.(3分)如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,若⊙O的半径为r,△PCD的周长为3r,连接OA,OP,则的值是()A.B.C.D.二、填空题11.(3分)将直线y=x+5向上平移3个单位后,则平移后直线与x轴的交点坐标是.12.(3分)分解因式2x3﹣12x2+18x=.13.(3分)一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为.(结果保留π)14.(3分)代数式有意义,x应满足的条件是.15.(3分)如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,连接BB′,则sin∠ABB′=.16.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:则当y<10时,x的取值范围是.三、按要求解答各题:17.(6分)计算:2cos60°+2﹣2+(π﹣3.14)0﹣|2﹣|18.(6分)先化简,再求值:(),其中a=﹣1.19.(6分)已知:如图,在平行四边形ABCD中,延长AB至E,使BE=AB,过点E作EF∥DA交DB的延长线于点F.求证:EF=BC.20.(7分)如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)求△AOB的面积.四、应用题21.(8分)在一个不透明的盒子里,装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于10的概率.22.(8分)一辆汽车从A地驶往B地,前路为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h,在高速路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h,普通公路和高速公路各是多少km?23.(8分)如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)24.(7分)一个棱长为a的菱形ABCD,E是AD的中点,将此图形沿BF折叠,点C恰好与点E重合,如图.求tanA的值.五、综合应用:25.(7分)如图,⊙O的直径CD垂直于弦AB,垂足为E,F为DC延长线上一点,且∠CBF=∠CDB.(1)求证:FB为⊙O的切线;(2)若AB=8,CE=2,求sin∠BDC.26.(9分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.2015年四川省广安市岳池县中考数学二诊试卷参考答案与试题解析一、选择题1.(3分)﹣的倒数是()A.8 B.﹣8 C.﹣ D.【分析】根据倒数的定义,即可解答.【解答】解:﹣的倒数是﹣8,故选:B.2.(3分)将点M(﹣1,﹣5)向右平移3个单位长度得到点N,则点N所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先利用平移中点的变化规律求出点N的坐标,再根据各象限内点的坐标特点即可判断点N所处的象限.【解答】解:点M(﹣1,﹣5)向右平移3个单位长度,得到点N的坐标为(2,﹣5),故点N在第四象限.故选:D.3.(3分)去年国庆假期,天安门接待游客日平均为10.7万人,这个假期7天共接待的游客人数用科学记数法可表示为()A.1.07×105人 B.7.49×104人 C.7.49×105人 D.7.49×106人【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:10.7万人×7=749000人=7.49×105人.故选:C.4.(3分)已知关于x的方程x2+kx+6=0的一个根为x=﹣2,则实数k的值为()A.5 B.﹣5 C.4 D.﹣3【分析】根据一元二次方程的解,把x=﹣2代入原方程得到关于k的一元二次方程,然后解此方程即可.【解答】解:把x=﹣2代入原方程得4﹣2k+6=0,解得k=5.故选:A.5.(3分)在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D,如果△ABC的周长是16,面积是12,那么△DEF的周长、面积依次为()A.8,3 B.8,6 C.4,3 D.4,6【分析】根据已知可证△ABC∽△DEF,且△ABC和△DEF的相似比为2,再根据相似三角形周长的比等于相似比,面积的比等于相似比的平方即可求△DEF的周长、面积.【解答】解:因为在△ABC和△DEF中,AB=2DE,AC=2DF,∴=2,又∵∠A=∠D,∴△ABC∽△DEF,且△ABC和△DEF的相似比为2,∵△ABC的周长是16,面积是12,∴△DEF的周长为16÷2=8,面积为12÷4=3,故选:A.6.(3分)如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米 B.10米C.12米D.14米【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC==10(m),故小鸟至少飞行10m.故选:B.7.(3分)若x,y为实数,且|x+2|+=0,则()2015的值为()A.1 B.﹣1 C.2 D.﹣2【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+2=0,y﹣2=0,解得x=﹣2,y=2,所以,()2015=()2015=﹣1.故选:B.8.(3分)若一组数据3,5,7,8,x,11的众数是5,则这组数据的中位数是()A.4 B.5 C.6 D.7.5【分析】根据众数的定义确定x=5,然后把数据按大小关系排列确定中位数.【解答】解:根据题意,x=5.把这组数据从小到大排列为:3,5,5,7,8,11.所以中位数为=6.故选:C.9.(3分)如图,直线y=mx与双曲线y=交于A、B两点,过点A作AM⊥x轴,=2,则k的值是()垂足为M,连接BM,若S△ABMA.2 B.m﹣2 C.m D.4=2S△AOM,又S△AOM=|k|,则k的值即可求出.【分析】由题意得:S△ABM【解答】解:设A(x,y),∵直线y=mx与双曲线y=交于A、B两点,∴B(﹣x,﹣y),=|xy|,S△AOM=|xy|,∴S△BOM=S△AOM,∴S△BOM=S△AOM+S△BOM=2S△AOM=2,S△AOM=|k|=1,则k=±2.∴S△ABM又由于反比例函数位于一三象限,k>0,故k=2.故选:A.10.(3分)如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,若⊙O的半径为r,△PCD的周长为3r,连接OA,OP,则的值是()A.B.C.D.【分析】利用切线长定理得出CA=CF,DF=DB,PA=PB,进而得出PA=r,求出即可.【解答】解:∵PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,∴CA=CF,DF=DB,PA=PB,∴PC+CF+DF+PD=PA=PB=2PA=3r,∴PA=r,则的值是:=.故选:D.二、填空题11.(3分)将直线y=x+5向上平移3个单位后,则平移后直线与x轴的交点坐标是(﹣8,0).【分析】利用一次函数平移规律,上加下减进而得出答案.【解答】解:直线y=x+5沿y轴向上平移3个单位,则平移后直线解析式为:y=x+8,直线与x轴的交点坐标为:0=x+8,解得:x=﹣8.故答案为(﹣8,0)12.(3分)分解因式2x3﹣12x2+18x=2x(x﹣3)2.【分析】首先提公因式2x,然后利用完全平方公式即可分解.【解答】解:原式=2x(x2﹣6x+9)=2x(x﹣3)2.故答案是:2x(x﹣3)2.13.(3分)一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为24π.(结果保留π)【分析】根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积,即可得出表面积.【解答】解:∵如图所示可知,圆锥的高为4,底面圆的直径为6,∴圆锥的母线为:5,∴根据圆锥的侧面积公式:πrl=π×3×5=15π,底面圆的面积为:πr2=9π,∴该几何体的表面积为24π.故答案为:24π.14.(3分)代数式有意义,x应满足的条件是x≠±4.【分析】利用分式有意义的条件是分母不等于零,进而求出即可.【解答】解:代数式有意义,则|x|﹣4≠0,故x应满足的条件是:x≠±4.故答案为:x≠±4.15.(3分)如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,连接BB′,则sin∠ABB′=.【分析】画出旋转后的图形位置,根据图形可知△ABB′是等腰直角三角形,所以sin∠ABB′=sin45°求解.【解答】解:如右图,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,∴△ABB′是等腰直角三角形,∴sin∠ABB′=sin45°=.故答案为:.16.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:则当y<10时,x的取值范围是﹣1<x<5.【分析】根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案.【解答】解:由所给数据可知当x=2时,y有最小值1,∴二次函数的对称轴为x=2,又由表格数据可知当y<10时,对应的x的范围为﹣1<x≤2,又由二次函数的对称性可知当2<x<5时,y值的范围也是y<10,故答案为:﹣1<x<5.三、按要求解答各题:17.(6分)计算:2cos60°+2﹣2+(π﹣3.14)0﹣|2﹣|【分析】原式第一项利用特殊角的三角函数值计算,第二项利用负整数指数幂法则计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=2×++1﹣2+=+.18.(6分)先化简,再求值:(),其中a=﹣1.【分析】先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=÷=•=,当a=﹣1时,原式==﹣1.19.(6分)已知:如图,在平行四边形ABCD中,延长AB至E,使BE=AB,过点E作EF∥DA交DB的延长线于点F.求证:EF=BC.【分析】先证明△ABD与△EBF全等,得到EF=AD,再根据平行四边形的对边相等即可证明.【解答】证明:∵EF∥DA,∴∠A=∠E,又∵AB=BE,∠ABD=∠EBF,∴△ABD≌△EBF,∴EF=AD,∵四边形ABCD是平行四边形,∴AD=BC,∴EF=BC.20.(7分)如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)求△AOB的面积.【分析】(1)解方程组可得到A点坐标和B点坐标;=S△AOD+S△BOD进行(2)先确定一次函数与y轴的交点D的坐标,然后根据S△AOB计算.【解答】解:(1)解方程组得或.所以A点坐标为(﹣2,4),B点坐标为(4,﹣2);(2)直线AB交y轴于点D,如图,把x=0代入y=﹣x+2得y=2,则D点坐标为(0,2),=S△AOD+S△BOD=×2×2+×2×4=6.所以S△AOB四、应用题21.(8分)在一个不透明的盒子里,装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于10的概率.【分析】解此题的关键是准确列表或画树形图,找出所有的可能情况,即可求得概率.【解答】解:(2分) (1)P (两数相同)=.(3分)(2)P (两数和大于10)=.(5分)22.(8分)一辆汽车从A 地驶往B 地,前路为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h ,在高速路上行驶的速度为100km/h ,汽车从A 地到B 地一共行驶了2.2h ,普通公路和高速公路各是多少km ?【分析】由题意得:从A 地驶往B 地,前路段为普通公路,其余路段为高速公路.得到:高速公路的长度=普通公路长度的两倍;汽车从A 地到B 地一共行驶了2.2h .最简单的是根据在普通公路的时间和在高速公路的时间提出问题,再设未知数,列方程组,解答问题.【解答】解:设普通公路长为x (km ),高速公路长为y (km ).根据题意,得,解得,答:普通公路长为60km,高速公路长为120km.23.(8分)如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)【分析】根据在Rt△ACD中,tan∠ACD=,求出AD的值,再根据在Rt△BCD 中,tan∠BCD=,求出BD的值,最后根据AB=AD+BD,即可求出答案.【解答】解:在Rt△ACD中,∵tan∠ACD=,∴tan30°=,∴=,∴AD=3m,在Rt△BCD中,∵tan∠BCD=,∴tan45°=,∴BD=9m,∴AB=AD+BD=3+9(m).答:旗杆的高度是(3+9)m.24.(7分)一个棱长为a的菱形ABCD,E是AD的中点,将此图形沿BF折叠,点C恰好与点E重合,如图.求tanA的值.【分析】取AE的中点G,连接BG,根据折叠的性质和菱形的性质可知AG⊥BG,AG=a,根据勾股定理求出BG,再根据正切定义计算即可.【解答】解:取AE的中点G,连接BG,由题意知菱形ABCD的边长为a,则AB=BE=a,∴AG⊥BG,AG=a,在Rt△ABG中,BG===a,∴tanA===.五、综合应用:25.(7分)如图,⊙O的直径CD垂直于弦AB,垂足为E,F为DC延长线上一点,且∠CBF=∠CDB.(1)求证:FB为⊙O的切线;(2)若AB=8,CE=2,求sin∠BDC.【分析】(1)连接OB,根据圆周角定理证得∠CBD=90°,然后根据等边对等角以及等量代换,证得∠OBF=90°即可证得;(2)首先利用垂径定理求得BE的长,根据勾股定理求得圆的半径和BC的长,即可得到结果.【解答】(1)证明:连接OB.∵CD是直径,∴∠CBD=90°,又∵OB=OD,∴∠OBD=∠D,又∠CBF=∠D,∴∠CBF=∠OBD,∴∠CBF+∠OBC=∠OBD+∠OBC,∴∠OBF=∠CBD=90°,即OB⊥BF,∴FB是圆的切线;(2)解:∵CD是圆的直径,CD⊥AB,∴BE=AB=4,设圆的半径是R,在直角△OEB中,根据勾股定理得:R2=(R﹣2)2+42,解得:R=5,在R t△BEC中,BC===2,在R t△DBC中,sin∠BDC===.26.