历年大一期中、期末考试试卷

合集下载

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。

最新大一高等数学期末考试试卷及答案详解

最新大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 一、选择题(共12分)1. (3分)若2,0,(),0x e x f x a x x ⎧<=⎨+>⎩为连续函数,则a 的值为( ).(A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0(3)(3)lim2h f h f h→--的值为( ).(A)1 (B)3 (C)-1 (D)123. (3分)定积分22ππ-⎰的值为( ).(A)0 (B)-2 (C)1 (D)24. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分)1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 .2. (3分) 1241(sin )x x x dx -+=⎰ .3. (3分) 201lim sinx x x→= . 4. (3分) 3223y x x =-的极大值为 .三、计算题(共42分) 1. (6分)求2ln(15)lim.sin 3x x x x →+2. (6分)设2,1y x =+求.y '3. (6分)求不定积分2ln(1).x x dx +⎰4. (6分)求3(1),f x dx -⎰其中,1,()1cos 1, 1.x xx f x x e x ⎧≤⎪=+⎨⎪+>⎩5. (6分)设函数()y f x =由方程0cos 0yxte dt tdt +=⎰⎰所确定,求.dy6. (6分)设2()sin ,f x dx x C =+⎰求(23).f x dx +⎰7. (6分)求极限3lim 1.2nn n →∞⎛⎫+ ⎪⎝⎭四、解答题(共28分)1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x2. (7分)求由曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积.3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程.4. (7分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分)设()f x ''在区间[,]a b 上连续,证明1()[()()]()()().22bbaab a f x dx f a f b x a x b f x dx -''=++--⎰⎰ 标准答案一、 1 B; 2 C; 3 D; 4 A. 二、 131;y x =+ 22;33 0;4 0. 三、 1 解 原式205lim3x x xx →⋅= 5分53=1分 2 解22ln ln ln(1),12xy x x ==-++ 2分2212[]121x y x x '∴=-++ 4分3 解 原式221ln(1)(1)2x d x =++⎰ 3分222212[(1)ln(1)(1)]21x x x x dx x=++-+⋅+⎰ 2分2221[(1)ln(1)]2x x x C =++-+ 1分 4 解 令1,x t -=则 2分321()()f x dx f t dt -=⎰⎰ 1分1211(1)1cos t tdt e dt t-=+++⎰⎰ 1分210[]t e t =++ 1分 21e e =-+ 1分5 两边求导得cos 0,yey x '⋅+= 2分cos y xy e'=-1分cos sin 1xx =- 1分cos sin 1xdy dx x ∴=- 2分6 解1(23)(23)(22)2f x dx f x d x +=++⎰⎰ 2分 21sin(23)2x C =++ 4分 7解 原式=23323lim 12n n n ⋅→∞⎛⎫+ ⎪⎝⎭4分=32e 2分四、1 解 令ln ,xt =则,()1,t t x e f t e '==+ 3分()(1)t f t e dt =+⎰=.t t e C ++ 2分(0)1,0,f C =∴= 2分().x f x x e ∴=+ 1分2 解 222cos xV xdx πππ-=⎰ 3分2202cos xdx ππ=⎰ 2分2.2π=2分3 解23624,66,y x x y x '''=-+=- 1分令0,y ''=得 1.x = 1分 当1x -∞<<时,0;y ''< 当1x <<+∞时,0,y ''> 2分(1,3)∴为拐点, 1分该点处的切线为321(1).yx =+- 2分4 解1y '=-= 2分令0,y '=得3.4x = 1分35(5)5 2.55,,(1)1,44y y y ⎛⎫-=-+≈-== ⎪⎝⎭ 2分∴最小值为(5)5y -=-+最大值为35.44y ⎛⎫= ⎪⎝⎭ 2分五、证明()()()()()()bbaax a x b f x x a x b df x '''--=--⎰⎰ 1分[()()()]()[2()bb a a x a x b f x f x x a b dx ''=----+⎰ 1分 [2()()ba x ab df x =--+⎰ 1分321DCB A {}[2()]()2()b ba a x ab f x f x dx =--++⎰ 1分 ()[()()]2(),ba b a f a f b f x dx =--++⎰ 1分移项即得所证. 1分证明题专项1如图,已知AB ∥CD, ∠1=∠3, 试说明AC ∥BD.2、如图,已知CD ⊥AD ,DA ⊥AB ,∠1=∠2。

