第三章微分中值定理与导数的应用习题

合集下载

高等数学 第三章中值定理与导数的应用习题课

高等数学 第三章中值定理与导数的应用习题课

(5) (1 + x )α = 1 + αx +
α (α − 1)
2!
x2 + L+
α (α − 1)L (α − n + 1)
n!
x n + o( x n )
Ⅲ 导数的应用
一、函数的极值与单调性
1.函数极值的定义 . x ∈ U ( x0 , δ ), f ( x ) ≤ f ( x0 ), f ( x0 )为极大值. 为极大值.
0 ∞ 其它型: 其它型: ⋅ ∞ , ∞ − ∞ , 0 , 1 , ∞ , 转化为 “ ”型或“ ” 型 0 型或“ 型或 0 ∞
0 ∞ 0
二、泰勒公式
1.泰勒公式 .
如果函数在含有一点的开区间内具有直到(n+1)阶导数 阶导数 如果函数在含有一点的开区间内具有直到 f ′′( x0 ) f ( n) ( x0 ) 2 f ( x) = f ( x0 ) + f ′( x0 )( x − x0 ) + ( x − x0 ) + L+ ( x − x0 )n + Rn ( x) 2! n! ( n +1) f (ξ ) Rn ( x ) = ( x − x0 ) n+1 拉格朗日型余项 ( n + 1)!
x ∈ U ( x 0 , δ ), f ( x ) ≥ f ( x0 ), f ( x0 )为极小值 .
o

2.函数的驻点 .
f ′( x 0 ) = 0 则 x 0为 f ( x ) 的驻点。 的驻点。
3.函数的单调区间的判别 .
函数在[a,b]上连续 在(a,b)内可导 上连续,在 内可导. 函数在 上连续 内可导

辽宁工业大学高数习题课(3)

辽宁工业大学高数习题课(3)
1 cos x ~
ln sin x 【例2】计算 lim 2 x ( 2 x )
2
分析 当 x 0 分子分母均趋近于0, 为 型, 用洛必达法则计算. 解:
ln sin x lim 2 x ( 2 x )
2
0 0
( 0 型)
0
cos x lim x sin x [ 4( 2 x )]
1
【例4】计算 lim x 2 e x
x 0
2
分析 当 x 0 时, 函数式为 0 型,
1
0 将其化为 0


型.
解:
lim x 2 e x ( 0 型)
2
x 0
1
ex l im x0 1 x2
1
2
(
型)
e lim
x 0
x2
2 3 1 x x2 lime . 2 x 0 3 x
拉格朗日型余项 佩亚诺型余项
Rn ( x) 0[( x x0 )n ]
2.麦克劳林公式
f (0) f ( n ) ( 0) 2 f ( x ) f (0) f (0)( x x0 ) ( x x0 ) ( x x0 )n Rn ( x ) 2! n!
所以
f (1) 8, f (1) 5, f ( 1) 0,
f ( 1) 6.
f ( ) ( x 1) 2 一阶泰勒公式为 f ( x ) f ( 1) f ( 1)( x 1) 2!
8 5( x 1) 3( 1)( x 1)
0 0
二、泰勒公式
1.泰勒公式
f ( x0 ) f ( n ) ( x0 ) 2 f ( x ) f ( x0 ) f ( x0 )( x x0 ) ( x x0 ) ( x x0 )n Rn ( x ) 2! n!

三章微分中值定理与导数应用

三章微分中值定理与导数应用
(2) 构造辅助函数 F ( x) e x f ( x) ,则由题设可知 F ( x) 在[a,b] 上满足罗尔定理条件. 于是, (a, b) ,使得 F() f ( )e g() f ( )e g( ) 0 ,即 f () f ()g() 0 .
证毕.
例 8 设 f ( x) C[0,1] ,在(0,1)内可导,且
0 可知, f (b) 也不可能是 f ( x) 在[a, b] 上的最小值.
f ( x) 在[a, b] 上可导,所以连续,从而最小值存在. 记
(a, b) 为 f ( x) 在[a, b]上的一个最小值点, 必为(广义) 极小值点,从而为驻点.所以有 f ( ) 0 .
(2)令 F( x) f ( x) cx ,则 F( x) 在[a,b] 上存在,且由 c 介于 f (a) 与 f (b) 之间,有
F(a)F(b) [ f (a) c][ f (b) c] 0 ,
于是,由(1), (a, b) ,使得 F () 0 ,即得 f () c .
证毕.
例 11 设 f ( x) 、g( x) 二阶可导,且 g( x) 0 ,f (a) f (b) g(a) g(b) 0 .试证: (1) g( x) 0 , x (a, b) .
b

