[大一轮2020]专题2.7 对数与对数函数(讲)(解析版)
高三一轮复习精题组对数与对数函数(有详细答案)

§2.6 对数与对数函数1.对数的概念如果a x=N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中__a __叫做对数的底数,__N __叫做真数. 2.对数的性质与运算法则 (1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么①log a (MN )=log a M +log a N ;②log a M N=log a M -log a N ; ③log a M n=n log a M (n ∈R );④log am M n=n mlog a M . (2)对数的性质①a log a N =__N __;②log a a N=__N __(a >0且a ≠1). (3)对数的重要公式①换底公式:log b N =log a Nlog a b(a ,b 均大于零且不等于1);②log a b =1log b a ,推广log a b ·log b c ·log c d =log a d .3.对数函数的图象与性质4.反函数指数函数y=a x与对数函数y=log a x互为反函数,它们的图象关于直线__y=x__对称.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)若log2(log3x)=log3(log2y)=0,则x+y=5. ( √)(2)2log510+log50.25=5. ( ×)(3)已知函数f(x)=lg x,若f(ab)=1,则f(a2)+f(b2)=2. ( √)(4)log2x2=2log2x. ( ×)(5)当x>1时,log a x>0. ( ×)(6)当x>1时,若log a x>log b x,则a<b. ( ×) 2.(2013·课标全国Ⅱ)设a=log36,b=log510,c=log714,则( ) A.c>b>a B.b>c>aC.a>c>b D.a>b>c答案 D解析a=log36=1+log32=1+1log23,b=log510=1+log52=1+1log25,c=log714=1+log72=1+1log27,显然a>b>c.3.(2013·浙江)已知x,y为正实数,则( )A .2lg x +lg y =2lg x+2lg yB .2lg(x +y )=2lg x·2lg yC .2lg x ·lg y=2lg x+2lg yD .2lg(xy )=2lg x ·2lg y答案 D 解析 2lg x·2lg y=2lg x +lg y=2lg(xy ).故选D.4.函数f (x )=log 5(2x +1)的单调增区间是________.答案 (-12,+∞)解析 函数f (x )的定义域为(-12,+∞),令t =2x +1(t >0).因为y =log 5t 在t ∈(0,+∞)上为增函数,t =2x +1在(-12,+∞)上为增函数,所以函数y =log 5(2x +1)的单调增区间是(-12,+∞).5.已知f (x )是定义在R 上的偶函数,且在[0,+∞)上为增函数,f ⎝ ⎛⎭⎪⎫13=0,则不等式f (log 18x )>0的解集为________________.答案 ⎝ ⎛⎭⎪⎫0,12∪(2,+∞)解析 ∵f (x )是R 上的偶函数,∴它的图象关于y 轴对称. ∵f (x )在[0,+∞)上为增函数, ∴f (x )在(-∞,0]上为减函数,由f ⎝ ⎛⎭⎪⎫13=0,得f ⎝ ⎛⎭⎪⎫-13=0. ∴f (log 18x )>0⇒log 18x <-13或log 18x >13⇒x >2或0<x <12,∴x ∈⎝ ⎛⎭⎪⎫0,12∪(2,+∞).题型一 对数式的运算例1 (1)若x =log 43,则(2x-2-x )2等于( )A.94B.54C.103D.43(2)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3-x+1,x ≤0,则f (f (1))+f (log 312)的值是( )A .5B .3C .-1D.72思维启迪 (1)利用对数的定义将x =log 43化成4x=3; (2)利用分段函数的意义先求f (1),再求f (f (1));f (log 312)可利用对数恒等式进行计算.答案 (1)D (2)A解析 (1)由x =log 43,得4x=3,即2x=3,2-x =33,所以(2x -2-x )2=(233)2=43.(2)因为f (1)=log 21=0,所以f (f (1))=f (0)=2. 因为log 312<0,所以f (log 312)=3-log 312+1=3log 32+1=2+1=3.所以f (f (1))+f (log 312)=2+3=5.思维升华 在对数运算中,要熟练掌握对数式的定义,灵活使用对数的运算性质、换底公式和对数恒等式对式子进行恒等变形,多个对数式要尽量化成同底的形式.已知函数f (x )=⎩⎪⎨⎪⎧(12)x ,x ≥4,f (x +1),x <4,则f (2+log 23)的值为________.答案124解析 因为2+log 23<4, 所以f (2+log 23)=f (3+log 23), 而3+log 23>4,所以f (3+log 23)=(12)3+log 23=18×(12)log 23=18×13=124. 题型二 对数函数的图象和性质例2 (1)函数y =2log 4(1-x )的图象大致是( )(2)已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 213),c =f (0.2-0.6),则a ,b ,c 的大小关系是( ) A .c <a <b B .c <b <a C .b <c <aD .a <b <c思维启迪 (1)结合函数的定义域、单调性、特殊点可判断函数图象;(2)比较函数值的大小可先看几个对数值的大小,利用函数的单调性或中间值可达到目的. 答案 (1)C (2)B解析 (1)函数y =2log 4(1-x )的定义域为(-∞,1),排除A 、B ; 又函数y =2log 4(1-x )在定义域内单调递减,排除D.选C. (2)log 213=-log 23=-log 49,b =f (log 213)=f (-log 49)=f (log 49),log 47<log 49,0.2-0.6=⎝ ⎛⎭⎪⎫15-35=5125>532=2>log 49, 又f (x )是定义在(-∞,+∞)上的偶函数, 且在(-∞,0]上是增函数,故f (x )在[0,+∞)上是单调递减的,∴f (0.2-0.6)<f (log 213)<f (log 47),即c <b <a .思维升华 (1)函数的单调性是函数最重要的性质,可以用来比较函数值的大小,解不等式等;(2)函数图象可以直观表示函数的所有关系,充分利用函数图象解题也体现了数形结合的思想.(1)已知a =21.2,b =⎝ ⎛⎭⎪⎫12-0.8,c =2log 52,则a ,b ,c 的大小关系为( )A .c <b <aB .c <a <bC .b <a <cD .b <c <a(2)已知函数f (x )=log a (x +b ) (a >0且a ≠1)的图象过两点(-1,0)和(0,1),则a =________,b =________. 答案 (1)A (2)2 2解析 (1)b =⎝ ⎛⎭⎪⎫12-0.8=20.8<21.2=a ,c =2log 52=log 522<log 55=1<20.8=b ,故c <b <a .(2)f (x )的图象过两点(-1,0)和(0,1).则f (-1)=log a (-1+b )=0且f (0)=log a (0+b )=1, ∴⎩⎪⎨⎪⎧b -1=1b =a,即⎩⎪⎨⎪⎧b =2a =2.题型三 对数函数的应用例3 已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.思维启迪 f (x )恒有意义转化为“恒成立”问题,分离参数a 来解决;探究a 是否存在,可从单调性入手.解 (1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )最小值为3-2a ,当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立.∴3-2a >0.∴a <32.又a >0且a ≠1,∴a ∈(0,1)∪⎝ ⎛⎭⎪⎫1,32. (2)t (x )=3-ax ,∵a >0,∴函数t (x )为减函数, ∵f (x )在区间[1,2]上为减函数, ∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ),∴⎩⎪⎨⎪⎧3-2a >0log a (3-a )=1,即⎩⎪⎨⎪⎧a <32a =32,故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1. 思维升华 解决对数函数综合问题时,无论是讨论函数的性质,还是利用函数的性质 (1)要分清函数的底数是a ∈(0,1),还是a ∈(1,+∞);(2)确定函数的定义域,无论研究函数的什么性质或利用函数的某个性质,都要在其定义域上进行;(3)如果需将函数解析式变形,一定要保证其等价性,否则结论错误.已知f (x )=log 4(4x-1).(1)求f (x )的定义域;(2)讨论f (x )的单调性;(3)求f (x )在区间[12,2]上的值域.解 (1)由4x-1>0,解得x >0, 因此f (x )的定义域为(0,+∞). (2)设0<x 1<x 2,则0<4x 1-1<4x 2-1,因此log 4(4x 1-1)<log 4(4x 2-1),即f (x 1)<f (x 2), 故f (x )在(0,+∞)上递增.(3)f (x )在区间[12,2]上递增,又f (12)=0,f (2)=log 415,因此f (x )在[12,2]上的值域为[0,log 415].