2020-2021学年度第一学期期中期末考试试卷含答案共六套

2020-2021学年度第一学期期中期末考试试卷含答案共六套

2020-2021学年度第一学期期中考试试卷六年级英语(本试卷分为两个部分,共十一个大题,总分100分,考试时间60分钟)第一部分听力(40分)一、请听录音,从A、B、C中选出你听到的正确答案,并用2B铅笔把答题卡上对应题目的答案标号涂黑。

(听两遍)(共5小题,每小题2分,计10分)( )1.A.tomorrow B.tonight C.today( )2.A.visit B.write C.get( )3.A.word book ic book C.storybook( )4.A.next B.behind C.near( )5.A.straight B.left C.right二、请听录音,判断下列句子与你听到的内容是否相符,相符的写“T”,不相符的写“F”,并用2B铅笔把答题卡上对应题目的答案标号涂黑。

(听两遍)(共5小题,每小题2分,计10分)( )6.Turn left at the bookstore.( )7.It’s red.We must stop and wait.( )8.I’m going to visit my uncle tomorrow.( )9.I have to do my homework now.( )10.Go straight and you can see the Palace museum.三、请听小对话,从A、B、C中选出你听到的正确图片,并用2B铅笔把答题卡上对应题目的答案标号涂黑。

(听两遍)(共5小题,每小题2分,计10分)( )11.A. B. C.( )12.A. B. C.( )13.A. B. C.( )14.A. B. C.( )15.A. B. C.四、请听对话,根据所听到的内容补全下面短文中缺少的单词,并将正确答案用黑色墨水笔或黑色签字笔填写在答题卡规定的位置上(一空一词)。

(听三遍)(共5个空,每空2分,计10分)A:Excuse me,sir.How can I get to the 16. ?I’m going to buy a 17. .B:First,18. right here.Then go 19. and you can see it.It’s next tothe 20. .A:Thanks!Bye!第二部分笔试(60分)五、请从A、B、C、D中选出不同类的一项,并用2B铅笔把答题卡上对应题目的答案标号涂黑。

高数大一上期中考试真题及答案汇编(无广告版)

高数大一上期中考试真题及答案汇编(无广告版)
2
x arctan t 所确定,求曲线在点 t 0 处的切线方 2 t 2 y ty e 5
2
1 2 1 2n f ( x ) 1 x x x , x R ,证明 f ( x) 0 。 8.求函数 2! (2n)!
9.学工科分析者做(1) ,其余做(2) (1)设数列 x n 满足 xn1 xn
并且 lim an lim bn ( . 2) 已知数列: x1 a, x2 b, xn
n n
xn1 xn2 (n 3) , 其中 a, b 2
是给定的非零常数,求 lim x n 。
n
5.讨论函数 f ( x) x 3 3x 2 9 x 5 的单调性,凸性和拐点。
g (0) 1 , g (0) 1 ,①求函数 f ( x) ;②讨论 f ( x) 在 (,) 上的连续性。
2 五. (6 分) 设函数 f ( x) 在 2,2上二阶可导, 且 f ( x) 1 , 又 f 2 (0) f (0) 4 ,
试证:在 (2,2) 内至少存在一点 ,使得: f ( ) f ( ) 0 。
,求 dy 。
2.求曲线 xe
y
y 1在点 (1,0) 处的切线及法线方程。
2 cot 2 x
3.求极限: lim ( 1 x )
x 0