(9分)如图,抛物线y=﹣x 2+mx +n 与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知A (﹣1,0),C (0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由;(3)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标.【分析】(1)由待定系数法建立二元一次方程组求出求出m 、n 的值即可;(2)由(1)的解析式求出顶点坐标,再由勾股定理求出CD 的值,再以点C 为圆心,CD 为半径作弧交对称轴于P1,以点D 为圆心CD 为半径作圆交对称轴于点P 2,P 3,作CE 垂直于对称轴与点E ,由等腰三角形的性质及勾股定理就可以求出结论;(3)先求出BC 的解析式,设出E 点的坐标为(a ,﹣a +2),就可以表示出F 的坐标,由四边形CDBF 的面积=S △BCD +S △CEF +S △BEF 求出S 与a 的关系式,由二次函数的性质就可以求出结论.【解答】解:(1)∵抛物线y=﹣x 2+mx +n 经过A (﹣1,0),C (0,2).解得:,∴抛物线的解析式为:y=﹣x2+x+2;(2)∵y=﹣x2+x+2,∴y=﹣(x﹣)2+,∴抛物线的对称轴是x=.∴OD=.∵C(0,2),∴OC=2.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=DP2=DP3=CD.作CM⊥x对称轴于M,∴MP1=MD=2,∴DP1=4.∴P1(,4),P2(,),P3(,﹣);(3)当y=0时,0=﹣x2+x+2∴x1=﹣1,x2=4,∴B(4,0).设直线BC的解析式为y=kx+b,由图象,得,解得:,∴直线BC的解析式为:y=﹣x+2.如图2,过点C作CM⊥EF于M,设E(a,﹣a+2),F(a,﹣a2+a+2),∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a(0≤a≤4).∵S=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,四边形CDBF=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a),=﹣a2+4a+(0≤a≤4).=﹣(a﹣2)2+=,∴a=2时,S四边形CDBF的面积最大∴E(2,1).。
年四川省广安中考数学试卷解析

2012年广安中考数学试卷解析一、选择题:每小题给出的四个选项中,只有一个是符合题意要求的,请将符合要求的选项的代号填涂在机读卡上(每题3分,共30分)1.﹣8的相反数是( )A.8 B. ﹣8 C. D.﹣考点:相反数。
分析:根据相反数的概念,互为相反数的两个数和为0,即可得出答案.解答:解:根据概念可知﹣8+(﹣8的相反数)=0,所以﹣8的相反数是8.故选A.点评:主要考查相反数概念.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.2.经专家估算,整个南海属我国传统海疆线的油气资源约合15000亿美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是()美元.A. 1.5×104B.1.5×105C.1.5×1012 D. 1.5×1013考点:科学记数法—表示较大的数。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于15000亿有13位,所以可以确定n=13﹣1=12.解答:解:15000亿=1 500000000 000=1.5×1012.故选C.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.3.下列运算正确的是()A.3a﹣a=3 B. a2•a3=a5 C. a15÷a3=a5(a≠0) D.(a3)3=a6考点: 同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。
专题:计算题。
分析:根据同底数幂的除法法则:底数不变,指数相减,及同类项的合并进行各项的判断,继而可得出答案.解答:解:A、3a﹣a=2a,故本选项错误;B、a2•a3=a5,故本选项正确;C、a15÷a3=a12(a≠0),故本选项错误;D、(a3)3=a9,故本选项错误;故选B.点评:此题考查了同底数幂的除法运算,解答本题要求我们掌握合并同类项的法则、完全平方公式及同底数幂的除法法则.4.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是( )A.美B.丽 C. 广 D. 安考点:专题:正方体相对两个面上的文字。
2024年四川省广安市中考数学试题+答案详解

2024年四川省广安市中考数学试题+答案详解(试题部分)注意事项:1.本试卷分为试题卷(1-4页)和答题卡两部分.考试时间120分钟,满分120分.2.考生答题前,请先将姓名、准考证号等信息用黑色墨迹签字笔填写在答题卡上的指定位置,待监考教师粘贴条形码后,认真核对条形码上的姓名、准考证号与自己准考证上的信息是否一致.3.请将选择题答案用2B 铅笔填涂在答题卡上的相应位置,非选择题用0.5毫米黑色字迹签字笔答在答题卡上的相应位置.超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;作图题应先用铅笔画,确定不修改后,再用黑色字迹签字笔描黑.4.考试结束,监考人员必须将缺考学生和参考学生的答题卡、试题卷一并收回.一、选择题(每小题只有一个选项符合题意,请将所选选项填涂在答题卡相应位置上.本大题共10个小题,每小题3分,共30分)1. 下列各数最大的是( ) A. 2−B. 12−C. 0D. 12. 代数式3x −的意义可以是( ) A. 3−与x 的和B. 3−与x 的差C. 3−与x 的积D. 3−与x 的商3. 下列运算中,正确的是( ) A. 235a a a +=B. ()32628a a −=− C. 22(1)1a a −=−D. 842a a a ÷=4. 将“共建平安校园”六个汉字分别写在某正方体的表面上,下图是它的一种展开图,则在原正方体上,与“共”字所在面相对的面上的汉字是( )A. 校B. 安C. 平D. 园5. 如图,在ABC 中,点D ,E 分别是AC ,BC 的中点,若45A ∠=︒,70CED ∠=︒,则C ∠的度数为( )A. 45︒B.50︒C. 60︒D. 65︒6. 下列说法正确的是( )A. 将580000用科学记数法表示为:45.810⨯B. 在8,6,3,5,8,8这组数据中,中位数和众数都是8C. 甲乙两组同学参加“环保知识竞赛”,若甲乙两组同学的平均成绩相同,甲组同学成绩的方差21.2S =甲,乙组同学成绩的方差20.05S =乙,则甲组同学的成绩较稳定D. “五边形的内角和是540︒”是必然事件7. 若关于x 的一元二次方程2(1)210m x x +−+=有两个不相等的实数根,则m 的取值范围是( ) A. 0m <且1m ≠− B. 0m ≥ C. 0m ≤且1m ≠−D. 0m <8. 向如图所示的空容器内匀速注水,从水刚接触底部时开始计时,直至把容器注满.在注水过程中,设容器内底部所受水的压强为y (单位:帕),时间为x (单位:秒),则y 关于x 的函数图象大致为( )A. B.C. D.9. 如图,在等腰三角形ABC 中,10AB AC ==,70C ∠=︒,以AB 为直径作半圆,与AC ,BC 分别相交于点D ,E ,则DE 的长度为( )A.π9B.5π9C.10π9D.25π910. 如图,二次函数2y ax bx c =++(a ,b ,c 为常数,0a ≠)的图象与x 轴交于点3,02A ⎛⎫−⎪⎝⎭,对称轴是直线12x =−,有以下结论:①0abc <;②若点()11,y −和点()22,y 都在抛物线上,则12y y <;③21142am bm a b +≤−(m 为任意实数);④340a c +=.其中正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题(请把最简答案填写在答题卡相应位置.本大题共6个小题,每小题3分,共18分)11. 3=______.12. 分解因式:39a a −=________________. 13. 若2230x x −−=,则2241x x −+=______.14. 如图,直线22y x =+与x 轴、y 轴分别相交于点A ,B ,将AOB 绕点A 逆时针方向旋转90︒得到ACD ,则点D 的坐标为______.15. 如图,在ABCD Y 中,4AB =,5AD =,30ABC ∠=︒,点M 为直线BC 上一动点,则MA MD +的最小值为______.16. 已知,直线:33l y x =−与x轴相交于点1A ,以1OA 为边作等边三角形11OA B ,点1B 在第一象限内,过点1B 作x 轴的平行线与直线l 交于点2A ,与y 轴交于点1C ,以12C A 为边作等边三角形122C A B (点2B 在点1B 的上方),以同样的方式依次作等边三角形233C A B ,等边三角形344C A B ,则点2024A 的横坐标为______.三、解答题(本大题共4个小题,第17小题5分,第18、19、20小题各6分,共23分)17. 计算:01π132sin 60|2|22−⎛⎫⎛⎫−+︒+− ⎪ ⎪⎝⎭⎝⎭.18. 先化简2344111a a a a a ++⎛⎫+−÷⎪−−⎝⎭,再从2−,0,1,2中选取一个适合的数代入求值. 19. 如图,在菱形ABCD 中,点E ,F 分别是边AB 和BC 上的点,且BE =BF .求证:∠DEF =∠DFE .20. 如图,一次函数y ax b =+(a ,b 为常数,0a ≠)的图象与反比例函数ky x=(k 为常数,0k ≠)的图象交于(2,4)A ,(,2)B n −两点.(1)求一次函数和反比例函数的解析式.(2)直线AB 与x 轴交于点C ,点(,0)P m 是x 轴上的点,若PAC △的面积大于12,请直接写出m 的取值范围.四、实践应用题(本大题共4个小题,第21小题6分,第22、23、24小题各8分,共30分)21. 睡眠管理作为“五项管理”中的重要内容之一,也是学校教育重点关注的内容.某校为了解学生平均每天睡眠时间,随机抽取该校部分学生进行问卷调查,并将结果进行了统计和整理,绘制成如下统计表和不完整的统计图.(1)本次抽取调查的学生共有______人,扇形统计图中表示C 类学生平均每天睡眠时间的扇形的圆心角度数为______.(2)请补全条形统计图.(3)被抽取调查的E 类4名学生中有2名女生,2名男生.从这4人中随机抽取2人进行电话回访,请用画树状图或列表的方法,求恰好抽到2名男生的概率.22. 某小区物管中心计划采购A ,B 两种花卉用于美化环境.已知购买2株A 种花卉和3株B 种花卉共需要21元;购买4株A 种花卉和5株B 种花卉共需要37元. (1)求A ,B 两种花卉的单价.(2)该物管中心计划采购A ,B 两种花卉共计10000株,其中采购A 种花卉的株数不超过B 种花卉株数的4倍,当A ,B 两种花卉分别采购多少株时,总费用最少?并求出最少总费用.23. 风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在某地安装了一批风力发电机,如图(1)某校实践活动小组对其中一架风力发电机的塔杆高度进行了测量,图(2)为测量示意图(点A ,B ,C ,D 均在同一平面内,AB BC ⊥).已知斜坡CD 长为20米,斜坡CD 的坡角为60︒,在斜坡顶部D 处测得风力发电机塔杆顶端A 点的仰角为20︒,坡底与塔杆底的距离30BC =米,求该风力发电机塔杆AB 的高度.(结果精确到个位;参考数据:sin 200.34︒≈,cos 200.94︒≈,tan 200.36︒≈ 1.73≈)24. 如图,矩形纸片的长为4,宽为3,矩形内已用虚线画出网格线,每个小正方形的边长均为1,小正方形的顶点称为格点,现沿着网格线对矩形纸片进行剪裁,使其分成两块纸片.请在下列备用图中,用实线画出符合相应要求的剪裁线.注:①剪裁过程中,在格点处剪裁方向可发生改变但仍须沿着网格线剪裁; ②在各种剪法中,若剪裁线通过旋转、平移或翻折后能完全重合则视为同一情况.五、推理论证题(9分)25. 如图,点C 在以AB 为直径的O 上,点D 在BA 的延长线上,DCA CBA ∠=∠.(1)求证:DC 是O 的切线;(2)点G 是半径OB 上的点,过点G 作OB 的垂线与BC 交于点F ,与DC 的延长线交于点E ,若4sin 5D =,2DA FG ==,求CE 的长. 六、拓展探究题(10分)26. 如图,抛物线223y x bx c =−++与x 轴交于A ,B 两点,与y 轴交于点C ,点A 坐标为(1,0)−,点B 坐标为(3,0).(1)求此抛物线的函数解析式.(2)点P 是直线BC 上方抛物线上一个动点,过点P 作x 轴的垂线交直线BC 于点D ,过点P 作y 轴的垂线,垂足为点E ,请探究2PD PE +是否有最大值?若有最大值,求出最大值及此时P 点的坐标;若没有最大值,请说明理由.(3)点M 为该抛物线上的点,当45∠=︒MCB 时,请直接写出所有满足条件的点M 的坐标.2024年四川省广安市中考数学试题+答案详解(答案详解)注意事项:1.本试卷分为试题卷(1-4页)和答题卡两部分.考试时间120分钟,满分120分.2.考生答题前,请先将姓名、准考证号等信息用黑色墨迹签字笔填写在答题卡上的指定位置,待监考教师粘贴条形码后,认真核对条形码上的姓名、准考证号与自己准考证上的信息是否一致.3.请将选择题答案用2B 铅笔填涂在答题卡上的相应位置,非选择题用0.5毫米黑色字迹签字笔答在答题卡上的相应位置.超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;作图题应先用铅笔画,确定不修改后,再用黑色字迹签字笔描黑.4.考试结束,监考人员必须将缺考学生和参考学生的答题卡、试题卷一并收回.一、选择题(每小题只有一个选项符合题意,请将所选选项填涂在答题卡相应位置上.本大题共10个小题,每小题3分,共30分)1. 下列各数最大的是( ) A. 2− B. 12−C. 0D. 1【答案】D 【解析】【分析】本题考查了有理数的大小比较,一般地,正数大于零,零大于负数,两个负数,绝对值大的反而小.