利用函数性质比较幂、对数的大小典例:(15分)(1)设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,b ,c 的大小关系是( ) A .a >b >c B .a <b <c C .b <a <cD .a <c <bA .a >b >cB .b >a >cC .a >c >bD .c >a >b(3)已知函数y =f (x )的图象关于y 轴对称,且当x ∈(-∞,0)时,f (x )+xf ′(x )<0成立,a =(20.2)·f (20.2),b =(log π3)·f (log π3),c =(log 39)·f (log 39),则a ,b ,c 的大小关系是( )A .b >a >cB .c >a >bC .c >b >aD .a >c >b思维启迪 (1)利用幂函数y =x 0.5和对数函数y =log 0.3x 的单调性,结合中间值比较a ,b ,c 的大小;(2)化成同底的指数式,只需比较log 23.4、log 43.6、-log 30.3=log 3103的大小即可,可以利用中间值或数形结合进行比较;(3)先判断函数φ(x )=xf (x )的单调性,再根据20.2,log π3,log 39的大小关系求解.解析 (1)根据幂函数y =x 0.5的单调性,可得0.30.5<0.50.5<10.5=1,即b <a <1; 根据对数函数y =log 0.3x 的单调性,可得log 0.30.2>log 0.30.3=1,即c >1. 所以b <a <c .方法一 在同一坐标系中分别作出函数y =log2x ,y =log 3x ,y =log 4x 的图象,如图所示. 由图象知:log 23.4>log 3103>log 43.6.方法二 ∵log 3103>log 33=1,且103<3.4,∴log 3103<log 33.4<log 23.4.∵log 43.6<log 44=1,log 3103>1,∴log 43.6<log 3103.∴log 23.4>log 3103>log 43.6.(3)因为函数y =f (x )关于y 轴对称,所以函数y =xf (x )为奇函数. 因为[xf (x )]′=f (x )+xf ′(x ),且当x ∈(-∞,0)时,[xf (x )]′=f (x )+xf ′(x )<0,则函数y =xf (x )在(-∞,0)上单调递减; 因为y =xf (x )为奇函数,所以当x ∈(0,+∞)时,函数y =xf (x )单调递减. 因为1<20.2<2,0<log π3<1,log 39=2, 所以0<log π3<20.2<log 39, 所以b >a >c ,选A. 答案 (1)C (2)C (3)A温馨提醒 (1)比较幂、对数的大小可以利用数形结合和引入中间量利用函数单调性两种方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.方法与技巧1.对数函数的定义域及单调性在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为{x |x >0}.对数函数的单调性和a 的值有关,因而,在研究对数函数的单调性时,要按0<a <1和a >1进行分类讨论.2.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性. 3.多个对数函数图象比较底数大小的问题,可通过图象与直线y =1交点的横坐标进行判定. 失误与防范1.在运算性质log a M α=αlog a M 中,要特别注意条件,在无M >0的条件下应为log a M α=αlog a |M |(α∈N +,且α为偶数).2.指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,应从概念、图象和性质三个方面理解它们之间的联系与区别.3.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值A 组 专项基础训练一、选择题 1.函数y =2-xlg x的定义域是( )A .{x |0<x <2}B .{x |0<x <1或1<x <2}C .{x |0<x ≤2}D .{x |0<x <1或1<x ≤2}答案 D解析 要使函数有意义只需要⎩⎪⎨⎪⎧2-x ≥0x >0lg x ≠0,解得0<x <1或1<x ≤2,∴定义域为{x |0<x <1或1<x ≤2}. 2.函数y =lg|x -1|的图象是( )答案 A解析 ∵y =lg|x -1|=⎩⎪⎨⎪⎧lg (x -1),x >1lg (1-x ),x <1.∴A 项符合题意.3.已知x =ln π,y =log 52,z =e 21-,则 ( )A .x <y <zB .z <x <yC .z <y <xD .y <z <x答案 D解析 ∵x =ln π>ln e ,∴x >1.∵y =log 52<log 55,∴0<y <12.∵z =e21-=1e >14=12,∴12<z <1.综上可得,y <z <x .4.A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)答案 C⇒a >1或-1<a <0.5.函数f (x )=log a (ax -3)在[1,3]上单调递增,则a 的取值范围是 ( )A .(1,+∞)B .(0,1) C.⎝ ⎛⎭⎪⎫0,13D .(3,+∞)答案 D解析 由于a >0,且a ≠1,∴u =ax -3为增函数, ∴若函数f (x )为增函数,则f (x )=log a u 必为增函数, 因此a >1.又y =ax -3在[1,3]上恒为正, ∴a -3>0,即a >3,故选D. 二、填空题 6.7.已知函数f (x )=⎩⎪⎨⎪⎧ 3x +1,x ≤0,log 2x ,x >0,则使函数f (x )的图象位于直线y =1上方的x 的取值范围是________________.答案 {x |-1<x ≤0或x >2}解析 当x ≤0时,3x +1>1⇒x +1>0,∴-1<x ≤0;当x >0时,log 2x >1⇒x >2,∴x >2.综上所述,x 的取值范围为-1<x ≤0或x >2.8.若log 2a 1+a 21+a<0,则a 的取值范围是____________. 答案 ⎝ ⎛⎭⎪⎫12,1 解析 当2a >1时,∵log 2a 1+a 21+a<0=log 2a 1, ∴1+a 21+a<1.∵1+a >0,∴1+a 2<1+a , ∴a 2-a <0,∴0<a <1,∴12<a <1. 当0<2a <1时,∵log 2a 1+a 21+a<0=log 2a 1, ∴1+a 21+a>1.∵1+a >0,∴1+a 2>1+a , ∴a 2-a >0,∴a <0或a >1,此时不合题意.综上所述,a ∈⎝ ⎛⎭⎪⎫12,1. 三、解答题9.已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)当a >1时,求使f (x )>0的x 的解集.解 (1)要使函数f (x )有意义.则⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1. 故所求函数f (x )的定义域为{x |-1<x <1}.(2)由(1)知f (x )的定义域为{x |-1<x <1},且f (-x )=log a (-x +1)-log a (1+x )=-[log a (x +1)-log a (1-x )]=-f (x ),故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域{x |-1<x <1}内是增函数,所以f (x )>0⇔x +11-x>1,解得0<x <1. 所以使f (x )>0的x 的解集是{x |0<x <1}.10.设x ∈[2,8]时,函数f (x )=12log a (ax )·log a (a 2x )(a >0,且a ≠1)的最大值是1,最小值是-18,求a 的值.解 由题意知f (x )=12(log a x +1)(log a x +2)=12(log 2a x +3log a x +2)=12(log a x +32)2-18.当f (x )取最小值-18时,log a x =-32.又∵x ∈[2,8],∴a ∈(0,1).∵f (x )是关于log a x 的二次函数,∴函数f (x )的最大值必在x =2或x =8时取得.若12(log a 2+32)2-18=1,则a =2-13,=2∉[2,8],舍去.若12(log a 8+32)2-18=1,则a =12,此时f (x )取得最小值时,x =(12)-32=22∈[2,8],符合题意,∴a =12.B 组 专项能力提升1.设f (x )=lg ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是 () A .(-1,0) B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)答案 A解析 由f (x )是奇函数可得a =-1,∴f (x )=lg 1+x1-x ,定义域为(-1,1).由f (x )<0,可得0<1+x1-x <1,∴-1<x <0.2.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有()A .f (13)<f (2)<f (12) B .f (12)<f (2)<f (13) C .f (12)<f (13)<f (2) D .f (2)<f (12)<f (13) 答案 C解析 由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x 2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|13-1|>|12-1|,∴f (12)<f (13)<f (2). 3.设函数f (x )=log a x (a >0,且a ≠1),若f (x 1x 2…x 2 015)=8,则f (x 21)+f (x 22)+…+f (x 22 015)=________.答案 16解析 f (x 1x 2…x 2 015)=log a (x 1x 2…x 2 015)=8,f (x 21)+f (x 22)+…+f (x 22 015) =log a x 21+log a x 22+…+log a x 22 015=log a (x 1x 2…x 2 015)2=2log a (x 1x 2…x 2 015)=16.4.设f (x )=|lg x |,a ,b 为实数,且0<a <b .(1)求方程f (x )=1的解;(2)若a ,b 满足f (a )=f (b ),求证:a ·b =1,a +b 2>1. (3)在(2)的条件下,求证:由关系式f (b )=2f (a +b 2)所得到的关于b 的方程g (b )=0,存在b 0∈(3,4),使g (b 0)=0.(1)解 由f (x )=1得,lg x =±1,所以x =10或110. (2)证明 结合函数图象,由f (a )=f (b )可判断a ∈(0,1),b ∈(1,+∞),从而-lg a =lg b ,从而ab =1.又a +b 2=1b +b 2>21b ·b 2=1(因1b≠b ). (3)证明 由已知可得b =(a +b 2)2,得4b =a 2+b 2+2ab ,得1b 2+b 2+2-4b =0, g (b )=1b 2+b 2+2-4b , 因为g (3)<0,g (4)>0,根据零点存在性定理可知,函数g (b )在(3,4)内一定存在零点,即存在b 0∈(3,4),使g (b 0)=0.5.已知函数y =log 21 (x 2-ax +a )在区间(-∞,2)上是增函数,求a 的取值范围.解 函数y =log 21 (x 2-ax +a )是由函数y =log 21t 和t =x 2-ax +a 复合而成.因为函数y =log 21t 在区间(0,+∞)上单调递减,而函数t =x 2-ax +a 在区间(-∞,a 2)上单调递减, 故函数y =log 21 (x 2-ax +a )在区间(-∞,a 2]上单调递增. 又因为函数y =log 21 (x 2-ax +a )在区间(-∞,2)上是增函数,所以⎩⎪⎨⎪⎧ 2≤a 2,(2)2-2a +a ≥0,解得⎩⎨⎧ a ≥22,2-2a +a ≥0,即22≤a ≤2(2+1).。