4. (1)设 a1 b1 0, a n1
a n bn , bn1 a n bn ,证明数列 a n 和 bn 收敛, 2
崇实学生会考试小帮手
高数(上)期中考试特辑
崇实书院学生会学习实践部 交大打造不挂女神的领跑者
目录
西安交通大学 2009 年高等数学 (I II)期中考试 .............................................................................. 1 西安交通大学 2008 年高等数学 (I II)期中考试 .............................................................................. 3 西安交通大学 2007 年高等数学 (I II)期中考试 .............................................................................. 4 西安交通大学 2006 年高等数学 (I II)期中考试 .............................................................................. 6 西安交通大学 2005 年高等数学 (I II)期中考试 .............................................................................. 7 西安交通大学 2004 年高等数学 (I II)期中考试 .............................................................................. 8 西安交通大学 2003 年高等数学 (I II)期中考试 ............................................................................ 10 西安交通大学 2002 年高等数学 (I II)期中考试 ............................................................................ 11 西安交通大学 2001 年高等数学 (I II)期中考试 ............................................................................ 12 西安交通大学 2000 年高等数学 (I II)期中考试 ............................................................................ 13 西安交通大学 1999 年高等数学 (I II)期中考试 ............................................................................ 15 西安交通大学 1998 年高等数学 (I II)期中考试 ............................................................................ 16 西安交通大学 1997 年高等数学 (I II)期中考试 ............................................................................ 17 西安交通大学 1996 年高等数学 (I II)期中考试 ............................................................................ 19 西安交通大学 1995 年高等数学 (I II)期中考试 ............................................................................ 20 试题参考答案与参考评分标准 ............................................................................................ 21 附:空闲自习室表 .............................................................................................................. 46

大一c语言期中考试试题及答案

大一c语言期中考试试题及答案

大一c语言期中考试试题及答案一、选择题(每题2分,共20分)1. C语言中,用于定义一个结构体类型的关键字是()。

A. structB. unionC. enumD. typedef答案:A2. 下列哪个选项不是C语言中的运算符?()A. %B. &&C. ::D. ==答案:C3. 在C语言中,用于定义一个函数的关键字是()。

A. intB. voidC. returnD. function答案:B4. 下列哪个选项不是C语言中合法的变量名?()A. _nameB. name_2C. 2nameD. name答案:C5. 在C语言中,用于表示逻辑“与”的运算符是()。