把选项中的4个数按从小到大排列,即可得出最大的数. 【详解】解:∵12012−<−<<, ∴最大的数是1 故选:D .2. 代数式3x −的意义可以是( ) A. 3−与x 的和 B. 3−与x 的差C. 3−与x 的积D. 3−与x 的商【答案】C 【解析】【分析】本题考查了代数式的意义,用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.根据3x −中的运算关系解答即可.【详解】解:代数式3x −的意义可以是3−与x 的积.故选C .3. 下列运算中,正确的是( ) A. 235a a a += B. ()32628a a −=− C. 22(1)1a a −=−D. 842a a a ÷=【答案】B 【解析】【分析】本题考查整式的运算,根据合并同类项法则、积的乘方运算法则、完全平方公式和同底数幂的除法运算法则逐项判断即可解答.【详解】解:A 、2a 和3a 不是同类项,不能加减,故原计算错误,不符合题意; B 、()32628a a −=−,计算正确,符合题意;C 、22(1)21a a a −=−+,故原计算错误,不符合题意;D 、844a a a ÷=,故原计算错误,不符合题意; 故选:B .4. 将“共建平安校园”六个汉字分别写在某正方体的表面上,下图是它的一种展开图,则在原正方体上,与“共”字所在面相对的面上的汉字是( )A. 校B. 安C. 平D. 园【答案】A 【解析】【分析】此题考查正方体相对面上的字.根据正方体相对面之间间隔一个正方形解答. 【详解】解:与“共”字所在面相对面上的汉字是“校”, 故选:A .5. 如图,在ABC 中,点D ,E 分别是AC ,BC 的中点,若45A ∠=︒,70CED ∠=︒,则C ∠的度数为( )A. 45︒B. 50︒C. 60︒D. 65︒【答案】D【解析】 【分析】本题考查了三角形中位线定理、平行线的性质定理,三角形的内角和定理,熟记性质并准确识图是解题的关键.先证明DE AB ∥,可得45CDE A ∠=∠=︒,再利用三角形的内角和定理可得答案.【详解】解:∵点D ,E 分别是AC ,BC 的中点,∴DE AB ∥,∵45A ∠=︒,∴45CDE A ∠=∠=︒,∵70CED ∠=︒,∴180457065C ∠=︒−︒−︒=︒,故选D6. 下列说法正确的是( )A. 将580000用科学记数法表示为:45.810⨯B. 在8,6,3,5,8,8这组数据中,中位数和众数都是8C. 甲乙两组同学参加“环保知识竞赛”,若甲乙两组同学的平均成绩相同,甲组同学成绩的方差21.2S =甲,乙组同学成绩的方差20.05S =乙,则甲组同学的成绩较稳定 D. “五边形的内角和是540︒”是必然事件【答案】D【解析】【分析】本题考查了多角形的内角和定理,科学记数法,众数和中位数的定义,方差的意义等知识.根据多角形的内角和定理,科学记数法,众数和中位数的定义,方差的意义判断即可.【详解】解:A 、将580000用科学记数法表示为:55.810⨯,故本选项不符合题意;B 、这列数据从小到大排列为3,5,6,8,8,8中,8出现了3次,故众数是8,中位数是6872+=,故本选项不符合题意; C 、0.05 1.2<,则22S S <乙甲,则乙组同学的成绩较稳定,故本选项不符合题意;D 、“五边形的内角和是540︒”是必然事件,故本选项符合题意.故选:D .7. 若关于x 的一元二次方程2(1)210m x x +−+=有两个不相等的实数根,则m 的取值范围是( )A. 0m <且1m ≠−B. 0m ≥C. 0m ≤且1m ≠−D. 0m <【答案】A【解析】【分析】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.由关于x 的一元二次方程2(1)210m x x +−+=两个不相等的实数根,可得0∆>且10m +≠,解此不等式组即可求得答案. 【详解】解:关于x 的一元二次方程2(1)210m x x +−+=有两个不相等的实数根,∴()()22410m ∆=−−+>,解得:0m <, 10m +≠,1m ∴≠−,m ∴的取值范围是:0m <且1m ≠−.故选:A .8. 向如图所示的空容器内匀速注水,从水刚接触底部时开始计时,直至把容器注满.在注水过程中,设容器内底部所受水的压强为y (单位:帕),时间为x (单位:秒),则y 关于x 的函数图象大致为( )A. B.C. D.【答案】B【解析】【分析】此题主要考查了函数图象.由于压强与水面的高度成正比,而上下两个容器粗细不同,那么水面高度h 随时间x 变化而分两个阶段.【详解】解:最下面的容器较粗,那么第一个阶段的函数图象水面高度h 随时间x 的增大而增长缓慢,用时较长,即压强y 随时间x 的增大而增长缓慢,用时较长,最上面容器最小,则压强y 随时间x 的增大而增长变快,用时最短.故选:B .9. 如图,在等腰三角形ABC 中,10AB AC ==,70C ∠=︒,以AB 为直径作半圆,与AC ,BC 分别相交于点D ,E ,则DE 的长度为( )A. π9B. 5π9C. 10π9D. 25π9【答案】C【解析】【分析】本题考查了求弧长.根据等腰三角形的性质和三角形的内角和定理求得A ∠的度数,证明OE AC ∥,再由OA OD =,再由等腰三角形的性质和平行线的性质求得DOE ∠的度数,利用弧长公式即可求解.【详解】解:连接OD ,OE ,∵AB AC =,∴70ABC C ∠=∠=︒,∵OE OB =,∴70OEB B ∠=∠=︒,∴70OEB C ∠=∠=︒∴OE AC ∥,在ABC 中,180A ABC C ∠+∠+∠=︒,∴180180707040A ABC C ∠=︒−∠−∠=︒−︒−︒=︒, 又152OA OD AB ===, ∵OE AC∴40A ADO DOE ∠=∠=︒=∠,∴DE 的长度为40π510π1809⨯=, 故选:C .10. 如图,二次函数2y ax bx c =++(a ,b ,c 为常数,0a ≠)的图象与x 轴交于点3,02A ⎛⎫− ⎪⎝⎭,对称轴是直线12x =−,有以下结论:①0abc <;②若点()11,y −和点()22,y 都在抛物线上,则12y y <;③21142am bm a b +≤−(m 为任意实数);④340a c +=.其中正确的有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据二次函数图像的性质、二次函数图像与系数的关系以及与x 轴交点问题逐项分析判断即可.【详解】解:由图可知,二次函数开口方向向下,与y 轴正半轴交于一点,<0a ∴,>0c . <02b a−, <0b ∴.>0abc ∴.故①错误;对称轴是直线12x =−,点()11,y −和点()22,y 都在抛物线上, 而()11111112222222⎛⎫−−−=−+=<−−= ⎪⎝⎭, 12y y ∴>.故②错误;当x m =时,2y am bm c =++,当12x =−时,函数取最大值21142a b c −+, ∴对于任意实数m 有:221142am bm c a b c ++≤−+, ∴21142am bm a b +≤−,故③正确; 122b a −=−, b a ∴=.当32x =−时,0y =, 93042a b c ∴−+=. 9640a b c ∴−+=,即340a c +=,故④正确.综上所述,正确的有③④.故选:B.【点睛】本题考查了二次函数图像与系数之间的关系,解题的关键在于通过图像判断对称轴,开口方向以及与坐标轴的交点.二、填空题(请把最简答案填写在答题卡相应位置.本大题共6个小题,每小题3分,共18分)11. 3=______.【答案】0【解析】【分析】本题考查的是实数的混合运算,先计算算术平方根,再计算减法运算即可.【详解】解:3330=−=,故答案为:012. 分解因式:39a a −=________________.【答案】()()33a a a +−【解析】【分析】本题主要考查了分解因式,先提取公因式a 再利用公式法即可得到答案.【详解】解:()()3933a a a a a −=+−, 故答案为:()()33a a a +−.13. 若2230x x −−=,则2241x x −+=______.【答案】7【解析】【分析】本题考查了求代数式的值.对已知等式变形得到2246x x −=,再整体代入计算求解即可.【详解】解:∵2230x x −−=,∴223x x −=,∴2246x x −=,∴2241617x x −+=+=,故答案为:7.14. 如图,直线22y x =+与x 轴、y 轴分别相交于点A ,B ,将AOB 绕点A 逆时针方向旋转90︒得到ACD ,则点D 的坐标为______.【答案】(3,1)−【解析】【分析】本题考查一次函数图象与坐标轴的交点,旋转的性质,正方形的判定和性质等,延长DC 交y 轴于点E ,先求出点A 和点B 的坐标,再根据旋转的性质证明四边形OACE 是正方形,进而求出DE 和OE 的长度即可求解.【详解】解:如图,延长DC 交y 轴于点E ,22y x =+中,令0x =,则2y =,令220y x =+=,解得=1x −,∴(1,0)A −,(0,2)B ,∴1OA =,2OB =, AOB 绕点A 逆时针方向旋转90︒得到ACD ,∴90ACD AOB OAC ∠=∠=∠=︒,1OA OC ==,2OB CD ==,∴四边形OACE 是正方形.∴1CE OE OA ===,∴213DE CD CE =+=+=,∴点D 的坐标为(3,1)−.故答案为:(3,1)−.15. 如图,在ABCD Y 中,4AB =,5AD =,30ABC ∠=︒,点M 为直线BC 上一动点,则MA MD +的最小值为______.【解析】【分析】如图,作A 关于直线BC 的对称点A ',连接A D '交BC 于M ',则AH A H '=,AH BC ⊥,AM A M '''=,当,M M '重合时,MA MD +最小,最小值为A D ',再进一步结合勾股定理求解即可.【详解】解:如图,作A 关于直线BC 的对称点A ',连接A D '交BC 于M ',则AH A H '=,AH BC ⊥,AM A M '''=,∴当,M M '重合时,MA MD +最小,最小值为A D ',∵4AB =,30ABC ∠=︒,在ABCD Y 中, ∴122AH AB ==,AD BC ∥, ∴24AA AH '==,AA AD '⊥,∵5AD =,∴A D '==【点睛】此题考查了平行四边形的性质,勾股定理,轴对称的性质,求最小值问题,正确理解各性质及掌握各知识点是解题的关键.16. 已知,直线:l y x =与x 轴相交于点1A ,以1OA 为边作等边三角形11OA B ,点1B 在第一象限内,过点1B 作x 轴的平行线与直线l 交于点2A ,与y 轴交于点1C ,以12C A 为边作等边三角形122C A B (点2B 在点1B 的上方),以同样的方式依次作等边三角形233C A B ,等边三角形344C A B ,则点2024A 的横坐标为______.【答案】202352⎛⎫ ⎪⎝⎭【解析】【分析】直线直线:33l y x =−可知,点1A 坐标为()1,0,可得11OA =,由于11OA B 是等边三角形,可得点112B ⎛ ⎝⎭,把2y =代入直线解析式即可求得2A 的横坐标,可得2152A C =,由于221B A B 是等边三角形,可得点252A ⎛ ⎝⎭;同理,3254A ⎛ ⎝⎭,发现规律即可得解,准确发现坐标与字母的序号之间的规律是解题的关键.【详解】解:∵直线l ::l y x =与x 轴负半轴交于点1A , ∴点1A 坐标为()1,0, ∴11OA =,过1B ,2B ,作1B M x ⊥轴交x 轴于点M ,2B N x ⊥轴交21A B 于点D ,交x 轴于点N ,∵11A BO 为等边三角形,∴130OB M ∠=︒∴11122MO AO ==,∴12B M === ∴1122B ⎛⎫ ⎪ ⎪⎝⎭,,当2y =时,233x =−,解得:52x =,∴2152A C =,252A ⎛ ⎝⎭, ∴1211524C CD A ==,∴2B D ===∴2B N ==,∴当4y =时,343x =−,解得:254x =,∴32544A ⎛⎫ ⎪ ⎪⎝⎭,; 而225542⎛⎫= ⎪⎝⎭, 同理可得:4A 的横坐标为3512528⎛⎫= ⎪⎝⎭, ∴点2024A 的横坐标为202352⎛⎫ ⎪⎝⎭, 故答案为:202352⎛⎫ ⎪⎝⎭.【点睛】本题主要考查了一次函数图象上点的坐标的特征,勾股定理的应用,等边三角形的性质,特殊图形点的坐标的规律,掌握探究的方法是解本题的关键.三、解答题(本大题共4个小题,第17小题5分,第18、19、20小题各6分,共23分)17. 计算:01π132sin 60|2|22−⎛⎫⎛⎫−+︒+− ⎪ ⎪⎝⎭⎝⎭.【答案】1【解析】【分析】先计算零次幂,代入特殊角的三角函数值,化简绝对值,计算负整数指数幂,再合并即可.【详解】解:01π132sin 60|2|22−⎛⎫⎛⎫−+︒+−− ⎪ ⎪⎝⎭⎝⎭1222=+−122=1=【点睛】本题考查的是含特殊角的三角函数值的混合运算,零次幂,负整数指数幂的含义,化简绝对值,掌握相应的运算法则是解本题的关键.18. 先化简2344111a a a a a ++⎛⎫+−÷ ⎪−−⎝⎭,再从2−,0,1,2中选取一个适合的数代入求值. 【答案】22a a −+,0a =时,原式1=−,2a =时,原式0=. 【解析】【分析】本题考查的是分式的化简求值,先计算括号内分式的加减运算,再计算分式的除法运算,再结合分式有意义的条件代入计算即可. 【详解】解:2344111a a a a a ++⎛⎫+−÷ ⎪−−⎝⎭ 2213(2)111a a a a a ⎛⎫−+=−÷ ⎪−−−⎝⎭ 2(2)(2)11(2)a a a a a +−−=⋅−+ 22a a −=+ 1a ≠且2a ≠−∴当0a =时,原式1=−;当2a =时,原式0=.19. 如图,在菱形ABCD 中,点E ,F 分别是边AB 和BC 上的点,且BE =BF .求证:∠DEF =∠DFE .【答案】见解析【解析】【分析】根据菱形的性质可得AB =BC =CD =AD ,∠A =∠C ,再由BE =BF ,可推出AE =CF ,即可利用SAS 证明△ADE ≌△CDF 得到DE =DF ,则∠DEF =∠DFE .【详解】解:∵四边形ABCD 是菱形,∴AB =BC =CD =AD ,∠A =∠C ,∵BE =BF ,∴AB -BE =BC -BF ,即AE =CF ,∴△ADE ≌△CDF (SAS ),∴DE =DF ,∴∠DEF =∠DFE .