2020版高考数学新设计大一轮复习-第6节对数与对数函数习题理(含解析)新人教A版

第6节 对数与对数函数最新考纲 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点,会画底数为2,10,12的对数函数的图象;3.体会对数函数是一类重要的函数模型;4.了解指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.知 识 梳 理1.对数的概念如果a x=N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2.对数的性质、换底公式与运算性质 (1)对数的性质:①a log aN=N ;②log a a b=b (a >0,且a ≠1).(2)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a M N=log a M -log a N ; ③log a M n=n log a M (n ∈R );④log a m M n =n mlog a M (m ,n ∈R ,且m ≠0).(3)换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1).3.对数函数及其性质(1)概念:函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).(2)对数函数的图象与性质a >1 0<a <1图象性质定义域:(0,+∞)值域:R当x=1时,y=0,即过定点(1,0)当x>1时,y>0;当0<x<1时,y<0当x>1时,y<0;当0<x<1时,y>0在(0,+∞)上是增函数在(0,+∞)上是减函数4.反函数指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数,它们的图象关于直线y=x对称.[微点提醒]1.换底公式的两个重要结论(1)log a b=1log b a;(2)log a m b n=nmlog a b.其中a>0,且a≠1,b>0,且b≠1,m,n∈R.2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.3.对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),⎝⎛⎭⎪⎫1a,-1,函数图象只在第一、四象限.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)log2x2=2log2x.( )(2)函数y=log2(x+1)是对数函数.( )(3)函数y=ln1+x1-x与y=ln(1+x)-ln(1-x)的定义域相同.( )(4)当x>1时,若log a x>log b x,则a<b.( )解析(1)log2x2=2log2|x|,故(1)错.(2)形如y=log a x(a>0,且a≠1)为对数函数,故(2)错.(4)当x>1时,log a x>log b x,但a与b的大小不确定,故(4)错.答案 (1)× (2)× (3)√ (4)×2.(必修1P73T3改编)已知a =2-13,b =log 213,c =log 1213,则( )A.a >b >cB.a >c >bC.c >b >aD.c >a >b解析 ∵0<a <1,b <0,c =log 1213=log 23>1.∴c >a >b . 答案 D3.(必修1P74A7改编)函数y =log 23(2x -1)的定义域是________.解析 由log 23(2x -1)≥0,得0<2x -1≤1.∴12<x ≤1. ∴函数y =log 23(2x -1)的定义域是⎝ ⎛⎦⎥⎤12,1. 答案 ⎝ ⎛⎦⎥⎤12,14.(2018·嘉兴调研)计算log 29×log 34+2log 510+log 50.25=( ) A.0B.2C.4D.6解析 原式=2log 23×(2log 32)+log 5(102×0.25)=4+log 525=4+2=6. 答案 D5.(2019·武汉月考)已知函数y =log a (x +c )(a ,c 为常数,其中a >0,且a ≠1)的图象如图,则下列结论成立的是( )A.a >1,c >1B.a >1,0<c <1C.0<a <1,c >1D.0<a <1,0<c <1解析 由题图可知,函数在定义域内为减函数,所以0<a <1.又当x =0时,y >0,即log a c >0,所以0<c <1. 答案 D6.(2018·全国Ⅰ卷)已知函数f (x )=log 2(x 2+a ).若f (3)=1,则a =________. 解析 由f (3)=1得log 2(32+a )=1,所以9+a =2,解得a =-7. 答案 -7考点一 对数的运算【例1】 (1)计算:⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=________.(2)计算:(1-log 63)2+log 62·log 618log 64=________.解析 (1)原式=(lg 2-2-lg 52)×10012=lg ⎝⎛⎭⎪⎫122×52×10=lg 10-2×10=-2×10=-20.(2)原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.答案 (1)-20 (2)1规律方法 1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.3.a b=N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.【训练1】 (1)若lg 2,lg(2x+1),lg(2x+5)成等差数列,则x 的值等于( ) A.1B.0或18C.18D.log 23(2)(2019·成都七中检测)已知a >b >1,若log a b +log b a =52,a b =b a,则a =________,b =________.解析 (1)由题意知lg 2+lg(2x+5)=2lg(2x+1),∴2(2x +5)=(2x +1)2,(2x )2-9=0,2x=3,x =log 23. (2)设log b a =t ,则t >1,因为t +1t =52,所以t =2,则a =b 2. 又a b =b a ,所以b 2b =b b2,即2b =b 2,又a >b >1,解得b =2,a =4. 答案 (1)D (2)4 2考点二 对数函数的图象及应用【例2】 (1)(2019·潍坊一模)若函数f (x )=a x-a -x(a >0且a ≠1)在R 上为减函数,则函数y =log a (|x |-1)的图象可以是( )(2)当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,则a 的取值范围是( ) A.(0,1) B.(1,2)C.(1,2]D.⎝ ⎛⎭⎪⎫0,12 解析 (1)由f (x )在R 上是减函数,知0<a <1.又y =log a (|x |-1)是偶函数,定义域是(-∞,-1)∪(1,+∞).∴当x >1时,y =log a (x -1)的图象由y =log a x 的图象向右平移一个单位得到. 因此选项D 正确. (2)由题意,易知a >1.在同一坐标系内作出y =(x -1)2,x ∈(1,2)及y =log a x 的图象.若y =log a x 过点(2,1),得log a 2=1,所以a =2.根据题意,函数y =log a x ,x ∈(1,2)的图象恒在y =(x -1)2,x ∈(1,2)的上方. 结合图象,a 的取值范围是(1,2]. 答案 (1)D (2)C规律方法 1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. 【训练2】 (1)已知函数f (x )=log a (2x+b -1)(a >0,a ≠1)的图象如图所示,则a ,b 满足的关系是( )A.0<a -1<b <1 B.0<b <a -1<1 C.0<b -1<a <1D.0<a -1<b -1<1(2)(2019·日照调研)已知函数f (x )=⎩⎪⎨⎪⎧2x,x <1,log 2x ,x ≥1,若方程f (x )-a =0恰有一个实根,则实数a 的取值范围是________.解析 (1)由函数图象可知,f (x )在R 上单调递增,又y =2x+b -1在R 上单调递增,故a >1.函数图象与y 轴的交点坐标为(0,log a b ),由函数图象可知-1<log a b <0, 即log a a -1<log a b <log a 1,所以,a -1<b <1. 综上有0<a -1<b <1.(2)作出函数y =f (x )的图象(如图所示).方程f (x )-a =0恰有一个实根,等价于函数y =f (x )的图象与直线y =a 恰有一个公共点, 故a =0或a ≥2,即a 的取值范围是{0}∪[2,+∞). 