A. &&B. ||C. !D. ^答案:A6. 下列哪个选项是C语言中的控制语句?()A. ifB. switchC. caseD. all of the above答案:D7. C语言中,用于定义一个字符常量的是()。

A. 'a'B. "a"C. aD. a答案:A8. 在C语言中,用于表示“不等于”的运算符是()。

A. ==B. !=C. =D. ==答案:B9. 下列哪个选项是C语言中的文件操作函数?()A. printfB. scanfC. fopenD. fclose答案:C10. 在C语言中,用于定义一个整型数组的语法是()。

A. int arr[10];B. int arr=10;C. int arr[];D. int [10] arr;答案:A二、填空题(每题2分,共20分)1. C语言中,用____关键字定义一个全局变量。

答案:extern2. 一个C语言程序的执行从____函数开始。

答案:main3. C语言中,用于声明一个指针变量的语法是____。

答案:int *p;4. C语言中,____运算符用于取地址。

答案:&5. C语言中,____运算符用于解引用指针。

大一高等数学a期中试题及答案

大一高等数学a期中试题及答案

大一高等数学a期中试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2在x=0处的导数是()。

A. 0B. 1C. 2D. 0答案:B2. 极限lim(x→0) (sin x)/x的值是()。

A. 0B. 1C. 2D. 3答案:B3. 以下哪个选项是不定积分∫x^2 dx的解()。

A. x^3B. x^3 + CC. 3x^2 + CD. 3x^2答案:C4. 以下哪个选项是定积分∫(0 to 1) x dx的值()。

A. 0C. 1D. 2答案:B5. 函数y=e^x的原函数是()。

A. e^xB. e^x + CC. ln(x)D. ln(x) + C答案:B6. 以下哪个选项是微分方程dy/dx + y = 0的通解()。

A. y = e^(-x)B. y = e^xC. y = sin(x)D. y = cos(x)答案:A7. 以下哪个选项是函数y=x^3的二阶导数()。

A. 3x^2B. 6xC. 18xD. 6答案:B8. 以下哪个选项是函数y=ln(x)的一阶导数()。

B. xC. ln(x)D. e^x答案:A9. 以下哪个选项是函数y=x^2 - 4x + 4的最小值()。

A. 0B. 1C. 4D. -4答案:A10. 以下哪个选项是函数y=x^3 - 3x的拐点()。

A. x = 0B. x = 1C. x = -1D. x = 2答案:B二、填空题(每题4分,共20分)1. 函数f(x)=x^3的一阶导数是____。

答案:3x^22. 函数f(x)=x^2+2x+1的极值点是____。

答案:x = -13. 函数f(x)=sin(x)的不定积分是____。

答案:-cos(x) + C4. 函数y=e^x的二阶导数是____。

答案:e^x5. 函数y=ln(x)的二阶导数是____。

答案:1/x^2三、解答题(每题10分,共50分)1. 求函数f(x)=x^3-6x+8在x=2处的切线方程。

大一英语期中考试卷子

大一英语期中考试卷子

一、选择题(每题2分,共20分)1. The weather is ______ today, isn't it?A. beautifulB. goodC. wellD. fine2. He ______ to the party last night, but he was too tired.A. was goingB. wentC. is goingD. was going to3. ______ is the best way to learn a foreign language.A. SpeakingB. ListenC. ReadingD. All of above4. I think you ______ more effort in your studies.A. should putB. will putC. would putD. had put5. ______ you finish your homework yet?A. HaveB. HasC. Have youD. Has you6. If I ______ you, I would study harder.A. wereB. beC. wasD. am7. ______ you remember the story I told you yesterday?A. DoB. DidC. DoesD. Did you8. ______ is not allowed in the library.A. EatB. EatingC. To eatD. Eats9. He ______ to the movies with his friends last weekend.A. wentB. goesC. will goD. is going10. ______ you like some coffee?A. DoB. DoesC. AreD. Is二、填空题(每题2分,共20分)1. The sun ______ (rise) in the east every morning.2. She ______ (go) to the supermarket every weekend.3. I ______ (be) a teacher when I was a child.4. ______ (do) you usually spend your weekends?5. They ______ (have) a party next week.6. ______ (be) you busy this evening?7. ______ (be) you interested in music?8. ______ (be) you happy with your job?9. ______ (be) you free this weekend?10. ______ (be) you in a hurry?三、阅读理解(每题2分,共20分)阅读以下短文,然后回答问题。