2
a
2
b
,
b

记 (a, b) 为1 、 2 中使 f (1 ) 、 f (2 ) 最大者,则有
4
f ( ) f ( )
f (b) f (a)
| f ( ) | ,
(b a)2
2
即得所要不等式.证毕.
例 7 设 f ( x)、g( x) C[a,b] ,在 (a, b) 内可导,且 f (a) f (b) 0 .试证:

同济大学《高等数学》(第四版)第三章习题课

同济大学《高等数学》(第四版)第三章习题课
一 点 的 个 , 果 在 点 一 邻 , 于 邻 内 如 存 着 x0的 个 域 对 这 域 的 任 点 ,除 点 0外 f (x) < f (x0 )均 立就 何 x 了 x , 成 , 称 f (x0)是 数 (x)的 个 大 ; 函 f 一 极 值 果 在 点 一 邻 , 于 邻 内 如 存 着 x0的 个 域 对 这 域 的 何 x 了 x , 任 点 ,除 点 0外 f (x) > f (x0 )均 立就 成 , 称 f (x0)是 数 (x)的 个 小 . 函 f 一 极 值
上页 下页 返回
求极值的步骤: 求极值的步骤:
(1) 求导数 f ′( x ); ( 2) 求驻点,即方程 f ′( x ) = 0 的根; 求驻点,
( 3) 检查 f ′( x ) 在驻点左右的正负号或 f ′′( x ) 在 该点的符号 , 判断极值点;
(4) 求极值 .
上页
下页 返回
(3) 最大值、最小值问题 最大值、
做函数 f ( x )的驻点.
驻点和不可导点统称为临界点. 驻点和不可导点统称为临界点. 临界点
上页 下页 返回
定理(第一充分条件) 定理(第一充分条件) x (1)如 x∈(x0 −δ , x0),有f '(x) > 0;而 ∈(x0, x0 +δ ), 如 果 x 取 极 值 有f '(x) < 0, f (x)在 0处 得 大 . 则 x (2)如 x∈(x0 −δ , x0),有f '(x) < 0;而 ∈(x0, x0 +δ ) 如 果 x 取 极 值 有f '(x) > 0, f (x)在 0处 得 小 . 则 x (3)如 当x∈(x0 −δ , x0)及 ∈(x0, x0 +δ )时 f '(x) 符 如 果 , (x x 无 值 号 同则f (x)在 0处 极 . 相 ,则 定理(第二充分条件) 定理(第二充分条件)设f (x)在 0 处 有 阶 数 x 具 二 导 , 且f '(x0 ) = 0, f ''(x0 ) ≠ 0, 那 末 f ''(x0 ) < 0时 函 f (x)在 0 处 得 大 ; x 取 极 值 (1)当 , 数 当 '' x 取 极 值 (2)当f (x0) > 0时 函 f (x)在 0 处 得 小 . , 数 当

3微分中值定理与导数的应用习题

3微分中值定理与导数的应用习题

第三章微分中值定理与导数的应用1 •函数y =x2 -1在L 1,1】上满足罗尔定理条件的匕=2、若f(x)=x3在1,2】上满足拉格朗日中值定理,则在(1,2 )内存在的匕=3. f(x)=x2+x-1在区间L1,1】上满足拉格朗日中值定理的中值匕=4•函数y = In(X +1诳区间0,1】上满足拉格朗日中值定理的匕=5•验证罗尔定理对函数y =1 n sin X在区间律—1上的正确性。

T 6」6.验证拉格朗日中值定理对函数y =4x' —5x2 +x-2在区间0,1】上的正确性。

7.对函数f(x) = sinx及F(x)=x+cosx在区间〔0,—1上验证柯西中值定理的正确性。

L 2」&试证明对函数y = px2 +qx + r应用拉格朗日中值定理时的求得的点总是位于区间的正中间。

9.证明下列不得等式: ⑴ arctanx -arctan y < x - y⑶当a汕>«¥<"¥10.用洛必达法则求下列极限:X _x⑵ lim e ~eT sin XIn R +丄]⑷ li%__¥—鈕 1arcta n —x⑸1x m1x1.1 -x1⑹ lim (cot X -一) T x(7)lim (cos X)⑻ ji m^x "(J x2+1 -X) ⑵当X A1时,e x;>e .XIn (1 +x)⑴lim T X⑶ lim 沁—sina X T x-asin X — xcosx2~;x sinx11. 确定下列函数的单调区间。

⑷ y =1 n(x +J 1 + x 212. 求下列函数图形的拐点及凹凸区间:⑷ y = In(x 2+1 )13. 禾U 用函数的单调性证明下列不等式:(11)lim(1-x)ta n 便'(2丿(12)tanx⑽ lim — - x -^l x「1 2 、—2x~e-1丿⑴ y = 2x 3-6x 2-18x -7⑵ y = 2x +8(X A O )x=x 3 -5x 2+3x +5/ \ -x⑵ y = xe= (x +1y +e x⑴当1 ,_______ x>0 时,1+ —x》u1+x2⑵当x>0 时,1+xl n(x+j1+x2)> J1 +x2⑶当兀 1 3 0cx£ —时,tanx〉x + -x2 314.列表讨论下列函数的单调区间,凹性区间,极值点与拐点。