答案 (1)A (2){0}∪[2,+∞) 考点三 对数函数的性质及应用 多维探究角度1 对数函数的性质【例3-1】 (2017·全国Ⅰ卷)已知函数f (x )=ln x +ln(2-x ),则( ) A.f (x )在(0,2)上单调递增B.f (x )在(0,2)上单调递减C.y =f (x )的图象关于直线x =1对称D.y =f (x )的图象关于点(1,0)对称解析 由题意知,f (x )=ln x +ln(2-x )的定义域为(0,2),f (x )=ln[x (2-x )]=ln[-(x -1)2+1],由复合函数的单调性知,函数f (x )在(0,1)上单调递增,在(1,2)上单调递减,所以排除A ,B ;又f (2-x )=ln(2-x )+ln x =f (x ),所以f (x )的图象关于直线x =1对称,C 正确,D 错误. 答案 C角度2 比较大小或解简单的不等式【例3-2】 (1)(一题多解)(2018·天津卷)已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系为( )A.a >b >cB.b >a >cC.c >b >aD.c >a >b(2)若log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A.(0,1)B.⎝ ⎛⎭⎪⎫0,12 C.⎝ ⎛⎭⎪⎫12,1D.(0,1)∪(1,+∞)解析 (1)法一 因为a =log 2e>1,b =ln 2∈(0,1),c =log 1213=log 23>log 2e =a >1,所以c >a >b .法二 log 1213=log 23,如图,在同一坐标系中作出函数y =log 2x ,y =ln x 的图象,由图知c >a >b .(2)由题意得a >0且a ≠1,故必有a 2+1>2a , 又log a (a 2+1)<log a 2a <0,所以0<a <1, 同时2a >1,∴a >12.综上,a ∈⎝ ⎛⎭⎪⎫12,1. 答案 (1)D (2)C角度3 对数型函数性质的综合应用 【例3-3】 已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由. 解 (1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )的最小值为3-2a ,当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0.∴a <32.又a >0且a ≠1,∴a 的取值范围是(0,1)∪⎝ ⎛⎭⎪⎫1,32. (2)t (x )=3-ax ,∵a >0, ∴函数t (x )为减函数.∵f (x )在区间[1,2]上为减函数,∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ), ∴⎩⎪⎨⎪⎧3-2a >0,log a(3-a )=1,即⎩⎪⎨⎪⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1. 规律方法 1.确定函数的定义域,研究或利用函数的性质,都要在其定义域上进行. 2.如果需将函数解析式变形,一定要保证其等价性,否则结论错误.3.在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a 的取值对函数增减性的影响,及真数必须为正的限制条件.【训练3】 (1)(2016·全国Ⅰ卷)若a >b >0,0<c <1,则( ) A.log a c <log b c B.log c a <log c b C.a c<b cD.c a>c b(2)若函数f (x )=log a ⎝ ⎛⎭⎪⎫x 2+32x (a >0,a ≠1)在区间⎝ ⎛⎭⎪⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为________.解析 (1)由y =x c与y =c x的单调性知,C ,D 不正确; ∵y =log c x 是减函数,得log c a <log c b ,B 正确; log a c =lg c lg a ,log b c =lg clg b ,∵0<c <1,∴lg c <0.又a >b >0,∴lg a >lg b ,但不能确定lg a ,lg b 的正负, ∴log a c 与log b c 的大小不能确定.(2)令M =x 2+32x ,当x ∈⎝ ⎛⎭⎪⎫12,+∞时,M ∈(1,+∞),f (x )>0,所以a >1,所以函数y =log a M为增函数,又M =⎝ ⎛⎭⎪⎫x +342-916,因此M 的单调递增区间为⎝ ⎛⎭⎪⎫-34,+∞.又x 2+32x >0,所以x >0或x <-32,所以函数f (x )的单调递增区间为(0,+∞). 答案 (1)B (2)(0,+∞)[思维升华]1.对数值取正、负值的规律当a >1且b >1或0<a <1且0<b <1时,log a b >0; 当a >1且0<b <1或0<a <1且b >1时,log a b <0.2.利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化为同底的对数式,然后根据单调性来解决.3.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性.4.多个对数函数图象比较底数大小的问题,可通过比较图象与直线y =1交点的横坐标进行判定. [易错防范]1.在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为(0,+∞).对数函数的单调性取决于底数a 与1的大小关系,当底数a 与1的大小关系不确定时,要分0<a <1与a >1两种情况讨论.2.在运算性质log a M α=αlog a M 中,要特别注意条件,在无M >0的条件下应为log a M α=αlog a |M |(α∈N *,且α为偶数).3.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.基础巩固题组 (建议用时:40分钟)一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≥4,f (x +1),x <4,则f (2+log 23)的值为( )A.24B.16C.12D.8解析 因为3<2+log 23<4,所以f (2+log 23)=f (3+log 23)=23+log 23=8×2log 23=24.答案 A2.(2018·天津卷)已知a =log 3 72,b =⎝ ⎛⎭⎪⎫1413,c =log 13 15,则a ,b ,c 的大小关系为( )A.a >b >cB.b >a >cC.c >b >aD.c >a >b解析 log 13 15=log 3-15-1=log 35,因为函数y =log 3x 在(0,+∞)上为增函数,所以log 35>log 372>log 33=1,因为函数y =⎝ ⎛⎭⎪⎫14x在(-∞,+∞)上为减函数,所以⎝ ⎛⎭⎪⎫1413<⎝ ⎛⎭⎪⎫140=1,故c >a >b . 答案 D3.(2018·张家界三模)在同一直角坐标系中,函数f (x )=2-ax ,g (x )=log a (x +2)(a >0,且a ≠1)的图象大致为( )解析 由题意,知函数f (x )=2-ax (a >0,且a ≠1)为单调递减函数,当0<a <1时,函数f (x )=2-ax 的零点x =2a>2,且函数g (x )=log a (x +2)在(-2,+∞)上为单调递减函数,C ,D均不满足;当a >1时,函数f (x )=2-ax 的零点x =2a <2,且x =2a>0,又g (x )=log a (x +2)在(-2,+∞)上是增函数,排除B ,综上只有A 满足.答案 A4.(2019·肇庆二模)已知f (x )=lg(10+x )+lg(10-x ),则( )A.f (x )是奇函数,且在(0,10)上是增函数B.f (x )是偶函数,且在(0,10)上是增函数C.f (x )是奇函数,且在(0,10)上是减函数D.f (x )是偶函数,且在(0,10)上是减函数解析 由⎩⎪⎨⎪⎧10+x >0,10-x >0,得x ∈(-10,10), 且f (x )=lg(100-x 2).∴f (x )是偶函数,又t =100-x 2在(0,10)上单调递减,y =lg t 在(0,+∞)上单调递增,故函数f (x )在(0,10)上单调递减.答案 D5.已知函数f (x )=|ln x |,若f (m )=f (n )(m >n >0),则2m +1+2n +1=( ) A.12 B.1 C.2 D.4 解析 由f (m )=f (n ),m >n >0,可知m >1>n >0,∴ln m =-ln n ,则mn =1.所以2m +1+2n +1=2(m +n )+4mn +m +n +1=2(m +n +2)m +n +2=2. 答案 C二、填空题6.lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=________. 解析 lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=lg 52+lg 22-2 =lg ⎝ ⎛⎭⎪⎫52×4-2=1-2=-1. 答案 -17.(2019·昆明诊断)设f (x )=lg ⎝⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是________.解析 由f (x )是奇函数可得a =-1,∴f (x )=lg 1+x 1-x,定义域为(-1,1). 由f (x )<0,可得0<1+x 1-x<1,∴-1<x <0. 答案 (-1,0)8.(2019·武汉调研)已知函数f (x )=⎩⎪⎨⎪⎧-log 2(3-x ),x <2,2x -2-1,x ≥2, 若f (2-a )=1,则f (a )=________.解析 当2-a <2,即a >0时,f (2-a )=-log 2(1+a )=1.解得a =-12,不合题意. 当2-a ≥2,即a ≤0时,f (2-a )=2-a -1=1,即2-a=2,解得a =-1,所以f (a )=f (-1)=-log 24=-2.答案 -2三、解答题9.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域; (2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值. 