大一基础会计期中考试试题及答案

大一基础会计期中考试试题及答案

大一基础会计期中考试试题及答案一、选择题(每题2分,共20分)1. 会计的基本职能是()。

A. 记账、算账、报账B. 计划、组织、指挥C. 决策、执行、监督D. 核算、监督、服务2. 以下哪项不属于会计要素?()A. 资产B. 负债C. 所有者权益D. 利润3. 会计等式“资产=负债+所有者权益”体现了()。

A. 资产负债表B. 利润表C. 现金流量表D. 所有者权益变动表4. 会计核算的基本原则不包括()。

A. 客观性原则B. 历史成本原则C. 权责发生制原则D. 随意性原则5. 会计的基本假设包括()。

A. 会计分期B. 会计主体C. 货币计量D. 以上都是6. 以下属于会计信息质量要求的是()。

A. 可靠性B. 及时性C. 可比性D. 以上都是7. 会计凭证是()。

A. 记录经济业务的书面证明B. 会计账簿C. 会计报表D. 会计档案8. 会计账簿的登记应遵循()。

A. 权责发生制原则B. 历史成本原则C. 收付实现制原则D. 配比原则9. 会计报表包括()。

A. 资产负债表B. 利润表C. 现金流量表D. 以上都是10. 会计核算的最终目的是()。

A. 编制会计报表B. 提供决策信息C. 进行财务分析D. 实现利润最大化二、判断题(每题1分,共10分)1. 会计的基本职能是核算和监督。

()2. 会计要素包括资产、负债、所有者权益、收入和费用。

()3. 会计等式是“资产=负债+所有者权益+利润”。

()4. 会计核算的基本原则包括客观性原则、历史成本原则等。

()5. 会计的基本假设包括会计分期、会计主体、货币计量等。

()6. 会计信息质量要求包括可靠性、及时性、可比性等。

()7. 会计凭证是记录经济业务的书面证明。

()8. 会计账簿的登记应遵循权责发生制原则。

()9. 会计报表包括资产负债表、利润表和现金流量表。

()10. 会计核算的最终目的是编制会计报表。

()三、简答题(每题10分,共20分)1. 简述会计的基本职能及其作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2006—2007学年第一学期《高等数学》期中考试试卷专业班级姓名学号开课系室数学学院基础数学系考试日期 2006.11题号一二三四总分得分一、选择题(45=20分)1.当0x x →时,)()(x x βα、都是无穷小,则当0x x →时,下列表示式哪一个不一定是无穷小( ))()()(x x A βα+ )()()( 22x x B βα+ [] )()(1ln )(x x C βα⋅+ )()()( 2x x D βα 2.设221arctan)(x x x f =,间断点0=x 的类型为( ) (A)可去间断点 (B)跳跃间断点 (C)无穷间断点 (D)振荡间断点3.=++∞→312lim 2x x x ( ) (A)2 (B)-2 (C)2± (D)不存在4.设)(x f 可导,)1)(()(x x f x F +=,要使)(x F 在0=x 处可导,则必有( )(A) 0)0(=f (B) 1)0(=f (C) 1)0(='f (D) 0)0(='f5.设⎪⎩⎪⎨⎧=≠+=0 00 1)(12x x e x x f x ,则( ) (A) )(x f 在0=x 处间断(B) )(x f 在0=x 处连续但不可导(C) )(x f 在0=x 处可导,但导数在0=x 处不连续 (D) )(x f 在0=x 处有连续导数 二、填空题(45=20分)1.=--→xx x 111)23(lim2.当x0时,无穷小量1-cosx 与mx n 等价(其中m,n 为常数),则m==n3.设x x f 2sin )(=,⎪⎪⎩⎪⎪⎨⎧>+≤-=0202)(x x x x x g ,,ππ,[])(lim 0x g f x →=4.函数x sin xln )x (f π=的一个可去间断点是x =5.设⎪⎩⎪⎨⎧==t e y t e x t t sin cos 22确定了函数)(x y y =,=dx dy 三、计算下列各题1.求极限(10分,每题5分)(1)⎪⎭⎫ ⎝⎛-→x x x x arcsin 11lim 20(2) x ex xx 2)1(lim10-+→2.(10分)已知x x y arctan 5-=,试讨论函数的单调区间,极值,凹凸性,拐点,渐近线3.(10分)设函数⎩⎨⎧≥+<++=0 )1ln(0 )(2x x x c bx ax x f 在0=x 处有二阶导数,确定参数c b a ,,的值4.(6分)设)(x f 为连续函数,且1)1ln(3)(lim2=-+→x x f x ,求曲线)(x f y =在2=x 处的切线方程。

5.(6分)将2211)(x x x x f +-+=在0=x 处展开到含4x 项,并计算)0()4(f6.(6分)证明不等式x x x sin 2tan 3+<)20(π<<x7.(6分)设)(x y y =由方程04ln 2=-+y e y x xy 所确定,求y '四、(6分)设函数)(x f 在[0,1]上连续,且)(x f 在[0,1]上不恒等于零,)(x f 在(0,1)内可导,0)0(=f ,证明:存在)1,0(∈ξ,使得0)()(>'ξξf f .A卷2006—2007学年第一学期《本科高等数学(上)》期末考试试卷专业班级姓名学号开课系室考试日期页号一二三四五六总分得分阅卷人2.封面及题目所在页背面及附页为草稿纸。