中值定理 习题

中值定理 习题

)找到两点
x 2 , x 1 , 使 f ( x 2 ) f ( x 1 ) ( x 2 x 1 ) f ( c ) 成 立 .
( A) 必 能 ;
( B) 可 能 ;
( C) 不 能 ; ( D) 无 法 确 定 能 . 5 、 若 f ( x ) 在 [ a , b ]上 连 续 , 在( a , b ) 内 可 导 , 且
32
).
8 、 若 在 ( a , b ) 内 , 函 数 f ( x ) 的 一 阶 导 数 f ( x ) 0 , 二 阶 导 数 f ( x ) 0 , 则 函 数 f ( x ) 在 此 区 间 内 ( ). (A) 单 调 减 少 , 曲 线 是 凹 的 ; (B) 单 调 减 少 , 曲 线 是 凸 的 ; (C) 单 调 增 加 , 曲 线 是 凹 的 ; (D) 单 调 增 加 , 曲 线 是 凸 的 . a 9 、 设 lim f ( x ) lim F ( x ) 0 , 且 在 点
11
定理. 设函数 且
(1) f
(k )
f ( x) , g ( x)Βιβλιοθήκη 在上具有n 阶导数,
(a) g
(k )
(a ) (k 0 ,1, 2 ,, n 1)
时 则当 证: 令 ( x)

(k )
f ( x) g ( x) ,

(n)
(a ) 0 (k 0 ,1,, n 1) ;
(5) 若结论为不等式 , 要注意适当放大或缩小的技巧. 4
例1. 设函数
证明 在

内可导, 且 内有界.
5
例2. 设

上连续, 在
证明至少存在一点

第03章微分中值定理与导数的应用习题详解

第03章微分中值定理与导数的应用习题详解

M 12丿」I 2丿第三章 微分中值定理与导数的应用习题3-11.解:(1)虽然 f(x)在[—1,1]上连续,f(—1) = f(1),且 f(x)在(—1,1)内可导。

可见,f(x)在[_1,1]上满足罗尔中值定理的条件,因此,必存在一点 匕€(-1,1),使得f 牡)=0,即:f(X)=cosx, F(X)=1 — sin X 且对任一 x 乏0,—】,F'(X)H 0, ”■. f (x),F (x)满足柯西 I 2丿中值定理条件。

—12©宀2=0,满足、; (2)虽然f(x)在[—1,1]上连续,f(_1)= f (1),但 f (x)在(—1,1)内 x = 0点不可导。

可 见,f (x)在[ —1,1]上不满足罗尔中值定理的条件,因此未必存在一点 £ £ (_1,1),使得 f 徉)=0. 2.因为函数是一初等函数,易验证满足条件 3 3 .解:令 y = 3arccos x - arccos(3x - 4x 3), y ‘ = 一 23 —12x 2厂工®®3)2,化简得 y'=0,「. y =c ( C 为常数),又 y(0.5)=兀,故当-0.5<x<0.5,有 y(x)=兀。

「兀f f 兀、 4 .证明:显然f(x), F(x)都满足在'|0,二I 上连续,在10,二 内可导L 2」 I 2丿 c oxsn ——x、、2丿F Q-F(O)12丿兀--1 2F( x) -1 sixn_c O 弓-x厂(X )_F(x) ZL"2 /兀 X ,,即 tan I - -- U--1,此时l 4 2丿 2f JI「兀X = 2 I — -arctan l — -1L 4l 2显然萨〔0,-〕,即丿」 I 2丿5.解:因为f(0) = f (1)= f (2) = f (3) =0,又因为f(x)在任一区间内都连续而且可导, 所以f (X)在任一区间 0,1 ], 1,2], [2,3]内满足罗尔中值定理的条件, 所以由罗尔定理,得:3" -(0,1), "^(1,2), ©-(2,3),使得:f 徉1 )= 0 r =) &:◎(=), 30 因为6.证明:设f(x) =0的n+1个相异实根为X o V X 1 <X 2 <H( <X n则由罗尔中值定理知:存在J (i =1,2,川n):X0 <:勺1cj ■<X2 vill <-1^Xn ,使得再由罗尔中值定理至少存在So =1,2,川n-1):上11 C 巴21 V ©2 吒 W ©3 V i 11 < J n d W G n ,使得7.解:反证法,倘若 p(X)=0有两个实根,设为X^X 2,由于多项式函数 p(x)在[X 1,X 2]上连续且可导,故由罗尔中值定理存在一点E€(X I ,X 2),使得P 徉)=0,而这与所设p'(x)=0没有实根相矛盾,命题得证。