解 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3, ∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4],∴当x ∈[0,1]时,f (x )是增函数; 当x ∈⎝ ⎛⎦⎥⎤1,32时,f (x )是减函数, 故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2. 10.已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f (x )的解析式;(2)解不等式f (x 2-1)>-2.解 (1)当x <0时,-x >0,则f (-x )=log 12(-x ). 因为函数f (x )是偶函数,所以f (-x )=f (x )=log 12(-x ),所以函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,0,x =0,log 12(-x ),x <0.(2)因为f (4)=log 124=-2,f (x )是偶函数,所以不等式f (x 2-1)>-2转化为f (|x 2-1|)>f (4).又因为函数f (x )在(0,+∞)上是减函数,所以|x 2-1|<4,解得-5<x <5,即不等式的解集为(-5,5).能力提升题组(建议用时:20分钟)11.(2019·商丘二模)已知a >0且a ≠1,函数f (x )=log a (x +x 2+b )在区间(-∞, +∞)上既是奇函数又是增函数,则函数g (x )=log a ||x |-b |的图象是( )解析 ∵函数f (x )=log a (x +x 2+b )在区间(-∞,+∞)上是奇函数,∴f (0)=0,∴b =1,又函数f (x )=log a (x +x 2+b )在区间(-∞,+∞)上是增函数,所以a >1.所以g (x )=log a ||x |-1|,当x >1时,g (x )=log a (x -1)为增函数,排除B ,D ;当0<x <1时,g (x )=log a (1-x )为减函数,排除C ;故选A.答案 A12.(2017·全国Ⅰ卷)设x ,y ,z 为正数,且2x =3y =5z ,则( )A.2x <3y <5zB.5z <2x <3yC.3y <5z <2xD.3y <2x <5z 解析 令t =2x =3y =5z ,∵x ,y ,z 为正数,∴t >1.则x =log 2t =lg t lg 2,同理,y =lg t lg 3,z =lg t lg 5. ∴2x -3y =2lg t lg 2-3lg t lg 3=lg t (2lg 3-3lg 2)lg 2×lg 3=lg t (lg 9-lg 8)lg 2×lg 3>0, ∴2x >3y .又∵2x -5z =2lg t lg 2-5lg t lg 5=lg t (2lg 5-5lg 2)l g 2×lg 5=lg t (lg 25-lg 32)lg 2×lg 5<0, ∴2x <5z ,∴3y <2x <5z .答案 D13.已知函数f (x )=lg(mx 2+2mx +1),若f (x )的值域为R ,则实数m 的取值范围是________. 解析 令g (x )=mx 2+2mx +1值域为A ,∵函数f (x )=lg(mx 2+2mx +1)的值域为R ,∴(0,+∞)⊆A ,当m =0时,g (x )=1,f (x )的值域不是R ,不满足条件;当m ≠0时,⎩⎪⎨⎪⎧m >0,4m 2-4m ≥0,解得m ≥1.答案 [1,+∞)14.已知函数f (x )=ln x +1x -1. (1)求函数f (x )的定义域,并判断函数f (x )的奇偶性;(2)对于x ∈[2,6],f (x )=lnx +1x -1>ln m (x -1)(7-x )恒成立,求实数m 的取值范围. 解 (1)由x +1x -1>0,解得x <-1或x >1, ∴函数f (x )的定义域为(-∞,-1)∪(1,+∞),当x ∈(-∞,-1)∪(1,+∞)时,f (-x )=ln-x +1-x -1=ln x -1x +1=ln ⎝ ⎛⎭⎪⎫x +1x -1-1=-ln x +1x -1=-f (x ). ∴f (x )=lnx +1x -1是奇函数.(2)由于x ∈[2,6]时,f (x )=lnx +1x -1>ln m (x -1)(7-x )恒成立, ∴x +1x -1>m (x -1)(7-x )>0恒成立, ∵x ∈[2,6],∴0<m <(x +1)(7-x )在x ∈[2,6]上恒成立.令g (x )=(x +1)(7-x )=-(x -3)2+16,x ∈[2,6],由二次函数的性质可知,x ∈[2,3]时函数g (x )单调递增,x ∈[3,6]时函数g (x )单调递减, 即x ∈[2,6]时,g (x )min =g (6)=7,∴0<m <7.故实数m 的取值范围为(0,7).。
对数与对数函数精讲精析(解析版)

对数与对数函数精讲精析点点突破热门考点01 对数的概念与性质1. 对数式log a N =b 是由指数式a b =N 变化得来的,两式底数相同,对数式中的真数N 就是指数式中的幂的值,而对数值b 是指数式中的幂指数,对数式与指数式的关系如图:并非所有指数式都可以直接化为对数式.如(-3)2=9就不能直接写成log (-3)9=2,只有a >0且a ≠1,N >0时,才有a x =N ⇔x =log a N . 2. 对数性质在计算中的应用(1)对数运算时的常用性质:log a a =1,log a 1=0.(2)使用对数的性质时,有时需要将底数或真数进行变形后才能运用;对于多重对数符号的,可以先把内层视为整体,逐层使用对数的性质. 3. 运用对数恒等式时注意事项(1)对于对数恒等式a log a N =N 要注意格式:①它们是同底的;②指数中含有对数形式;③其值为对数的真数.(2)对于指数中含有对数值的式子进行化简,应充分考虑对数恒等式的应用.【典例1】(2019·贵州省织金县第二中学高一期中)log 2,log 3m m a b ==,则2a b m +的值为( ) A .6 B .7C .12D .18【答案】C 【解析】log 2,log 3m m a b ==,2,3a b m m ∴==2222==()2312a b a b a b m m m m m +=⨯=故选:C【典例2】()52016? 1.2b aa b a b log b log a a b 浙江卷已知>>若+=,=,则a = ,b = .【答案】4,2. 【解析】设log ,1b a t t =>则,因为21522t t a b t +=⇒=⇒=,因此22222, 4.b a b b a b b b b b b a =⇒=⇒=⇒==【典例3】对数式log (a -2)(5-a )=b 中,实数a 的取值范围是 ( ) A .(-∞,5) B .(2,5) C .(2,+∞) D .(2,3)∪(3,5)【错解】A由题意,得5-a >0,∴a <5. 【答案】D【解析】由题意,得⎩⎪⎨⎪⎧5-a >0,a -2>0,a -2≠1,∴2<a <3或3<a <5.故选D.【易错提醒】对数的底数和真数都有范围限制,不能只考虑真数范围而忽视底数的范围.热门考点02 对数的化简、求值1.对数运算的一般思路(1)拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数运算性质化简合并.(2)合:将对数式化为同底数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.2.应用换底公式应注意的事项(1)注意换底公式的正用、逆用以及变形应用.(2)题目中有指数式和对数式时,要注意将指数式与对数式统一成一种形式,注意转化与化归思想的运用. 3.对数式的条件求值问题要注意观察所给数字特征,分析找到实现转化的共同点进行转化.4.利用换底公式计算、化简、求值的一般思路:思路一:用对数的运算法则及性质进行部分运算→换成同一底数. 思路二:一次性统一换为常用对数(或自然对数)→化简、通分、求值.【典例4】(2020·上海高三专题练习)已知2log (2)log log a a a M N M N -=+,则MN的值为( ) A .14B .4C .1D .4或1【答案】B 【解析】因为2log (2)log log a a a M N M N -=+,所以2log (2)log a a M N MN -=(), 2(2)M N MN -=,2540M MN N-+=(), 解得=1(舍去),=4,故选B.【典例5】(2019·贵州省织金县第二中学高一期中)计算或化简:5log 3333322log 2log log 85;9-+- 【答案】1-. 【解析】原式=33332log 2(log 32log 9)3log 23--+-,3332log 25log 223log 23=-++-1=-.【规律方法】(1)换底公式的本质是化异底为同底,这是解决对数问题的基本方法.(2)在运用换底公式时,若能结合底数间的关系恰当选用一些重要的结论,如log a b =1log b a ;log a a n =n ,log am b n =nm log a b ;lg2+lg5=1等,将会达到事半功倍的效果. 【易错提醒】(1)对数的运算性质以及有关公式都是在式子中所有的对数符号有意义的前提下才成立的,不能出现log 212=log 2[(-3)×(-4)]=log 2(-3)+log 2(-4)的错误. (2)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.热门考点03 对数函数的图象及应用应用对数型函数的图象可求解的问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. 【典例6】(2020·上海高一课时练习)函数y x a =-与函数log ay x =在同一坐标系的图像只可能是( )A .B .C .D .【答案】C 【解析】当1a >时,对数函数log ay x =为增函数,当1x =时函数y x a =-的值为负.无满足条件的图像.当01a <<时,对数函数log a y x =为减函数,当1x =时函数y x a =-的值为正.C 满足.故选:C【典例7】(2019·四川省眉山第一中学高三月考(文))函数与 在同一直角坐标系中的图象可能是( )A .B .C .D .