【点睛】本题主要考查了菱形的性质,全等三角形的性质与判定,等腰三角形的性质与判定,解题的关键在于能够熟练掌握菱形的性质.20. 如图,一次函数y ax b =+(a ,b 为常数,0a ≠)的图象与反比例函数k y x=(k 为常数,0k ≠)的图象交于(2,4)A ,(,2)B n −两点.(1)求一次函数和反比例函数的解析式.(2)直线AB 与x 轴交于点C ,点(,0)P m 是x 轴上的点,若PAC △的面积大于12,请直接写出m 的取值范围.【答案】(1)2y x =+,8y x =(2)4m >或8m <−【解析】【分析】(1)将A 点坐标代入反比例函数解析式求得反比例函数,再把B 点坐标代入所求得的反比例函数解析式,求得m ,进而把A 、B 的坐标代入一次函数解析式便可求得一次函数的解析式;(2)由一次函数的解析式求得与x 轴的交点C 的坐标,然后PAC △的面积大于12,再建立不等式即可求解.【小问1详解】解:∵(2,4)A 在反比例函数()0k y k x =≠的图象上, ∴248k =⨯=,∴反比例函数的解析式为:8y x =, 把(,2)B n −代入8y x=,得n =−4, ∴()4,2B −−, 把(2,4)A ,()4,2B −−都代入一次函数y ax b =+,得2442a b a b +=⎧⎨−+=−⎩ , 解得12a b =⎧⎨=⎩, ∴一次函数的解析式为:2y x =+;【小问2详解】解:如图,对于2y x =+,当20y x =+=,解得=2x −,∴()2,0C −,∵(,0)P m , ∴2CP m =+,∵PAC △的面积大于12, ∴142122m ⨯+>,即26m +>, 当2m ≥−时,则26m +>,解得:4m >,当2m <−时,则26m −−>,解得:8m <−;∴4m >或8m <−.【点睛】本题考查了一次函数和反比例函数的交点问题,反比例函数图象上点的坐标特征,三角形的面积等,求得交点坐标是解题的关键.四、实践应用题(本大题共4个小题,第21小题6分,第22、23、24小题各8分,共30分)21. 睡眠管理作为“五项管理”中的重要内容之一,也是学校教育重点关注的内容.某校为了解学生平均每天睡眠时间,随机抽取该校部分学生进行问卷调查,并将结果进行了统计和整理,绘制成如下统计表和不完整的统计图.(1)本次抽取调查的学生共有______人,扇形统计图中表示C类学生平均每天睡眠时间的扇形的圆心角度数为______.(2)请补全条形统计图.(3)被抽取调查的E类4名学生中有2名女生,2名男生.从这4人中随机抽取2人进行电话回访,请用画树状图或列表的方法,求恰好抽到2名男生的概率.【答案】(1)50;144︒(2)见解析(3)1 6【解析】【分析】本题主要考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适用于两步完成是事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.也考查了条形统计图和扇形统计图.(1)根据B类人数和人数占比即可求出本次被调查的学生人数;用360度乘以C类的人数占比即可求出C类学生平均每天睡眠时间的扇形的圆心角度数;(2)根据(1)所求,求出D类的人数即可补全统计图;(3)先画出树状图得到所有的等可能性的结果数,再找到所选的2人恰好都是男生的结果数,最后依据概率计算公式求解即可.【小问1详解】解:1428%50÷=(人);2036014450⨯=︒︒; 故答案为:50;144︒;【小问2详解】解:D 类的人数为506142046−−−−=(人),补全条形统计图,如图,【小问3详解】解:画树状图如下:共有12种等可能结果,其中两人恰好是2名男生的结果有2种.()221126P ∴==抽到男. 22. 某小区物管中心计划采购A ,B 两种花卉用于美化环境.已知购买2株A 种花卉和3株B 种花卉共需要21元;购买4株A 种花卉和5株B 种花卉共需要37元.(1)求A ,B 两种花卉的单价.(2)该物管中心计划采购A ,B 两种花卉共计10000株,其中采购A 种花卉的株数不超过B 种花卉株数的4倍,当A ,B 两种花卉分别采购多少株时,总费用最少?并求出最少总费用.【答案】(1)A 种花卉的单价为3元/株,B 种花卉的单价为5元/株(2)当购进A 种花卉8000株,B 种花卉2000株时,总费用最少,最少费用为34000元【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,根据题意列出方程组,不等式以及一次函数关系式是解题的关键.(1)设A 种花卉的单价为x 元/株,B 种花卉的单价为y 元/株,根据题意列出二元一次方程组,解方程组即可求解;(2)设采购A 种花卉m 株,则B 种花卉(10000)m −株,总费用为W 元,根据题意列出不等式,得出8000m ≤,进而根据题意,得到35(10000)W m m =+−,根据一次函数的性质即可求解.【小问1详解】解:设A 种花卉的单价为x 元/株,B 种花卉的单价为y 元/株,由题意得:23214537x y x y +=⎧⎨+=⎩, 解得:35x y =⎧⎨=⎩, 答:A 种花卉的单价为3元/株,B 种花卉的单价为5元/株.【小问2详解】解:设采购A 种花卉m 株,则B 种花卉(10000)m −株,总费用为W 元,由题意得:35(10000)250000W m m m =+−=−+,4(10000)m m ≤−,解得:8000m ≤,在250000W m =−+中,20−<,∴W 随m 的增大而减小,∴当8000m =时W 的值最小,280005000034000W =−⨯+=最小,此时100002000m −=.答:当购进A 种花卉8000株,B 种花卉2000株时,总费用最少,最少费用为34000元.23. 风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在某地安装了一批风力发电机,如图(1)某校实践活动小组对其中一架风力发电机的塔杆高度进行了测量,图(2)为测量示意图(点A ,B ,C ,D 均在同一平面内,AB BC ⊥).已知斜坡CD 长为20米,斜坡CD 的坡角为60︒,在斜坡顶部D 处测得风力发电机塔杆顶端A 点的仰角为20︒,坡底与塔杆底的距离30BC =米,求该风力发电机塔杆AB 的高度.(结果精确到个位;参考数据:sin 200.34︒≈,cos 200.94︒≈,tan 200.36︒≈ 1.73≈)【答案】32m【解析】【分析】本题考查的是矩形的判定与性质,解直角三角形的实际应用,过点D 作DF AB ⊥于点F ,作DH BE ⊥于点H ,先求解cos6010m CH CD =⋅︒=,sin 6017.3m DH CD =︒≈,再证明40m BH BC CH =+=,再利用锐角的正切可得tan 2014.4m AF FD =⋅︒=,从而可得答案.【详解】解:过点D 作DF AB ⊥于点F ,作DH BE ⊥于点H由题意得:20m DC =,60DCH ∠=︒在Rt DCH △中,cos 60CHCD ︒=,sin 60DH CD︒= ∴cos6010m CH CD =⋅︒=,sin6017.3m DH CD =︒=≈90DFB B DHB ∠=∠=∠=︒,∴四边形DFBH 为矩形,∴BH FD =,BF DH =,(3010)m 40m BH BC CH =+=+=,∴40m FD =在AFD △中.tan 20AF FD=︒, tan 20400.3614.4m AF FD ∴=⋅︒≈⨯=(17.314.4)m 31.7m 32m AB AF BF ∴=+≈+=≈答:该风力发电机塔杆AB 的高度为32m .24. 如图,矩形纸片的长为4,宽为3,矩形内已用虚线画出网格线,每个小正方形的边长均为1,小正方形的顶点称为格点,现沿着网格线对矩形纸片进行剪裁,使其分成两块纸片.请在下列备用图中,用实线画出符合相应要求的剪裁线.注:①剪裁过程中,在格点处剪裁方向可发生改变但仍须沿着网格线剪裁;②在各种剪法中,若剪裁线通过旋转、平移或翻折后能完全重合则视为同一情况.【答案】见解析【解析】【分析】本题考查的是矩形的性质,全等图形的定义与性质,同时考查了学生实际的动手操作能力,根据全等图形的性质分别画出符合题意的图形即可.【详解】解:如图,五、推理论证题(9分)25. 如图,点C 在以AB 为直径的O 上,点D 在BA 的延长线上,DCA CBA ∠=∠.(1)求证:DC 是O 的切线;(2)点G 是半径OB 上的点,过点G 作OB 的垂线与BC 交于点F ,与DC 的延长线交于点E ,若4sin 5D =,2DA FG ==,求CE 的长.【答案】(1)见解析 (2)14【解析】【分析】(1)连接OC ,由圆周角定理求得90ACB ∠=︒,再利用等角的余角相等求得90OCD ∠=︒,据此即可证明DC 是O 的切线;(2)利用三角函数的定义求得8OC OA ==,在Rt OCD △中,利用勾股定理求得6CD =,再证明DOC DEG △△∽,利用相似三角形的性质列式计算即可求解.【小问1详解】证明:连接OC ,OB OC =,OBC OCB ∴∠=∠,DCA OBC ∠=∠,DCA OCB ∴∠=∠,而AB 是O 的直径,90ACB ∴∠=︒,90DCA OCA OCA OCB ∴∠+∠=∠+∠=︒,90OCD ∴∠=︒,∴DC 是O 的切线;【小问2详解】解:设OC OA r ==,4sin 5OC D OD ==, 425r r ∴=+, 8r ∴=,8OC OA ∴==,在Rt OCD △中,6CD ===,90DCA ECF BFG CBA ∠+∠=∠+∠=︒,∴ECF BFG ∠=∠, 又BFG EFC ∠=∠,∴ECF EFC ∠=∠,EC EF ∴=,设EC EF x ==,D D ∠=∠,DCO DGE ∠=∠,∴DOC DEG △△∽, ∴DO OC DE EG =,则10862x x =++, 解得:14x =经检验14x =是所列方程的解,∴14CE =.【点睛】本题考查了切线的判定与相似三角形的判定与性质,三角函数的定义,勾股定理.正确证明DOC DEG △△∽是解决本题的关键.六、拓展探究题(10分)26. 如图,抛物线223y x bx c =−++与x 轴交于A ,B 两点,与y 轴交于点C ,点A 坐标为(1,0)−,点B 坐标为(3,0).(1)求此抛物线的函数解析式.(2)点P 是直线BC 上方抛物线上一个动点,过点P 作x 轴的垂线交直线BC 于点D ,过点P 作y 轴的垂线,垂足为点E ,请探究2PD PE +是否有最大值?若有最大值,求出最大值及此时P 点的坐标;若没有最大值,请说明理由.(3)点M 为该抛物线上的点,当45∠=︒MCB 时,请直接写出所有满足条件的点M 的坐标.【答案】(1)224233y x x =−++。
四川省广安市中考数学试卷有答案

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前四川省广安市2016年高中阶段教育学校招生考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3-的绝对值是( ) A .13B .3-C .3D .3± 2.下列运算正确的是( )A .32624)(a a =-- B3=± C .236mm m =D .33323x x x +=3.经统计广安市2015年共引进世界500强外资企业19家,累计引进外资410000000美元,数字410000000用科学记数法表示为( ) A .74110⨯B .84.110⨯C .94.110⨯D .90.4110⨯ 4.下列图形中既是轴对称图形又是中心对称图形的是( )等边三角形A平行四边形B 正五边形C圆D 5.函数y =中自变量x 的取值范围在数轴上表示正确的是( )ABCD6.若一个正n 边形的每个内角为144,则这个正n 边形的所有对角线的条数是( ) A .7B .10C .35D .707.那么被遮盖的两个数据依次是( ) A .35,2B .36,4C .35,3 D.36,58.下列说法:○1三角形的三条高一定都在三角形内; ○2有一个角是直角的四边形是矩形; ○3有一组邻边相等的平行四边形是菱形; ○4两边及一角对应相等的两个三角形全等; ○5一组对边平行,另一组对边相等的四边形是平行四边形. 其中正确的个数有( ) A .1个B .2个C .3个D .4个9.如图,AB 是圆O 的直径,弦CD AB ⊥,30BCD ∠=,CD =,则S 阴影=( )A .2πB .8π3C .4π3D .3π8毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)10.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,并且关于x 的一元二次方程20ax bx c m ++-=有两个不相等的实数根.下列结论:○1240b ac -<; ○20abc >; ○30a b c -+<;○42m >-.其中,正确的个数有( ) A .1B .2C .3D .4第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上)11.将点(1,3)A -沿x 轴向左平移3个单位长度,再沿y 轴向上平移5个单位长度后得到的点A '的坐标为 .12.如图,直线12l l ∥,若1130∠=,260∠=,则3∠= .13.若反比例函数(0)ky k x=≠的图象经过点(1,3)-,则第一次函数(0)y kx k k =-≠的图象经过 象限.14.某市为治理污水,需要铺设一段全长600m 的污水排放管道,铺设120m 后,为加快施工进度,后来每天比原计划增加20m ,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设m x 管道,那么根据题意,可列方程 . 15.如图,三个正方形的边长分别为2,6,8,则图中阴影部分的面积为 .16.我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了()1,2,(3,4,)na b n +=…的展开式的系数规律(按a 的次数由大到小的顺序):122233223443223411()121()21331()3314641()464a b a b a b a ab b a b a a b ab b a b a a b a b ab b +=++=+++=++++=++++请依据上述规律:写出20162()x x-展开式中含2014x 项的系数是 .