3.答案必须写在该题后的横线上,解题过程写在下方空白处,不得写在草稿纸中,否则答案无效。

一、填空题 (本题共10小题,每小题2分,共20分.)1. 设⎩⎨⎧>≤=1,01,1)(x x x f , 则{}=)]([x f f f .2. 设函数⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<+=>-=⎰0,sin 0,80,)cos 1()(02x x dt e x b x x x x a x f x t连续,则=a ,=b .3.极限=+→xx x sin 20)31(lim .4.设 2)(lim0=→x x f x ,且)(x f 在0=x 连续,则)0(f '= .5.设方程0=--ye y x 确定函数)(x y y =, 则dx dy= .6.设x y x3cos 2-=, 则dy = .7.抛物线822++=x x y 在其顶点处的曲率为 .8.设)(x f 可导,{})]([x f f f y =,则='y . 9.[]⎰-=-+-+aadx x a x x f x f 22sin )()( .10.微分方程02=--'x x yy 的通解是 .二、单项选择题(本题共10小题,每小题2分,共20分。

每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)1. “数列极限存在”是“数列有界”的( )(A) 充分必要条件; (B) 充分但非必要条件;(C) 必要但非充分条件; (D)既非充分条件,也非必要条件.2.极限=++∞→nn n n 32lim( )(A) 2; (B) 3; (C) 1; (D) 5;3.设常数0>k ,则函数ke x x xf +-=ln )( 在),0(∞+内零点的个数为( )(A) 3个; (B) 2个; (C) 1个; (D) 0个.4.设()xx e ex f 11321++=, 则0=x 是)(x f 的( ). (A) 连续点; (B) 可去间断点;(C) 跳跃间断点; (D) 无穷间断点.5.设函数)(x f 二阶可导,且0)(0)(>''>'x f x f ,,令)()(x f x x f y -∆+=∆,当0<∆x 时,则( ).(A) ;0>>∆dy y (B) ;0<<∆dy y (C) ;0>∆>y dy (D) .0<∆<y dy6.若)()()(+∞<<-∞-=-x x f x f ,在)0,(-∞内0)(>'x f ,0)(<''x f ,则)(x f 在),0(∞+内( ). (A) 0)(,0)(<''>'x f x f (B) 0)(,0)(>''>'x f x f (C) 0)(,0)(<''<'x f x f (D) 0)(,0)(>''<'x f x f7.设)(x f 在0x x =处二阶可导, 且1)(lim-=-'→x x x f x x ,则( ).(A) 0x 是)(x f 的极大值点; (B) 0x 是)(x f 的极小值点; (C) ))(,(00x f x 是曲线)(x f y =的拐点; (D) 以上都不是.8.下列等式中正确的结果是 ( ).(A)⎰=');()(x f dx x f (B) ⎰=);()(x f dx x df (C) ⎰=);(])([x f dx x f d (D) ⎰=');())((x f dx x f9.下列广义积分收敛的是( ).(A) ⎰∞+e dx x x ln (B) ⎰∞+e dx x x ln 1(C) ⎰∞+e dx x x 2)(ln 1 (D) ⎰∞+edx x x ln 110.设)(x f 在a x =的某个领域内有定义,则)(x f 在a x =处可导的一个充分条件是( ).(A) 存在)]()1([lim a f h a f h h -++∞→ (B)存在h h a f h a f h )()2(lim 0+-+→(C) 存在h h a f h a f h 2)()(lim 0--+→ (D)存在h h a f a f h )()(lim 0--→三、计算题:(本题共3小题,每小题5分,共15分。

)1. 求不定积分⎰+-dx x x xx sin 2cos 5sin 3cos 72. 计算定积分.ln 1⎰e edx x3.求微分方程x y y y 234 5 -=+'+''的通解.四.解答题:(本题共6小题,共37分。

)1.(本题5分)求摆线⎩⎨⎧-=-=),cos 1(),sin (t a y t t a x 在2π=t 处的切线的方程.2.(本题6分)求曲线3223-+=x x x y 的渐进线.3.(本题6分)求由曲线1=xy 及直线x y =,2=y 所围成图形面积。