【答案】D【解析】对于A、B 两图,,而ax2+bx=0的两根为0和,且两根之和为,由图知0<<1得-1<<0,矛盾,对于C、D两图,0<<1,在C 图中两根之和<-1,即>1矛盾,C错,D正确.故选:D.【典例8】(2019·江西高三高考模拟(文))已知函数lg,0 ()1lg,0x xf xxx>⎧⎪=⎨⎛⎫-<⎪⎪⎝⎭⎩,若()()f m f m>-,则实数m的取值范围是()A.(1,0)(1,)-⋃+∞B.(,1)(1,)-∞-+∞C.(1,0)(0,1)-D.(,1)(0,1)-∞-【答案】A【解析】由函数的解析式可得函数为奇函数,绘制函数图像如图所示,则不等式()()f m f m>-即()()f m f m>-,即()0f m>,观察函数图像可得实数m的取值范围是()()1,01,-⋃+∞.故选:A.【总结提升】logay x=的底数变化,其图象具有如下变化规律:(1)上下比较:在直线1x=的右侧,1a>时,底大图低(靠近x 轴);01a <<时,底大图高(靠近x 轴).(2)左右比较(比较图象与1y =的交点):交点横坐标越大,对应的对数函数的底数越大.【特别提醒】对于对数概念要注意以下两点: (1)在函数的定义中,a >0且a ≠1.(2)在解析式y =log a x 中,log a x 的系数必须为1,真数必须为x ,底数a 必须是大于0且不等于1的常数.热门考点04 对数函数的性质及应用1.对数值log a x 的符号(x >0,a >0且a ≠1)规律:“同正异负”.(1)当0<x <1,0<a <1或x >1,a >1时,log a x >0,即当真数x 和底数a 同大于(或小于)1时,对数log a x >0,即对数值为正数,简称为“同正”;(2)当0<x <1,a >1或x >1,0<a <1时,log a x <0,即当真数x 和底数a 中一个大于1,而另一个小于1时,也就是说真数x 和底数a 的取值范围“相异”时,对数log a x <0,即对数值为负数,简称为“异负”.因此对数的符号简称为“同正异负”.2.比较对数式大小的类型及相应的方法(1)若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论.(2)若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较. (3)若底数与真数都不同,则常借助1,0,-1等中间量进行比较. 3. 解对数不等式的类型及方法(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.(2)形如log a x >b 的不等式,需先将b 化为以a 为底的对数式的形式. 【典例9】(2018·全国高考真题(理))设0.2log 0.3a =,2log 0.3b =,则( ) A .0a b ab +<< B .0ab a b <+< C .0a b ab +<< D .0ab a b <<+【答案】B 【解析】 求出0.2211log0.3,0.3log a b ==,得到11a b+的范围,进而可得结果. 详解:.0.30.3log0.2,2a b log ==0.2211log0.3,0.3log a b ∴== 0.3110.4log a b ∴+= 1101a b ∴<+<,即01a b ab+<<又a 0,b 0><ab 0∴<即ab a b 0<+<故选B.【典例10】(2019·山东高考模拟(文))已知1()44x f x x -=+-e ,若正实数a 满足3(log )14a f <,则a 的取值范围为( ) A .34a >B .304a <<或43a > C .304a <<或1a > D .1a >【答案】C 【解析】 因为1x y e -=与44y x =-都是R 上的增函数,所以1()44x f x x -=+-e 是R 上的增函数,又因为11(1)441f e -=+-=所以()3(log )114af f <=等价于3log 14a <,由1log a a =,知3log log 4aa a <, 当01a <<时,log a y x =在()0,∞+上单调递减,故34a <,从而304a <<;当1a >时,log a y x =在()0,∞+上单调递增,故34a >,从而1a >, 综上所述, a 的取值范围是304a <<或1a >,故选C. 【典例11】27.(2020·上海高三专题练习)函数20.5log (43)y x x =-的定义域为 .【答案】【解析】由题意可知20431x x <-≤,解得x ∈.【易错提醒】利用对数函数的性质,求与对数函数有关的函数值域和复合函数的单调性问题,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的.另外,解题时要注意数形结合、分类讨论、转化与化归思想的使用.热门考点05 对数函数、指数函数图象和性质的综合运用1. 对数函数y =log a x (a >0,且a ≠1)和指数函数y =a x (a >0,且a ≠1)互为反函数,它们的图象关于直线y=x 对称.2.复合函数y =f [g (x )]及其里层函数μ=g (x )与外层函数y =f (μ)的单调性之间的关系(见下表).函数 单调性 y =f (μ) 增函数 增函数 减函数 减函数 μ=g (x ) 增函数 减函数 增函数 减函数 y =f [g (x )]增函数减函数减函数增函数【典例12】(2019·浙江高考真题)在同一直角坐标系中,函数且的图象可能是( )A. B.C. D.【答案】D 【解析】 当时,函数过定点且单调递减,则函数过定点且单调递增,函数过定点且单调递减,D 选项符合;当时,函数过定点且单调递增,则函数过定点且单调递减,函数过定点且单调递增,各选项均不符合.综上,选D.【典例13】满足()()0f x f x --=,且在0,单调递减,若1479a -⎛⎫= ⎪⎝⎭,1597b ⎛⎫= ⎪⎝⎭,21log 9c =,则()f a ,()f b ,()f c 的大小关系为( )A .()()()f b f a f c <<B .()()()f c f b f a <<C .()()()f c f a f b <<D .()()()f b f c f a <<【答案】C 【解析】()()0()()f x f x f x f x --=∴=-∴()f x 为偶函数.21log 09c =<22211()(log )(log )(log 9)99f c f f f ∴==-=, 22log 9log 42>=,11114459799207977a b -⎛⎫⎛⎫⎛⎫⎛⎫>>==>=> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2log 9a b ∴>>. ()f x 在0,单调递减,∴()()()2log 9f f a f b <<,即()()()f c f a f b <<.故选:C .【典例14】(2019·全国高考真题(理))已知()f x 是奇函数,且当0x <时,()e axf x =-.若(ln 2)8f =,则a =__________. 【答案】-3 【解析】因为()f x 是奇函数,且当0x >时0x ->,()()axf x f x e -=--=.又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 28a e -=,两边取以e 为底的对数得ln 23ln 2a -=,所以3a -=,即3a =-.【典例15】(2020·河北新乐市第一中学高二月考)函数()213()log 23f x x x =-++的单调递增区间是________.【答案】[1,3)或(1)3, 【解析】由题意,令223u x x =-++,由0>u , 解得13x,即函数()f x 的定义域为(1,3)-又根据二次函数的图象与性质可知,函数223u x x =-++在区间(]1,1-上单调递增, 在区间[1,3)上单调递减,又由函数()12log f x u =为单调递减函数,根据复合函数同增异减可得,函数()f x 的单调递增区间为[1,3).故答案为:[1,3)或(1)3, 【易错提醒】解答对数函数型问题,易忽视函数的定义域而导致错误. 【总结提升】(1)已知某函数是奇函数或偶函数,求其中某参数值时,常用方法有两种: ①由f (-x )=f (x )或f (-x )=-f (x )直接列关于参数的方程(组),解之得结果.②由f (-a )=f (a )或f (-a )=-f (a )(其中a 是某具体数)得关于参数的方程(组),解之得结果,但此时需检验.(2)用定义证明形如y =log a f (x )函数的单调性时,应先比较与x 1,x 2对应的两真数间的大小关系,再利用对数函数的单调性,比较出两函数值之间的大小关系.巩固提升1.(2019·北京高考真题(文))下列函数中,在区间(0,+)上单调递增的是( ) A.B.y =C.D.【答案】A 【解析】 函数,在区间 上单调递减,函数在区间上单调递增,故选A .2.已知a ,b 均为不等于1的正数,且满足lg lg 0a b +=,则函数()x f x a =与函数()log b g x x =-的图象可能是( )A. B.C. D.【答案】B 【解析】lg lg 0a b +=,1ab ∴=,即1b a=, 1()log log a ag x x x ∴=-=,∴()f x 与()g x 互为反函数,图象关于y x =对称.故选B.3.(2010·全国高考真题(文))已知函数()lg f x x =.若a b ≠且,()()f a f b =,则+a b 的取值范围是 ( ) A .(1,)+∞ B .[1,)+∞ C .(2,)+∞ D .[2,)+∞【答案】C 【解析】因为函数()lg f x x =,且由()()lg lg 1f a f b a b ab =⇔-=⇔=,(假设a<b ,)因此a+b 2ab ≥=2,但是等号取不到,因此选C4.(2018·全国高考真题(文))下列函数中,其图像与函数ln y x =的图像关于直线1x =对称的是( ) A .ln(1)y x =- B .ln(2)y x =- C .ln(1)y x =+ D .ln(2)y x =+【答案】B 【解析】函数y lnx =过定点(1,0),(1,0)关于x=1对称的点还是(1,0),只有()y ln 2x =-过此点. 故选项B 正确5.(2020·内蒙古自治区高三二模(文))已知函数()log a y x b =-的大致图象如下图,则幂函数ba y x =在第一象限的图象可能是( )A .B .C .D .