三、解答题(本大题共10小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分5分)计算:11()tan60|33-+-.18.(本小题满分6分)先化简,再求值:2211()3369x x x x x x --÷---+,其中x 满足240x +=.19.(本小题满分6分)如图,四边形ABCD 是菱形,CE AB ⊥交AB 的延长线于点E ,CF AD ⊥交AD 的延长线于点F ,求证:DF BE =.20.(本小题满分6分)如图,一次函数1(0)y kx b k =+≠和反比例函数2(0)my m x=≠的图象交于点(1,6)A -,(,2)B a -.(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出12y y >时,x 的取值范围.21.(本小题满分6分)数学试卷 第5页(共18页) 数学试卷 第6页(共18页)某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动.收集整理数据后,老师将减压方式分为五类,并绘制图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.(1)初三(1)班接受调查的同学一共有多少名;(2)补全条形统计图,并计算扇形统计图中的“体育活动C ”所对应的圆心角度数; (3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,直接写出选取的两名同学都是女生的概率. 22.(本小题满分8分)某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车按规定满载,并且只(1)用8辆汽车装运乙、丙两种水果共22吨到A 地销售,问装运乙、丙两种水果的汽车各多少辆?(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B 地销售(每种水果不少于一车),设装运甲水果的汽车为m 辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m 表示)(3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?23.(本小题满分8分)如图,某城市市民广场一入口处有五级高度相等的小台阶,已知台阶总高1.5米,为了安全现要做一个不锈钢扶手AB 及两根与FG 垂直且长为1米的不锈钢架杆AD 和BC (杆子的底端分别为D ,C ),且66.5DAB ∠=.(参考数据:cos66.50.40≈,sin66.50.92≈)(1)求点D 与点C 的高度差DH ;(2)求所有不锈钢材料的总长度(即AD AB BC ++的长,结果精确到0.1米).24.(本小题满分8分)在数学活动课上,老师要求学生在55⨯的正方形ABCD 网格中(小正方形的边长为1)画直角三角形,要求三个顶点都在格点上,而且三边与AB 或AD 都不平行,画四种图形,并直接写出其周长(所画图形相似的只算一种).周长=周长=周长=周长=25.(本小题满分9分)如图,以ABC △的BC 边上一点O 为圆心的圆,经过A,C 两点且与BC边交于点E .点D 为CE 的下半圆弧的中点,连接AD 交线段EO 于点F ,若AB BF =. (1)求证:AB 是O 的切线;(2)若4CF =,DF ,求O 的半径r 及sin B .26.(本小题满分10分)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共18页) 数学试卷 第8页(共18页)如图,抛物线2y x bx c =++与直线132y x =-交于A ,B 两点,其中点A 在y 轴上,点B 坐标为(4,5)--,点P 为y 轴左侧的抛物线上一动点,过点P 作PC x ⊥轴于点C ,交AB 于点D .(1)求抛物线的解析式;(2)以O ,A ,P ,D 为顶点的平行四边形是否存在?如存在,求点P 的坐标;若不存在,说明理由;(3)当点P 运动到直线AB 下方某一处时,过点P 作PM AB ⊥,垂足为M ,连接PA 使PAM △为等腰直角三角形,请直接写出此时点P 的坐标.四川省广安市2016年高中阶段教育学校招生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】3-的绝对值是3,所以选C .【提示】绝对值有两重意义:一是几何意义,数轴上表示某数的点与原点的距离称为这个数的绝对值;二是代数意义,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.即(0),||0(0),(0).a a a a a a ⎧⎪==⎨⎪-⎩><常根据代数意义化简绝对值.【考点】绝对值的概念 2.【答案】D【解析】因为326(2)4a a -=,故选项A 错误;3=,故选项B 错误;因为235m m m =,故选项C 错误;因为33323x x x +=,故选项D 正确.【提示】整式的运算除了注意字母的指数计算外,还需注意系数的计算. 【考点】整式和二次根式的计算 3.【答案】B【解析】根据科学计数法的概念,8410000000 4.110=⨯,故选B . 【提示】科学计数法需确定系数a 和指数n ,这是解题的关键. 【考点】科学计数法 4.【答案】D【解析】等边三角形是轴对称图形,但不是中心对称图形;平行四边形是中心对称图形,但不是轴对称图形;正五边形是轴对称图形,但不是中心对称图形;圆既是轴对称图形,也是中心对称图形,故选D .【考点】轴对称图形和中心对称图形的概念5.【答案】A【解析】根据二次根式被开方数是非负数360x +≥,得2x ≥-,解得,在数轴上表示为,故选A .【提示】注意解集在数轴上表示时使用空心点还是实心点,解集中包括本数用实心点,不包括本数用空心点. 【考点】二次根式成立的条件 6.【答案】C【解析】根据题意得144(2)180n n =-,解得10n =.又(3)1073522n n -⨯==,故选C . 【提示】求正多边形的边数是解答此题的关键. 【考点】正多边形的内角和,正多边形的对角线条数 7.【答案】B【解析】设被遮盖的第一个数为a ,根据题意得1(38343740)375a ++++=,解得36a =,21(19109)45s ∴=++++=,故选B .【提示】利用平均数求出遮盖的第一个数是解答此题的关键.数学试卷 第9页(共18页) 数学试卷 第10页(共18页)【考点】一组数据的平均数求方差 8.【答案】A【解析】因为钝角三角形的高有两条在三角形外,故命题①错误;有三个角是直角的四边形是矩形或有一个角是直角的平行四边形是矩形,故命题②错误;由菱形的定义知命题③正确;两边及夹角对应相等的两个三角形才能全等,故结论④错误;一组对边平行、另一组对边相等的四边形有可能是等腰梯形,故结论⑤错误,综上所述,正确的只有③,故选A .【提示】本题考查的知识点比较多,要充分使用定义、公理和定理来进行判断. 【考点】判断真假命题 9.【答案】B 【解析】AB 是O 的直径,CD AB ⊥于点E,CD =,CE DE ∴==30BCD ∠=︒,60CBE ∴∠=︒,260BOD BCD ∠=∠=︒,CBE BOD ∴∠=∠,()BCE O AA DE S ∴≅△△,BODS S ∴=阴影扇形,又4OD =,260π48π3603BODS S ∴===阴影扇形,故选B .【提示】将不规则图形转换为规则图形是求面积的最佳方法,解答本题的关键就是通过全等三角形将阴影部分的面积转换为扇形的面积. 【考点】垂径定理,三角形的面积,扇形面积,全等三角形 10.【答案】B【解析】根据图象,二次函数2y ax bx c =++与x 轴有两个交点,240b ac ∴->,故结论①错误;根据图象可判断0a >,0b <,0c <,0abc ∴>,故结论②正确;当1x =-时,y 0a b c =-+>,故结论③错误;根据图象可知,二次函数2y ax bx c =++的顶点的纵坐标为2-,当抛物线向上平移2个或2个以上单位长度后与x 轴只有一个交点或没有交点,∴若一元二次方程20ax bx c m ++-=要有两个不相等的实数根,则2m ->,故结论④正确,综上所述,正确结论是②④,故选B .【提示】充分利用二次函数与一元二次函数的关系是解答此题的关键. 【考点】二次函数的图象性质第Ⅱ卷二、填空题 11.【答案】(2,2)-【解析】根据题意,点A '的横坐标为132-=-,纵坐标为352-+=,所以点A '的坐标为(2,2)-.【提示】将点(,)a b 进行平移变换:向右平移m 个单位长度,坐标变为(,)a m b +,向左平移m 个单位长度,坐标变为(,)a m b -,向上平移m 个单位长度,坐标变为(,)a b m +,向下平移m 个单位长度,坐标变为(,)a b m -. 【考点】点平移后坐标的变化12.【答案】70︒【解析】12l l ∥,14130∴∠=∠=︒,5180418013050∴∠=︒-∠=︒-︒=︒,又260∠=︒,6∴∠18025180605070=︒-∠-∠=︒-︒-︒=︒,3670∴∠=∠=︒.【提示】利用同位角,邻补角,对顶角,三角形内角和进行转换和计算是解答此题的关键.【考点】平行线的性质,三角形的内角和 13.【答案】一、二、四【解析】根据题意得1(3)3k =⨯-=-,∴一次函数的解析式为33y x =-+,30-<,30>,∴图象经过一、二、四象限.【提示】求出一次函数解析式是解答本题的关键. 【考点】反比例函数,一次函数的图象性质14.【答案】1204801120x x +=+【解析】设原计划每天铺设x m 管道,则先铺设了120x天,后来还有600120480-=m ,每天铺设(20)x +m ,则需48020x +天,一共用了11天,所以列得方程1204801120x x +=+.【提示】从题中分析出数量之间的等量关系是解答本题的关键.数学试卷 第11页(共18页) 数学试卷 第12页(共18页)【考点】列分式方程解应用题 15.【答案】21【解析】根据正方形的性质,可得AB CD ∥,ABG CDG ∴△△,AB BGCD DG=,即8168CD =,4CD ∴=,同理可得1EF =,(25)6221S ∴=+⨯÷=阴影.【提示】利用比例式求梯形的上底和下底是解答此题的关键. 【考点】正方形的性质,相似三角形的判定和性质 16.【答案】4032-【解析】通过观察,可得规律:20162()x x-的展开式中,含2014x 项的系数为1(2)20164032⨯-⨯=-.【考点】探究规律 三、解答题 17.【答案】0【解析】原式330=-=.【提示】先计算指数幂、化简二次根式、特殊角的三角函数值、化简绝对值,然后进行综合计算.【考点】实数的综合运算 18.【答案】5【解析】原式21(3)3=3(1)(1)1x x x x x x x ---=-+-+,240x +=,2x ∴=-,∴原式23521--==-+.【提示】先计算括号内的同分母的分式相减,再分解因式,将除法改为乘法,约分,将分式化为最简,再求出一元一次方程的解,将x 的值代入最简分式,求出原分式的值.【考点】分式的化简求值,解一元一次方程 19.【答案】见解析【解析】证法一:四边形是菱形,CD BC ∴=,ABC ADC ∠=∠, CBE CDF ∴∠=∠. CF AD ⊥,CE AB ⊥, 90CFD CEB ∴∠=∠=︒.在CBE △和CDF △中,CEB CFD ∠=∠,CBE CDF ∠=∠,CB CD =,(AAS)CEB CFD ∴≅△△,DF BE ∴=.证法二:连接AC . 四边形ABCD 是菱形,CD BC ∴=,AC 平分DAB ∠. CF AD ⊥,CE AB ⊥,CE CF ∴=, 90CFD CEB ∴∠=∠=︒.在Rt CBE △和Rt CDF △中,CB CD =,CE CF =,Rt Rt HL ()CEB CFD ∴≅△△,DF BE ∴=.【提示】根据菱形的性质和已知条件,可判定两个三角形全等,再根据全等三角形的对应边相等,证得结论.【考点】菱形的性质,全等三角形的判定和性质20.【答案】(1)一次函数解析式为:124y x =-+,反比例函数解析式为:26y x=- (2)1x -<或03x << 【解析】(1)将(1,6)A -代入2my x=得6m =-,数学试卷 第13页(共18页) 数学试卷 第14页(共18页)26y x∴=-. 将(,2)B a -代入26y x=-得3a =, (3,2)B ∴-.将(1,6)A -,(,2)B a -代入1y kx b =+得6,32,k b k b -+=⎧⎨+=-⎩2,4,k b =-⎧∴⎨=⎩ 124y x ∴=-+.(2)1x ∴<-或03x <<.【提示】(1)将点A 的坐标代入反比例函数,可求出其解析式,在将点B 的坐标代入反比例函数的解析式求出a 的值,得B 点的坐标,再将点A ,B 的坐标代入一次函数,可求得一次函数的解析式;(2)根据图象,取直线在双曲线上方的部分对应的自变量的值的取值范围. 【考点】一次函数的图象性质,反比例函数的图象性质 四、实践应用 21.【答案】(1)50 (2)见解析,度数为108︒(3)110【解析】(1)102050÷%=名.(2)D 类的人数为12(图略),“体育活动C ”所对应的圆心角度数为1536010850⨯︒=︒. (3)1()10P =选取两名女生.【提示】(1)根据A 类的人数和所占的百分比,可求出接受调查的总人数; (2)根据总人数和其他类的人数,可求出D 类的总人数,作出条形图即可;(3)可列表或画树状图得到总的等可能结果数和两名同学都是女生的结果数,从而求出相应的概率. 【考点】统计22.【答案】(1)装运乙水果有2辆车,装运丙水果有6辆车(2)12,322.a m b m =-⎧⎨=-⎩(3)当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆时,有最大利润,最大利润为366千元【解析】(1)设装运乙、丙水果的车分别为x 辆、y 辆得8,2322,x y x y +=⎧⎨+=⎩2,6.x y =⎧∴⎨=⎩答:装运乙水果有2辆车,装运丙水果有6辆车. (2)设装运乙,丙水果的车分别为a 辆、b 辆得 20,42372,m a b m a b ++=⎧⎨++=⎩12,322.a m b m =-⎧∴⎨=-⎩ (3)设总利润为w 千元,4527(12)43(322)10216w m m m m =⨯+⨯-+⨯-=+.1,121,3221,m m m ⎧⎪-⎨⎪-⎩≥≥≥1215.5m ∴≤≤, m 为正整数,13,14,15m ∴=.