微积分试题及答案(3)

微积分试题及答案(3)

微积分试题及答案第三章 中值定理与导数应用一、填空题1、=→x x x ln lim 0__________。

2、函数()x x x f cos 2-=在区间______________单调增。

3、函数()43384x x x f -+=的极大值是____________。

4、曲线x x x y 3624+-=在区间__________是凸的。

5、函数()x x f cos =在0=x 处的12+m 阶泰勒多项式是_________。

6、曲线xxe y 3-=的拐点坐标是_________。

7、若()x f 在含0x 的()b a ,(其中b a <)内恒有二阶负的导数,且_______,则()0x f 是()x f 在()b a ,上的最大值。

8、123++=x x y 在()+∞∞-,内有__________个零点。

9、________)1sin 1(cot lim 0=-→xx x x 。

10、_________)tan 11(lim 20=-→xx x x 。

11、曲线2x e y -=的上凸区间是___________。

12、函数1--=x e y x的单调增区间是___________。

二、单项选择1、函数)(x f 有连续二阶导数且,2)0(,1)0(,0)0(-=''='=f f f 则=-→2)(lim xxx f x ( ) (A)不存在 ; (B)0 ; (C)-1 ; (D)-2。

2、设),,(),12)(1()(+∞-∞∈+-='x x x x f 则在)1,21(内曲线)(x f ( )(A)单调增凹的; (B)单调减凹的; (C)单调增凸的; (D)单调减凸的。

3、)(x f 在),(b a 内连续,0)()(),,(000=''='∈x f x f b a x ,则)(x f 在0x x = 处( ) (A)取得极大值; (B)取得极小值;(C)一定有拐点))(,(00x f x ; (D)可能取得极值,也可能有拐点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 微分中值定理与导数的应用习题
专业、班级: 学号: 姓名:
一、选择题
1.罗尔定理中的三个条件:)(x f 在],[b a 上连续,在),(b a 内可导,且)()(b f a f =,是)(x f 在),(b a 内至少存在一点ξ,使0)(='ξf 成立的( )
A.必要条件
B.充分条件
C.充要条件
D.既非充分也非必要条件
2.下列函数在]1 ,1[-上满足罗尔定理条件的是( )
A.x e x f =)(
B.||)(x x f =
C.21)(x x f -=
D.⎪⎩⎪⎨⎧
=≠=0
,10 ,1sin )(x x x
x x f
3.在以下各式中,极限存在,但不能用洛必达法则计算的是( ) A.x x x sin lim 2
0→ B.x x x tan 0)1
(lim +→
C. x x
x x sin lim +∞→ D.x n
x e x +∞→lim
4.设)12)(1()(+-='x x x f ,则在区间)1,21
(内( )
A. )(x f y =单调增加,曲线)(x f y =为凹的
B. )(x f y =单调减少,曲线)(x f y =为凹的
C. )(x f y =单调减少,曲线)(x f y =为凸的
D. )(x f y =单调增加,曲线)(x f y =为凸的
5.下列函数中,在指定区间内单调减少的函数是( )
A.x y -=2 ),(∞+-∞
B.x y e = )0,(-∞
C.x y ln = ),0(∞+
D.x y sin = ),0(π
6.若)(x f 在0x 至少二阶可导,且1)
()
()(lim 2000-=--→x x x f x f x x ,则函数)(x f 在0x
处( )
A.取得极大值
B.取得极小值
C.无极值
D.不一定有极值
二、填空题
1. 设函数)5)(3)(2)(1()(----=x x x x x f ,则0)(='x f 有 个实根,分别位于 区间 中.
2. 函数12+=ax y 在),0(∞+内单调增加,则a .
3. 函数x y sin ln =在[6
5 ,
6 ππ]上的罗尔中值点ξ= . 4. 若点(1,3)为曲线23bx ax y +=的拐点,则=a ,=b .
5. 求函数2824+-=x x y 在区间]3,1[-上的最大值为 ,最小值为 .
6. 函数)1ln(+-=x x y 在区间 内单调减少,在区间 内单调增加.
7. 曲线8 2
x e
y -=的凸区间是 .
三、计算题
1.求下列极限 (1)n n m m a x a x a x --→lim (2)2
0)(arcsin 1sin lim x x e x x --→
(3))
1 ln 1(lim 1--→x x x x (4)x x x e e x x x sin 2lim 0----→
2.求函数133+-=x x
y 在区间[-2,0]上的最大值和最小值.
3.求函数1
2-+
=x x x y 的拐点及凹或凸的区间.
4.求函数496 2
3-+-=x x x y 的单调区间、极值、凹凸区间和拐点.
四、证明题
1.求证当0>x 时, )1ln(21
2x x x +<-.
2.求证当1>x 时,1)
1(2ln +->x x x .。

相关文档
最新文档