【答案】B 【解析】由()log a y x b =-的图象可知,1log (1)0log (2)0a a a b b >⎧⎪-<⎨⎪->⎩,所以101121a b b >⎧⎪<-<⎨⎪->⎩,得1a >,01b <<,所以01ba<<,所以幂函数b a y x =在第一象限的图象可能为B . 故选:B.6.(2020·北京高三二模)已知函数f (x )=log a x +b 的图象如图所示,那么函数g (x )=a x +b 的图象可能为( )A .B .C .D .【答案】D 【解析】结合已知函数的图象可知,(1)1f b =<-,1a >,则()g x 递增,且(0)10g b =+<,故D 符合题意. 故选:D.7.(2019·河北高三月考(理))已知奇函数()f x 满足()(4)f x f x =+,当(0,1)x ∈时,()2x f x =,则()2log 12f =( )A.43- B.2332 C.34D.38-【答案】A 【解析】由题意()(4)f x f x =+,故函数()f x 是周期为4的函数,由23log 124<<,则21log 1240-<-<,即204log 121<-<, 又函数()f x 是定义在R 上的奇函数,则()()()2244log 12222log 1224log 12log 1244log 12223f f f -=-=--=-=-=-,故选:A.8.(2020·浙江省浙江邵外高二期中)函数()2log f x x =的定义域是( ) A .(]0,2 B .[)0,2C .[0,2]D .(2,2)【答案】A 【解析】 由题意可得,020x x >⎧⎨-≥⎩,解得02x <≤.所以函数的定义域为(]0,2, 故选:A9.(2019·北京高考真题(文))在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为 A .1010.1 B .10.1C .lg10.1D .10–10.1【答案】A 【解析】两颗星的星等与亮度满足12125lg 2E m m E -=,令211.45,26.7m m =-=-, ()10.111212222lg( 1.4526.7)10.1,1055E E m m E E =⋅-=-+==. 故选:A.10.(2019·天津高考真题(文))已知,,,则的大小关系为( )A. B. C.D.【答案】A 【解析】; ;.故. 故选A.11.(2018·天津高考真题(文))已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】D 【解析】由题意可知:3337392log log log <<,即12a <<,13111044⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭=,即01b <<, 133317552log log log =>,即c a >,综上可得:c a b >>.本题选择D 选项. 12.(2018·上海市大同中学高一期末)函数()()log 2a f x ax =-在[]0,1上是x 的减函数,则实数a 的取值范围是______. 【答案】()1,2 【解析】函数()()log 2a f x ax =-,所以真数位置上的20ax ->在[]0,1x ∈上恒成立, 由一次函数保号性可知,2a <,当01a <<时,外层函数log a y t =为减函数,要使()()log 2a f x ax =-为减函数,则2t ax =-为增函数, 所以0a ->,即0a <,所以a ∈∅, 当1a >时,外层函数log a y t =为增函数,要使()()log 2a f x ax =-为减函数,则2t ax =-为减函数, 所以0a -<,即0a >,所以1a >, 综上可得a 的范围为()1,2. 故答案为:()1,2.13.(2019·上海市高桥中学高一期末)式子()2log 3y x =-的定义域为_________. 【答案】(),3-∞ 【解析】要使函数表达式有意义,需满足:30x ->,即:x <3,∴()2log 3y x =-的定义域为(),3-∞ 故答案为:(),3-∞14.函数log ()a y x k =+(0a >,且1a ≠)的图象恒过点()0,0,则函数1log ()ay x k =-的图象恒过点______. 【答案】(2,0)【解析】由题意,得log 0a k =,1k ∴=,11log ()log (1)aay x k x ∴=-=-的图象恒过点(2,0).故答案为:(2,0)15.(2019·上海市行知中学高三月考)已知函数()f x 是定义在R 上的奇函数,且当0x <时,()2xf x =,则()4log 9f 的值为______. 【答案】13- 【解析】224222log 9log 3log 3log 10==>=,由题意得()221log log 3321log 3223f --===, 由于函数()y f x =是定义在R 上的奇函数, 因此,()()()4221log 9log 3log 33f f f ==--=-. 故答案为:13-.16.(2020·河北新乐市第一中学高二月考)已知函数()f x 为奇函数,且当0x >时,()13log 2f x x =.(1)求当0x <时,函数()f x 的表达式; (2)解不等式()3f x ≤.【答案】(1)()()1313log 20log 20x x f x x x >⎧⎪=⎨--<⎪⎩,,(2)27{02x x -≤<或1}54x ≥ 【解析】(1)解:函数()f x 为奇函数, 当0x >时,()13log 2f x x =,所以,当0x <时,0x >-,()()()()1133log 2log 2f x f x x x =--=--=--,所以()()1313log 20log 20x x f x x x >⎧⎪=⎨--<⎪⎩,,,(2)解:由题意:当0x >时有13log 23x ≤,解得154x ≥;当0x <时有()13log 23x --≤,即()13log 23x -≥-,解得2702x -≤<;综上,原不等式的解集为27{02x x -≤<或1}54x ≥。
对数与对数函数知识点及例题讲解

对数与对数函数1.对数(1)对数的定义:)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N Ûlog a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =bNN a a log log log (a >0,a ≠1,b >0,b ≠1,N >0). 2.对数函数(1)对数函数的定义)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。
但是,根据对数定义: : loglog a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象)对数函数的图象O xyy = l o g x a > Oxy<a <a y = l o g x a 1111( ())底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0. ④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数. 基础例题1.函数f (x )=|log 2x |的图象是的图象是1 1 1-1 1111 1 xxxxy y y y O OOOA BC D解析:f (x )=îíì<<-³.10,log ,1,log 22x x x x答案:A 2.若f --1(x )为函数f (x )=lg (x +1)的反函数,则f --1(x )的值域为___________________. 解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f --1(x )的值域为(-1,+∞). 答案:(-1,+∞)∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________. 解析:由0≤log 21(3-x )≤1Þlog 211≤log 21(3-x )≤log 2121Þ21≤3-x ≤1Þ2≤x ≤25. 答案:[2,25]4.若log x7y=z ,则x 、y 、z 之间满足之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由logx 7y=z Þx z=7y Þx 7z=y ,即y =x 7z. 答案:B 5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则,则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D 6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于等于 A.42 B.22 C.41 D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A 7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A. 21 B.-21 C.2 D.-2 解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B 注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21. 8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是能是OxyOxyOxyOxyABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,)111-1O xy注意:研究函数的性质时,利用图象会更直观. 【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间. 解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增. 注意:讨论复合函数的单调性要注意定义域. 【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23. 