在10216w m =+中,w 随m 的增大而增大,∴当15m =时,366w =最大千元.答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆时,有最大利润,最大利润为366千元.【提示】(1)根据汽车的总数和水果的总运输量可列二元一次方程组或一元一次方程,解出方程的解即可;(2)用(1)的方法解答本小题即可,此小题是为(3)题作准备;(3)根据题意列出总利润m 的函数关系式,根据m 的取值范围可求出总利润的最大值. 【考点】列方程或方程组解应用题,利用不等式及函数求最大值 23.【答案】(1) 1.2DH =米 (2)5.0米【解析】(1)41.5 1.25DH =⨯=米数学试卷 第15页(共18页) 数学试卷 第16页(共18页)(2)过点B 作BM AH ⊥,垂足为M . 在矩形BMHC 中,1HM BC ==米,1.2AM DH AD BC ∴=+-=米.在Rt ABM △中,cos AMA AB=,1.23.00cos 0.40AM AB A ∴=≈=米,总长度1 3.001 5.0AD AB BC =++≈++=米. 答:总长度为5.0米.【提示】(1)观察图形,高度差占整个台阶高度的45,根据台阶总高度可求出高度差; (2)作B M A H ⊥,将图形分成一个矩形和一个直角三角形,可求出对应线段的长,然后求出总长度. 【考点】直角三角形 24.【答案】见解析 【解析】第一种(四选一):=周长=周长=周长=周长第二种(二选一):=周长5=周长第三种:第四种:第五种=+周长=+周长=周长【提示】先根据题目的要求作出三角形,在根据勾股定理求出各边的长,然后求出三角形的周长.【考点】作三角形,求三角形的周长,勾股定理 五、推理与论证25.【答案】解:(1)证明:连接AO ,DO .D 为CE 的下半圆弧的中点,90EOD ∴∠=︒. AB BF =,OA OD r ==,BAF BFA OFD ∴∠=∠=∠,OAD ADO ∠=∠, 90BAF DAO OFD ADO ∴∠+∠=∠+∠=︒,即90BAO ∠=︒,AB ∴是O 的切线.(2)半径3r =,3sin 5B =【解析】(1)证明:连接AO ,DO .D 为CE 的下半圆弧的中点,90EOD ∴∠=︒. AB BF =,OA OD r ==,数学试卷 第17页(共18页) 数学试卷 第18页(共18页)BAF BFA OFD ∴∠=∠=∠,OAD ADO ∠=∠, 90BAF DAO OFD ADO ∴∠+∠=∠+∠=︒,即90BAO ∠=︒,AB ∴是O 的切线.(2)4OF CF OC r =-=-,OD r =,DF =∴在Rt OFD △中,222OF OD DF +=,即222(4)r r +-=,13r ∴=,21r =(舍去),∴半径3r =,3OA ∴=,431OF CF OC =-=-=, 1BO BF FO AB =+=+.在Rt ABO △中,222AB AO BO +=,2223(1)AB AB ∴+=+,4AB ∴=,5BO =,3sin 5AO B BO ==.【提示】(1)连接OA ,OD ,根据点D 是下半圆弧的中点可得对应圆心角为90︒,再根据等边对等角转换角相等,从而证得OC AB ⊥,即证;(2)设圆的半径为r ,根据勾股定理可列得方程,从而求出圆的半径长;在利用勾股定理求出AB 的长,从而求得OA ,OB 的长,得到B ∠的正弦值.【考点】圆的切线判定,圆的相关性质,等腰三角形的性质,垂径定理,锐角三角函数 六、拓展探究26.【答案】(1)2932y x x =+- (2)存在,点13(1,)2P --或15(3,)2--或(21P -- (3)315(,)22P --【解析】(1)由132y x =-得(0,3)A -, 把(0,3)A -,(4,5)B --代入2y x bx c =++得3,1645,c b c =-⎧⎨-+=-⎩,9,23,b c ⎧=⎪⎨⎪=-⎩2932y x x ∴=+-. (2)存在.设29(,3)(0)2P m m m m +-<,则1(,3)2D m m -,2|4|PD m m ∴=+.PD AO ∥,∴当3PD OA ==时,就存在以O ,A ,P ,D 为顶点的平行四边形,即2|4|3m m +=. ①243m m +=,解得12m =--,22m =-+; ②243m m +=-,解得11m =-,23m =-, ∴点13(1,)2P --或15(3,)2--或(212----. (3)315(,)22P --.【提示】(1)因为点A 是直线与y 轴的交点,可根据直线解析式求出点A 的坐标,在将点A ,B 的坐标代入,求出抛物线的解析式;(2)设点P 的坐标为待定系数表示的代数式,则可表示出点D 的坐标,根据一组对边平行且相等的四边形是平行四边形可列得方程,解出待定系数的值,从而求得点P 的坐标;(3)根据等腰直角三角形含有直角和线段相等,可根据勾股定理和线段的等量关系,求出点P 的坐标.【考点】二次函数的图象性质,平行四边形的判定和性质,等腰三角形与数形的结合思想.。
广安市中考数学试卷

广安市二O —O 年高中阶段教育学校招生考试数学试卷注意事项:1.本试卷共8页,满分150分,考试时间120分钟.2.答题前请考生将自己的姓名、考号填涂到机读卡和试卷相应位置上. 3.请考生将选择题答案填涂在机读卡上,将非选择题直接答在试题卷中. 4.解答三至六题时要写出必要的文字说明、证明过程或演算步骤.一、选择题:每小题给出的四个选项中。
只有一个选项符合题意要求。
请将符合要求的选项的代号填涂在机读卡上。
(本大题共10个小题,每小题2分,共20分) 1.2-的绝对值是 A .12-B .2C .12D .2- 2.下列计算正确的是A .235()a a = B .246a a a ⋅= C .224a a a += D .632a a a ÷= 3.由四个相同的小正方体堆成的物体,如图l 所示,它的俯视图是4.某同学午觉醒来发现钟表停了,他打开收音机想听电台整点报时,则他等待的时间不超过15分钟的概率是 A .12 B .13 C .14 D .155.等腰三角形的两边长为4、9,则它的周长是 A .17 B .17或22 C .20D .226.玉树地震后,某市人民献爱心为玉树捐人民币:203000000元,这个数用科学记数法表示为A .92.0310⨯ B .62.0310⨯ C .720.310⨯ D .82.0310⨯7.如图2,小明在扇形花台OAB 沿O A B O →→→D 路径散步,能近似地刻画小明到出发点O 的距离y 与时间x 之间的函数图象是8.若|2|0x y -=,则xy 的值为 A .8 B . 2 C .5 D .6-9.下列说法正确的是A .为了解全省中学生的心理健康状况,宜采用普查方式B .某彩票设“中奖概率为1100”,购买100张彩票就—定会中奖一次 C .某地会发生地晨是必然事件D .若甲组数据的方差20.1s =甲,乙组数据的方差20.2s =乙,则甲组数据比乙组稳定10.已知二次函数2(0)y ax bx c a =++≠的图象如右图所示,下列结论①0abc > ②b a c <+ ③20a b +=④()(1a b m am b m +>+≠的实数), 其中正确的结论有 A 1个 B .2个 C . 3个 D .4个二、填空题:请把最简答案直接填写在置后的横线上.(本大题共10个小题,每小题4分,共40分)11.分解目式:34x x -= .12.不等式组23010x x -<⎧⎨+≥⎩的整数解为 .13.函数y =中自变量x 的取值范围是 .14.在一次女子体操比赛中,八名运动员的年龄(单位:岁)分别为:14、12、12、15、14、15、14、16,这组数据的中位敢是 岁. 15.如右图,一个扇形纸片OAB .OA=30cm ,∠AOB=120°,小明将OA 、OB 合拢组成一个圆锥形烟囱帽(接缝忽略不计).则烟囱帽的底面圆的半径为 cm .16.在平面直角坐标系中,将直线21y x =-+向下平移4个单位长度后。
2015年四川省达州市中考数学试卷及解析

2015年四川省达州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分在每小题给出的四个选项中,只有一项符合要求)﹣2.(3分)(2015•达州)一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是()4.(3分)(2015•达州)2015年某中学举行的春季田径径运动会上,参加男子跳高的15名运动员的成分式方程+1=6.(3分)(2015•达州)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()7.(3分)(2015•达州)如图,直径AB为12的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是()8.(3分)(2015•达州)方程(m﹣2)x2﹣x+=0有两个实数根,则m的取值范围()≤9.(3分)(2015•达州)若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0)、)10.(3分)(2015•达州)如图,AB为半圆O的在直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,连接OD、OC,下列结论:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2,④OD:OC=DE:EC,⑤OD2=DE•CD,正确的有()二、填空题(本题6个小题,每小题3分,為18分.把最后答案直接填在题中的横线上)11.(3分)(2015•达州)在实数﹣2、0、﹣1、2、﹣中,最小的是.12.(3分)(2015•达州)已知正六边形ABCDEF的边心距为cm,则正六边形的半径为cm.13.(3分)(2015•达州)新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童裝应降价x 元,可列方程为.14.(3分)(2015•达州)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上,点D落在D′处,C′D′交AE于点M.若AB=6,BC=9,则AM的长为.15.(3分)(2015•达州)对于任意实数m、n,定义一种运运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是.16.(3分)(2015•达州)在直角坐标系中,直线y=x+1与y轴交于点A,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C1C2…,A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,图中阴影部分三角形的面积从左导游依次记为S1、S2、S3、…S n,则S n的值为(用含n的代数式表示,n为正整数).三、解答题,解答对应必要的文字说明,证明过程及盐酸步骤17.(6分)(2015•达州)计算:(﹣1)2015+20150+2﹣1﹣|﹣|18.(7分)(2015•达州)化简•﹣,并求值,其中a与2、3构成△ABC的三边,且a为整数.四、解答题(共2小题,满分15分)19.(7分)(2015•达州)达州市某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学将选手成绩划分为A、B、C、D四个等级,绘制了两种不完整统计图.根据图中提供的信息,解答下列问题:(1)参加演讲比赛的学生共有人,扇形统计图中m= ,n= ,并把条形统计图补充完整.(2)学校欲从A等级2名男生2名女生中随机选取两人,参加达州市举办的演讲比赛,请利用列表法或树状图,求A等级中一男一女参加比赛的概率.(男生分别用代码 A1、A2表示,女生分别用代码B1、B2表示)20.(8分)(2015•达州)学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.(1)求购买1台平板电脑和1台学习机各需多少元?(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?五、解答题(共2小题,满分15分)21.(7分)(2015•达州)学习“利用三角函数测高”后,某综合实践活动小组实地测量了凤凰山与中心广场的相对高度AB,其测量步骤如下:(1)在中心广场测点C处安置测倾器,测得此时山顶A的仰角∠AFH=30°;(2)在测点C与山脚B之间的D处安置测倾器(C、D与B在同一直线上,且C、D之间的距离可以直接测得),测得此时山顶上红军亭顶部E的仰角∠EGH=45°;(3)测得测倾器的高度CF=DG=1.5米,并测得CD之间的距离为288米;已知红军亭高度为12米,请根据测量数据求出凤凰山与中心广场的相对高度AB.(取1.732,结果保留整数)22.(8分)(2015•达州)如图,在平面直角坐标系中,四边形ABCD是菱形,B、O在x轴负半轴上,AO=,tan∠AOB=,一次函数y=k1x+b的图象过A、B两点,反比例函数y=的图象过OA的中点D.(1)求一次函数和反比例函数的表达式;(2)平移一次函数y=k1x+b的图象,当一次函数y=k1x+b的图象与反比例函数y=的图象无交点时,求b的取值范围.六、解答题(共2小题,满分17分)23.(8分)(2015•达州)阅读与应用:阅读1:a、b为实数,且a>0,b>0,因为(﹣)2≥0,所以a﹣2+b≥0从而a+b≥2(当a=b时取等号).阅读2:若函数y=x+;(m>0,x>0,m为常数),由阅读1结论可知:x+≥2,所以当x=,即x=时,函数y=x+的最小值为2.阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(x+),求当x=时,周长的最小值为;问题2:已知函数y1=x+1(x>﹣1)与函数y2=x2+2x+10(x>﹣1),当x= 时,的最小值为;问题3:某民办学校每天的支出总费用包含以下三个部分:一是教职工工资4900元;二是学生生活费成本每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.01.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)24.(9分)(2015•达州)在△ABC的外接圆⊙O中,△ABC的外角平分线CD交⊙O于点D,F为上﹣点,且=连接DF,并延长DF交BA的延长线于点E.