4.(本题6分)证明:对任意实数x ,恒有.11≤-xxe5.(本题6分)设有盛满水的圆柱形蓄水池,深15米,半径20米,现将池水全部抽出,问需作多少功?6.(本题8分)设对任意实数.)(0)0(],1)([)(的极值求,且,x f f x f x x f x =-'=-'五.(本题8分)设函数)(x f 在闭区间[0,2]上连续,在开区间(0,2)内可导,且满足条件0)21()0(==f f ,⎰=121)2()(2f dx x f证明:0)()2,0(=''∈∃ξξf 使得.2006—2007学年第二学期《本科高等数学(下)》期中试卷专业班级姓名学号开课系室考试日期 2007.4.29页号一二三四五总分得 分阅卷人说明:1.本试卷正文共5页。

2.封面及题目所在页背面及附页为草稿纸。

3.答案必须写在该题后的横线上,解题过程写在下方空白处,不得写在草稿纸中, 否则答案无效。

一、填空题(每小题5分 共40分) 1.设向量,2,23k j i b k j i a +-=-+=则)()(b a b a322-⋅⨯= _______________2.已知向量}2,3,4{-=a ,向量u 与三个坐标轴正向构成相等的锐角,则 a 在u轴上的投影等于__________________3.已知空间三角形三顶点),2,0,0(),0,1,2(),1,1,1(C B A -则ABC Δ的面积等于______________;过三点的平面方程是:__________________________. .4.直线⎩⎨⎧=+--=-+072,0532:z y x z y L .在平面083:=++-z y x π内的投影直线方程是: ____________________________________.5. 由曲线 ⎪⎩⎪⎨⎧==+0122322z y x 绕y 轴旋转一周所得旋转曲面在点)2,3,0(处指向外侧的单位法向量是____________________________.6.设z y x z y x 32)32sin(2-+=-+,则y z x z ∂∂+∂∂=__________________________.7. 设函数)(u f 可微,且21)0(='f , 则)4(22y x f z -=在点(1,2)处的全微分)2,1(d z =_________________________________________.8. 曲面 22y x z += 平行于平面 042=-+z y x 的切平面方程.是:___________________.二、(7分) 设平面区域D 由1,==xy x y 和2=x 所围成,若二重积分 1d d 22=⎰⎰Dy x y Ax ,则常数=A ____________________________. 解题过程是:三、(8分) 设),(y x f 是连续函数,在直角坐标系下将二次积分⎰⎰-223210d ),(d y y xy x f y 交换积分次序,应是______________________________________解题过程是:四、(7分) 设函数181261),,(222z y x z y x u +++=,若单位向量}1,1,1{31=n ,则方向导数)3,2,1(n u∂∂等于_____________________;该函数在点(1,2,3)的梯度是____________________;该函数在点(1,2,3)处方向导数的最大值等于________________. 解题过程是:五、(8分)设函数()f u 在(0,)+∞内具有二阶导数,且z f=满足等式22220z zx y ∂∂+=∂∂.(I )验证()()0f u f u u '''+=;(II )若(1)0,(1)1f f '==,求函数()f u 的表达式.解题过程是:六、(7分) 设区域{}22(,)1,0D x y x y x =+≤≥, 计算二重积分221d d .1D xyx y x y +++⎰⎰解题过程是:七、(8分) 设空间区域Ω,是由曲线⎪⎩⎪⎨⎧==0,2x z y 绕oz 轴旋转一周而成的曲面与平面4,1==z z 所围成的区域,计算三重积分⎰⎰⎰+Ωz y x y x d d d )(22.解题过程是:八、(8分) 做一个长方体的箱子,其容积为 29 m 3, 箱子的盖及侧面的造价为8元/m 2, 箱子的底造价为1元/m 2, 试求造价最低的箱子的长宽高(取米为长度单位). 解题过程是:九、(7分) 设函数),(y x f 在点(0,0)的某个邻域内连续,且1)(),(lim22220=+-→→y x xy y x f y x ,试问点(0,0)是不是),(y x f 的极值点?证明你的结论. 解题过程是:A卷2006—2007学年第二学期《本科高等数学(下)》期末考试试卷专业班级姓名学号开课系室数学学院基础数学系考试日期 2007年7月 2 日页号一二三四五总分得分阅卷人2.封面及题目所在页背面及附页为草稿纸。

相关文档
最新文档