(1)判断DB与DA的数量关系,并说明理由;(2)求证:△BCD≌△AFD;(3)若∠ACM=120°,⊙O的半径为5,DC=6,求DE的长.七、解答题(共1小题,满分12分)25.(12分)(2015•达州)如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x 轴的正半轴上,∠AOC的平分线交AB于点D,E为BC的中点,已知A(0,4)、C(5,0),二次函数y=x2+bx+c的图象抛物线经过A,C两点.(1)求该二次函数的表达式;(2)F、G分别为x轴,y轴上的动点,顺次连接D、E、F、G构成四边形DEFG,求四边形DEFG周长的最小值;(3)抛物线上是否在点P,使△ODP的面积为12?若存在,求出点P的坐标;若不存在,请说明理由.2015年四川省达州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分在每小题给出的四个选项中,只有一项符合要求) ﹣2.(3分)(2015•达州)一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是( )4.(3分)(2015•达州)2015年某中学举行的春季田径径运动会上,参加男子跳高的15名运动员的成分式方程+1=分式方程+1=两边都乘以6.(3分)(2015•达州)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()7.(3分)(2015•达州)如图,直径AB为12的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是()+﹣π×﹣8.(3分)(2015•达州)方程(m﹣2)x2﹣x+=0有两个实数根,则m的取值范围()m>m≤且m≠2,然后解不等式组即可.解:根据题意得≤9.(3分)(2015•达州)若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0)、)10.(3分)(2015•达州)如图,AB为半圆O的在直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,连接OD、OC,下列结论:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2,④OD:OC=DE:EC,⑤OD2=DE•CD,正确的有()=可得在Rt△ADO和Rt△EDO中,,=,即=,选项二、填空题(本题6个小题,每小题3分,為18分.把最后答案直接填在题中的横线上)11.(3分)(2015•达州)在实数﹣2、0、﹣1、2、﹣中,最小的是﹣2 .中,最小的是﹣12.(3分)(2015•达州)已知正六边形ABCDEF的边心距为cm,则正六边形的半径为 2 cm.OAB=AO=13.(3分)(2015•达州)新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童裝应降价x 元,可列方程为(40﹣x)(20+2x)=1200 .14.(3分)(2015•达州)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上,点D落在D′处,C′D′交AE于点M.若AB=6,BC=9,则AM的长为..故答案为:.15.(3分)(2015•达州)对于任意实数m、n,定义一种运运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是4≤a<5 .16.(3分)(2015•达州)在直角坐标系中,直线y=x+1与y轴交于点A,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C1C2…,A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,图中阴影部分三角形的面积从左导游依次记为S1、S2、S3、…S n,则S n的值为22n﹣3(用含n的代数式表示,n为正整数).A4B3=A3B3=2,得出规律,根据三角形的面积公式即可求出S n的值.∴S1=×1×1=,∴S2=×(21)2=21=×三、解答题,解答对应必要的文字说明,证明过程及盐酸步骤17.(6分)(2015•达州)计算:(﹣1)2015+20150+2﹣1﹣|﹣|考点: 实数的运算;零指数幂;负整数指数幂.专题: 计算题.分析: 原式第一项利用乘方的意义计算,第二项利用零指数幂法则计算,第三项利用负整数指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果. 解答: 解:原式=﹣1+1+﹣+=1﹣.点评: 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(7分)(2015•达州)化简•﹣,并求值,其中a 与2、3构成△ABC 的三边,且a 为整数. 考点:分式的化简求值;三角形三边关系. 专题:计算题. 分析:原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,把a 的值代入计算即可求出值. 解答:解:原式=•+=+===,∵a 与2、3构成△ABC 的三边,且a 为整数, ∴1<a <5,即a=2,3,4,当a=2或a=3时,原式没有意义, 则a=4时,原式=1.点评: 此题考查了分式的化简求值,以及三角形三边关系,熟练掌握运算法则是解本题的关键. 四、解答题(共2小题,满分15分) 19.(7分)(2015•达州)达州市某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学将选手成绩划分为A 、B 、C 、D 四个等级,绘制了两种不完整统计图.根据图中提供的信息,解答下列问题:(1)参加演讲比赛的学生共有40 人,扇形统计图中m= 20 ,n= 30 ,并把条形统计图补充完整.(2)学校欲从A等级2名男生2名女生中随机选取两人,参加达州市举办的演讲比赛,请利用列表法或树状图,求A等级中一男一女参加比赛的概率.(男生分别用代码 A1、A2表示,女生分别用代码B1、B2表示)×等级中一男一女参加比赛的概率为:=.20.(8分)(2015•达州)学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.(1)求购买1台平板电脑和1台学习机各需多少元?(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168000元,且购买学习机的台数不超过购买平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?不等式组的解集,即可得出购买方案,进而得出最省钱的方案.,解得:,,五、解答题(共2小题,满分15分)21.(7分)(2015•达州)学习“利用三角函数测高”后,某综合实践活动小组实地测量了凤凰山与中心广场的相对高度AB,其测量步骤如下:(1)在中心广场测点C处安置测倾器,测得此时山顶A的仰角∠AFH=30°;(2)在测点C与山脚B之间的D处安置测倾器(C、D与B在同一直线上,且C、D之间的距离可以直接测得),测得此时山顶上红军亭顶部E的仰角∠EGH=45°;(3)测得测倾器的高度CF=DG=1.5米,并测得CD之间的距离为288米;已知红军亭高度为12米,请根据测量数据求出凤凰山与中心广场的相对高度AB.(取1.732,结果保留整数),+122.(8分)(2015•达州)如图,在平面直角坐标系中,四边形ABCD是菱形,B、O在x轴负半轴上,AO=,tan∠AOB=,一次函数y=k1x+b的图象过A、B两点,反比例函数y=的图象过OA的中点D.(1)求一次函数和反比例函数的表达式;(2)平移一次函数y=k1x+b的图象,当一次函数y=k1x+b的图象与反比例函数y=的图象无交点时,求b的取值范围.BE=OE=AOB==OA=x=y=<0,即可求出b的取值范围.∴BE=OE=OB,OB⊥AC,=,x=把点A(﹣2,1),B(﹣4,0)代入一次函数y=k1x+b得:,,y=))代入反比例函数得:﹣;(2)根据题意得:一次函数的解析式为:y=x+b,x+b的图象无交点,方程组x+b=﹣∴当一次函数y=k1x+b的图象与反比例函数y=的图象无交点时,b的取值范围是﹣1<b<1.点评:本题是反比例函数综合题目,考查了菱形的性质、坐标与图形性质、用待定系数法求一次函数和反比例函数的解析式、勾股定理、解方程组等知识;本题难度较大,综合性强,需要通过作辅助线求出点的坐标和解方程组才能得出结果.六、解答题(共2小题,满分17分)23.(8分)(2015•达州)阅读与应用:阅读1:a、b为实数,且a>0,b>0,因为(﹣)2≥0,所以a﹣2+b≥0从而a+b≥2(当a=b时取等号).阅读2:若函数y=x+;(m>0,x>0,m为常数),由阅读1结论可知:x+≥2,所以当x=,即x=时,函数y=x+的最小值为2.阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(x+),求当x= 2 时,周长的最小值为8 ;问题2:已知函数y1=x+1(x>﹣1)与函数y2=x2+2x+10(x>﹣1),当x= 2 时,的最小值为 6 ;问题3:某民办学校每天的支出总费用包含以下三个部分:一是教职工工资4900元;二是学生生活费成本每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.01.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)考点:二次函数的应用.分析:问题1:根据阅读2得到x+的范围,进一步得到周长的最小值;问题2:将变形为(x+1)+,根据阅读2得到(x+1)+,的范围,进一步即可求解;问题3:可设学校学生人数为x人,根据生均投入=支出总费用÷学生人数,列出代数式,再根据阅读2得到范围,从而求解.解答:解:问题1:x=(x>0),解得x=2,x=2时,x+有最小值为2×=4.故当x=2时,周长的最小值为2×4=8.问题2:∵函数y1=x+1(x>﹣1),函数y2=x2+2x+10(x>﹣1),=,解得+×=10+0.01x+)x=(x>0),解得x=700,有最小值为×故答案为:2,8;2,6.考查了二次函数的应用,本题关键是理解阅读1和阅读2的知识点:当x=,即x=的最小值为224.(9分)(2015•达州)在△ABC的外接圆⊙O中,△ABC的外角平分线CD交⊙O于点D,F为上﹣点,且=连接DF,并延长DF交BA的延长线于点E.(1)判断DB与DA的数量关系,并说明理由;(2)求证:△BCD≌△AFD;(3)若∠ACM=120°,⊙O的半径为5,DC=6,求DE的长.=,即可得=,则可证得=,=,==,OB=∴BD==5,AD=BD=5=,=,七、解答题(共1小题,满分12分)25.(12分)(2015•达州)如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x 轴的正半轴上,∠AOC的平分线交AB于点D,E为BC的中点,已知A(0,4)、C(5,0),二次函数y=x2+bx+c的图象抛物线经过A,C两点.(1)求该二次函数的表达式;(2)F、G分别为x轴,y轴上的动点,顺次连接D、E、F、G构成四边形DEFG,求四边形DEFG周长的最小值;(3)抛物线上是否在点P,使△ODP的面积为12?若存在,求出点P的坐标;若不存在,请说明理由.与抛物线交点的坐标即可得到点P的坐标.x,.x=,=+DE=.=3OF=3在Et△OGF中,OG===6,将y=x﹣6代入y=得:x﹣6=,解得:,==,,OF=3y=解得:+6=+6=)((,(,,)或(。
广安市中考数学(客观3年、主观5年至2013年)

广安近年中考数学试卷分析客观题2011-2013主,主观题2009-2013五年一、选择题:每小题给出的四个选项中,只有一个选项符合题意要求,请将符合要求的选项的代号填涂在机读卡上(本大题共10个小题,每小题3分,共30分) C 1.(3分)(2012•广安)﹣8的相反数是( ) A . 8 B . ﹣8 C .D .﹣1、3-的倒数是( ) A 、13B 、13-C 、±13D 、3考点:实数(算术平方根、相反数、倒数)。
2.(3分)(2013•广安)未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问2.(2012•广安)经专家估算,整个南海属我国传统海疆线的油气资源约合15000亿美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是( )美元.A . 1.5×104B . 1.5×105C . 1.5×1012D . 1.5×1013 4、(2011•广安)从《中华人民共和国2010年国民经济和社会发展统计报告》中获悉,去年我国国内生产总值达397983亿元.请你以亿元为单位用科学记数法表示去年我国的国内生产总值为(结果保留两个有效数字)( )A . 3a ﹣a=3B . a 2•a 3=a 5C . a 15÷a 3=a 5(a ≠0)D . (a 3)3=a 62、(2011•广安)下列运算正确的是( )A 、(1)1x x --+=+B =、 22= D 、222()a b a b -=-4.(3分)(2013•广安)有五个相同的小正方体堆成的物体如图所示,它的主视图是( )BC4.(2012•广安)如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是( )A . 美B . 丽C . 广D . 安 9、(2011•广安)由n 个相同的小正方体堆成的几何体,其视图如下所示,则n 的最大值是( ) A 、18 B 、19 C 、20 D 、215.(2012•广安)下列说法正确的是( ) A . 商家卖鞋,最关心的是鞋码的中位数 B . 365人中必有两人阳历生日相同 C . 要了解全市人民的低碳生活状况,适宜采用抽样调查的方法 D . 随机抽取甲、乙两名同学的5次数学成绩,计算得平均分都是90分,方差分别是=5,=12,说明乙的成绩较为稳定3、(2011•广安)已知样本数据l ,0,6,l ,2,下列说法不正确的是( ) A 、中位数是6 B 、平均数是2 C 、众数是1 D 、极差是6考点: 统计。
2015年四川省广安市中考数学试题及解析.

2015年四川省广安市中考数学试卷一、选择题(每小题只有一个选项符合题意要求,每小题3分,共30分)1.(3分)(2015•广安)的倒数是()2.(3分)(2015•广安)在第三届中小学生运动会上,我市共有1330名学生参赛,创造了4.(3分)(2015•广安)在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面上标的字应是().D7.(3分)(2015•广安)如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为()8.(3分)(2015•广安)一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该9.(3分)(2015•广安)某油箱容量为60 L的汽车,加满汽油后行驶了100 km时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为x km,邮箱中剩油量为y L,则y10.(3分)(2015•广安)如图,抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()二、填空题(每小题3分,共18分)11.(3分)(2015•广安)如果点M(3,x)在第一象限,则x的取值范围是.12.(3分)(2015•广安)如图,A、B、C三点在⊙O上,且∠AOB=70°,则∠C=度.13.(3分)(2015•广安)实数a在数轴的位置如图所示,则|a﹣1|=.14.(3分)(2015•广安)不等式组的所有整数解的积为.15.(3分)(2015•广安)如图,已知E、F、G、H分别为菱形ABCD四边的中点,AB=6cm,∠ABC=60°,则四边形EFGH的面积为cm2.16.(3分)(2015•广安)如图,半径为r的⊙O分别绕面积相等的等边三角形、正方形和圆用相同速度匀速滚动一周,用时分别为t1、t2、t3,则t1、t2、t3的大小关系为.三、解答题(本大题共4小题,17题5分,18、19、20题各6分,共23分)17.(5分)(2015•广安)计算:﹣14+(2﹣2)0+|﹣2015|﹣4cos60°.18.(6分)(2015•广安)解方程:=﹣1.19.(6分)(2015•广安)在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E 处,BE和AD相交于点O,求证:OA=OE.20.(6分)(2015•广安)如图,一次函数的图象与x轴、y轴分别相交于A、B两点,且与反比例函数y=(k≠0)的图象在第一象限交于点C,如果点B的坐标为(0,2),OA=OB,B是线段AC的中点.(1)求点A的坐标及一次函数解析式.(2)求点C的坐标及反比例函数的解析式.四、实践应用(本大题共4个小题,21题6分,22、23、24题各8分,共30分)21.(6分)(2015•广安)“阳光体育”运动关乎每个学生未来的幸福生活,今年五月,我市某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班选2﹣3名选手参赛,现将80名选手比赛成绩(单位:次/分钟)进行统计.绘制成频数分布直方图,如图所示.(1)图中a值为.(2)将跳绳次数在160~190的选手依次记为A1、A2、…A n,从中随机抽取两名选手作经验交流,请用树状或列表法求恰好抽取到的选手A1和A2的概率.22.(8分)(2015•广安)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.23.(8分)(2015•广安)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度,如图,老师测得升旗台前斜坡FC的坡比为i FC=1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为α,已知tanα=,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度.24.(8分)(2015•广安)手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)五、推理与论证(9分)25.(9分)(2015•广安)如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接PA、AO,并延长AO交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若=,且OC=4,求PA的长和tanD的值.六、拓展探究(10分)26.(10分)(2015•广安)如图,边长为1的正方形ABCD一边AD在x负半轴上,直线l:y=x+2经过点B(x,1)与x轴,y轴分别交于点H,F,抛物线y=﹣x2+bx+c顶点E在直线l上.(1)求A,D两点的坐标及抛物线经过A,D两点时的解析式;(2)当抛物线的顶点E(m,n)在直线l上运动时,连接EA,ED,试求△EAD的面积S 与m之间的函数解析式,并写出m的取值范围;(3)设抛物线与y轴交于G点,当抛物线顶点E在直线l上运动时,以A,C,E,G为顶点的四边形能否成为平行四边形?若能,求出E点坐标;若不能,请说明理由.2015年四川省广安市中考数学试卷参考答案与试题解析一、选择题(每小题只有一个选项符合题意要求,每小题3分,共30分)1.(3分)(2015•广安)的倒数是()的倒数是2.(3分)(2015•广安)在第三届中小学生运动会上,我市共有1330名学生参赛,创造了、4.(3分)(2015•广安)在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面上标的字应是().D7.(3分)(2015•广安)如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为(),y=8.(3分)(2015•广安)一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该9.(3分)(2015•广安)某油箱容量为60 L的汽车,加满汽油后行驶了100 km时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为x km,邮箱中剩油量为y L,则y,L/km10.(3分)(2015•广安)如图,抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()二、填空题(每小题3分,共18分)11.(3分)(2015•广安)如果点M(3,x)在第一象限,则x的取值范围是x>0.12.(3分)(2015•广安)如图,A、B、C三点在⊙O上,且∠AOB=70°,则∠C=35度.C=13.(3分)(2015•广安)实数a在数轴的位置如图所示,则|a﹣1|=1﹣a.14.(3分)(2015•广安)不等式组的所有整数解的积为0.,15.(3分)(2015•广安)如图,已知E、F、G、H分别为菱形ABCD四边的中点,AB=6cm,∠ABC=60°,则四边形EFGH的面积为9cm2.BD=FGEF=AB=3OB==3,BD EF=,cm.16.(3分)(2015•广安)如图,半径为r的⊙O分别绕面积相等的等边三角形、正方形和圆用相同速度匀速滚动一周,用时分别为t1、t2、t3,则t1、t2、t3的大小关系为t2>t3>t1.三、解答题(本大题共4小题,17题5分,18、19、20题各6分,共23分)17.(5分)(2015•广安)计算:﹣14+(2﹣2)0+|﹣2015|﹣4cos60°.2×18.(6分)(2015•广安)解方程:=﹣1.19.(6分)(2015•广安)在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E 处,BE和AD相交于点O,求证:OA=OE.20.(6分)(2015•广安)如图,一次函数的图象与x轴、y轴分别相交于A、B两点,且与反比例函数y=(k≠0)的图象在第一象限交于点C,如果点B的坐标为(0,2),OA=OB,B是线段AC的中点.(1)求点A的坐标及一次函数解析式.(2)求点C的坐标及反比例函数的解析式.y=y=四、实践应用(本大题共4个小题,21题6分,22、23、24题各8分,共30分)21.(6分)(2015•广安)“阳光体育”运动关乎每个学生未来的幸福生活,今年五月,我市某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班选2﹣3名选手参赛,现将80名选手比赛成绩(单位:次/分钟)进行统计.绘制成频数分布直方图,如图所示.(1)图中a值为4.(2)将跳绳次数在160~190的选手依次记为A1、A2、…A n,从中随机抽取两名选手作经验交流,请用树状或列表法求恰好抽取到的选手A1和A2的概率.的概率为:=22.(8分)(2015•广安)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用..23.(8分)(2015•广安)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度,如图,老师测得升旗台前斜坡FC的坡比为i FC=1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为α,已知tanα=,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度.××=3.524.(8分)(2015•广安)手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)五、推理与论证(9分)25.(9分)(2015•广安)如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接PA、AO,并延长AO交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若=,且OC=4,求PA的长和tanD的值.,由=,进而可得:=AO==2AE=2OA=4OB=OA=2,AP==3,BEBD==.六、拓展探究(10分)26.(10分)(2015•广安)如图,边长为1的正方形ABCD一边AD在x负半轴上,直线l:y=x+2经过点B(x,1)与x轴,y轴分别交于点H,F,抛物线y=﹣x2+bx+c顶点E在直线l上.(1)求A,D两点的坐标及抛物线经过A,D两点时的解析式;(2)当抛物线的顶点E(m,n)在直线l上运动时,连接EA,ED,试求△EAD的面积S 与m之间的函数解析式,并写出m的取值范围;(3)设抛物线与y轴交于G点,当抛物线顶点E在直线l上运动时,以A,C,E,G为顶点的四边形能否成为平行四边形?若能,求出E点坐标;若不能,请说明理由.m+2y=x+2,解得,m+2×(=S=×,或y=)或()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年四川省广安市中考数学试卷一、选择题(每小题只有一个选项符合题意要求,每小题3分,共30分)1.(3分)(2015•广安)的倒数是()2.(3分)(2015•广安)在第三届中小学生运动会上,我市共有1330名学生参赛,创造了4.(3分)(2015•广安)在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面上标的字应是().D7.(3分)(2015•广安)如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为()8.(3分)(2015•广安)一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该9.(3分)(2015•广安)某油箱容量为60 L的汽车,加满汽油后行驶了100 km时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为x km,邮箱中剩油量为y L,则y10.(3分)(2015•广安)如图,抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()二、填空题(每小题3分,共18分)11.(3分)(2015•广安)如果点M(3,x)在第一象限,则x的取值范围是.12.(3分)(2015•广安)如图,A、B、C三点在⊙O上,且∠AOB=70°,则∠C=度.13.(3分)(2015•广安)实数a在数轴的位置如图所示,则|a﹣1|=.14.(3分)(2015•广安)不等式组的所有整数解的积为.15.(3分)(2015•广安)如图,已知E、F、G、H分别为菱形ABCD四边的中点,AB=6cm,∠ABC=60°,则四边形EFGH的面积为cm2.16.(3分)(2015•广安)如图,半径为r的⊙O分别绕面积相等的等边三角形、正方形和圆用相同速度匀速滚动一周,用时分别为t1、t2、t3,则t1、t2、t3的大小关系为.三、解答题(本大题共4小题,17题5分,18、19、20题各6分,共23分)17.(5分)(2015•广安)计算:﹣14+(2﹣2)0+|﹣2015|﹣4cos60°.18.(6分)(2015•广安)解方程:=﹣1.19.(6分)(2015•广安)在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E 处,BE和AD相交于点O,求证:OA=OE.20.(6分)(2015•广安)如图,一次函数的图象与x轴、y轴分别相交于A、B两点,且与反比例函数y=(k≠0)的图象在第一象限交于点C,如果点B的坐标为(0,2),OA=OB,B是线段AC的中点.(1)求点A的坐标及一次函数解析式.(2)求点C的坐标及反比例函数的解析式.四、实践应用(本大题共4个小题,21题6分,22、23、24题各8分,共30分)21.(6分)(2015•广安)“阳光体育”运动关乎每个学生未来的幸福生活,今年五月,我市某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班选2﹣3名选手参赛,现将80名选手比赛成绩(单位:次/分钟)进行统计.绘制成频数分布直方图,如图所示.(1)图中a值为.(2)将跳绳次数在160~190的选手依次记为A1、A2、…A n,从中随机抽取两名选手作经验交流,请用树状或列表法求恰好抽取到的选手A1和A2的概率.22.(8分)(2015•广安)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.23.(8分)(2015•广安)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度,如图,老师测得升旗台前斜坡FC的坡比为i FC=1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为α,已知tanα=,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度.24.(8分)(2015•广安)手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)五、推理与论证(9分)25.(9分)(2015•广安)如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接PA、AO,并延长AO交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若=,且OC=4,求PA的长和tanD的值.六、拓展探究(10分)26.(10分)(2015•广安)如图,边长为1的正方形ABCD一边AD在x负半轴上,直线l:y=x+2经过点B(x,1)与x轴,y轴分别交于点H,F,抛物线y=﹣x2+bx+c顶点E在直线l上.(1)求A,D两点的坐标及抛物线经过A,D两点时的解析式;(2)当抛物线的顶点E(m,n)在直线l上运动时,连接EA,ED,试求△EAD的面积S 与m之间的函数解析式,并写出m的取值范围;(3)设抛物线与y轴交于G点,当抛物线顶点E在直线l上运动时,以A,C,E,G为顶点的四边形能否成为平行四边形?若能,求出E点坐标;若不能,请说明理由.2015年四川省广安市中考数学试卷参考答案与试题解析一、选择题(每小题只有一个选项符合题意要求,每小题3分,共30分)1.(3分)(2015•广安)的倒数是()的倒数是2.(3分)(2015•广安)在第三届中小学生运动会上,我市共有1330名学生参赛,创造了、4.(3分)(2015•广安)在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面上标的字应是().D7.(3分)(2015•广安)如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为(),y=8.(3分)(2015•广安)一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该9.(3分)(2015•广安)某油箱容量为60 L的汽车,加满汽油后行驶了100 km时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为x km,邮箱中剩油量为y L,则y,L/km10.(3分)(2015•广安)如图,抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()二、填空题(每小题3分,共18分)11.(3分)(2015•广安)如果点M(3,x)在第一象限,则x的取值范围是x>0.12.(3分)(2015•广安)如图,A、B、C三点在⊙O上,且∠AOB=70°,则∠C=35度.C=13.(3分)(2015•广安)实数a在数轴的位置如图所示,则|a﹣1|=1﹣a.14.(3分)(2015•广安)不等式组的所有整数解的积为0.,15.(3分)(2015•广安)如图,已知E、F、G、H分别为菱形ABCD四边的中点,AB=6cm,∠ABC=60°,则四边形EFGH的面积为9cm2.BD=FGEF=AB=3OB==3,BD EF=,cm.16.(3分)(2015•广安)如图,半径为r的⊙O分别绕面积相等的等边三角形、正方形和圆用相同速度匀速滚动一周,用时分别为t1、t2、t3,则t1、t2、t3的大小关系为t2>t3>t1.三、解答题(本大题共4小题,17题5分,18、19、20题各6分,共23分)17.(5分)(2015•广安)计算:﹣14+(2﹣2)0+|﹣2015|﹣4cos60°.2×18.(6分)(2015•广安)解方程:=﹣1.19.(6分)(2015•广安)在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E 处,BE和AD相交于点O,求证:OA=OE.20.(6分)(2015•广安)如图,一次函数的图象与x轴、y轴分别相交于A、B两点,且与反比例函数y=(k≠0)的图象在第一象限交于点C,如果点B的坐标为(0,2),OA=OB,B是线段AC的中点.(1)求点A的坐标及一次函数解析式.(2)求点C的坐标及反比例函数的解析式.y=y=四、实践应用(本大题共4个小题,21题6分,22、23、24题各8分,共30分)21.(6分)(2015•广安)“阳光体育”运动关乎每个学生未来的幸福生活,今年五月,我市某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班选2﹣3名选手参赛,现将80名选手比赛成绩(单位:次/分钟)进行统计.绘制成频数分布直方图,如图所示.(1)图中a值为4.(2)将跳绳次数在160~190的选手依次记为A1、A2、…A n,从中随机抽取两名选手作经验交流,请用树状或列表法求恰好抽取到的选手A1和A2的概率.的概率为:=22.(8分)(2015•广安)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用..23.(8分)(2015•广安)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度,如图,老师测得升旗台前斜坡FC的坡比为i FC=1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为α,已知tanα=,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度.××=3.524.(8分)(2015•广安)手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)五、推理与论证(9分)25.(9分)(2015•广安)如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接PA、AO,并延长AO交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若=,且OC=4,求PA的长和tanD的值.,由=,进而可得:=AO==2AE=2OA=4OB=OA=2,AP==3,BEBD==.六、拓展探究(10分)26.(10分)(2015•广安)如图,边长为1的正方形ABCD一边AD在x负半轴上,直线l:y=x+2经过点B(x,1)与x轴,y轴分别交于点H,F,抛物线y=﹣x2+bx+c顶点E在直线l上.(1)求A,D两点的坐标及抛物线经过A,D两点时的解析式;(2)当抛物线的顶点E(m,n)在直线l上运动时,连接EA,ED,试求△EAD的面积S 与m之间的函数解析式,并写出m的取值范围;(3)设抛物线与y轴交于G点,当抛物线顶点E在直线l上运动时,以A,C,E,G为顶点的四边形能否成为平行四边形?若能,求出E点坐标;若不能,请说明理由.m+2y=x+2,解得,m+2×(=S=×,或y=)或()。