【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和)和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|. (1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|. 【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值. 解:定义域为x >3,原函数为y =lg 3)2(2--x x . 又∵3)2(2--x x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4, ∴当x =4时,y min =lg4. 【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f(x 1)+f (x 2)]<f (221x xx x +)成立的函数是)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A 探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)?)? 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2,127m +m -+m )-+m+2m ≥+xm+2m )+x m ≥2m (当且仅当=xm ,即=m 时等号成立)+x m +2m )=4m ,即4m ≥≥169. 可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较. 3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用. 。
决战2020年高考数学(理)函数与导数专题: 对数与对数函数(解析版)

函数与导数函数 对数与对数函数一、具体目标:1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点. 二、知识概述:1.对数:如果(0,1)xa N a a =>≠,那么数x 叫做以a 为底N 的对数,记作log (01)a x N a a >≠=且,其中a 叫做对数的底数,N 叫做真数. 对数的性质(01,N>0)a a >≠且:①a Na N =log ;②log N a a N =;③换底公式:log log (0,1)log b a b NN b b a=>≠;1log (0,1)log a b b b b a=>≠,推广log log log log a b c a b c d d ⋅⋅=. 2.对数的运算法则:如果(01,N>0,M>0)a a >≠且,那么()log log M+log a a a MN N =;log log log aa a M M N N =-;log log n a a M n M =n ;log log m n a nM M m= 3.对数函数的概念、图象和性质:定义:形如log (01)a y x a a >≠=且的函数叫对数函数.定义域(0,)+∞;值域R ;恒过点(1,0);当1a >时是增函数;当01a <<是减函数.【考点讲解】4.温馨提醒: (1)复合函数的单调性,遵循“同增异减”;(2)注意遵循“定义域优先”的原则.1.【2019年高考全国Ⅱ卷理数】已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.【解析】本题考查的是函数的奇偶性与对数的运算.由题意知()f x 是奇函数,且当0x >时,0x -<,()()e =ax f x f x --=--,所以()()e 0ax f x x -=>又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 2e 8a -=,两【真题分析】边取以e 为底数的对数,得ln 23ln 2a -=,所以3a -=,即3a =-. 【答案】3-2.【2018年高考全国Ⅰ卷文数】已知函数()()22log f x x a =+,若()31f =,则a =________. 【解析】根据题意有()()23log 91f a =+=,可得()22log 9log 2a +=,即92a +=,所以7a =-.故答案是7-. 【答案】7-3.【2018年高考江苏】函数()2log 1f x x =-的定义域为________.【解析】本题考点偶次根式下被开方数非负及对数函数的真数为正数,要使函数()x f 有意义,则⎩⎨⎧≥->01log 02x x ,解得⎩⎨⎧≥>20x x ,即函数()x f 的定义域为[)∞+,2. 【答案】[2,+∞)4.【2018年高考全国Ⅲ卷文数】已知函数()()2ln 11f x x x =+-+,()4f a =,则()f a -=________.【解析】由题意得()()()()()2222ln11ln11ln 122f x f x x x x x x x +-=+-+++++=+-+=,()()2f a f a ∴+-=,则()2f a -=-.故答案为−2.【答案】2-5.【2015高考四川】16log 01.0lg 2+=_____________.【解析】本题考查对数的概念、对数运算的基础知识,考查基本运算能力.2422log 10lg 16log 01.0lg 4222=+-=+=+-.【答案】2【变式】错误!未找到引用源。
2020年高考数学(理)一轮复习讲练测 专题2.7 对数与对数函数(讲) 含解析

2020年高考数学(理)一轮复习讲练测专题2.7 对数与对数函数1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点,会画底数为2,10,12的对数函数的图象;3.体会对数函数是一类重要的函数模型;4.了解指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.知识点一 对数的概念如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.知识点二 对数的性质、换底公式与运算性质 (1)对数的性质:①a log a N =N ;②log a a b =b (a >0,且a ≠1). (2)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ;②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R);④log a m M n =nmlog a M (m ,n ∈R ,且m ≠0).(3)换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1).知识点三 对数函数及其性质(1)概念:函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)对数函数的图象与性质知识点四 反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线y =x 对称.【特别提醒】1.换底公式的两个重要结论 (1)log a b =1log b a ;(2)log a m b n =nm log a b .其中a >0,且a ≠1,b >0,且b ≠1,m ,n ∈R.2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.3.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝⎛⎭⎫1a ,-1,函数图象只在第一、四象限.考点一 对数的运算【典例1】 (2019·广东中山一中模拟)计算:⎝⎛⎭⎫lg 14-lg 25÷100-12=________. 【答案】-20【解析】原式=(lg 2-2-lg 52)×10012=lg ⎝⎛⎭⎫122×52×10=lg 10-2×10=-2×10=-20. 【方法技巧】1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.3.a b =N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.【变式1】(2019·河南新乡一中模拟)已知a >b >1,若log a b +log b a =52,a b =b a,则a =________,b =________.【答案】4 2【解析】设log b a =t ,则t >1,因为t +1t =52,所以t =2,则a =b 2. 又a b =b a ,所以b 2b =b b 2,即2b =b 2,又a >b >1,解得b =2,a =4. 考点二 对数函数图象及其应用【典例2】(2019·广西桂林十八中模拟) 当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1 C .(1,2) D .(2,2)【答案】B【解析】易知0<a <1,函数y =4x与y =log a x 的大致图象如图,则由题意可知只需满足log a 12>412,解得a >22,∴22<a <1,故选B.【方法技巧】(1)识别对数函数图象时,要注意底数a 以1为分界:当a >1时,是增函数;当0<a <1时,是减函数.注意对数函数图象恒过定点(1,0),且以y 轴为渐近线.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. 【变式2】 (2019·四川棠湖中学模拟)设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=0 C .x 1x 2>1 D .0<x 1x 2<1【答案】D【解析】作出y =10x 与y =|lg(-x )|的大致图象,如图.显然x 1<0,x 2<0.不妨令x 1<x 2,则x 1<-1<x 2<0, 所以10x 1=lg(-x 1),10x 2=-lg(-x 2), 此时10x 1<10x 2, 即lg(-x 1)<-lg(-x 2), 由此得lg(x 1x 2)<0, 所以0<x 1x 2<1,故选D. 考点三 比较对数值的大小【典例3】【2019年高考天津理数】已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为( )A .a c b <<B .a b c <<C .b c a <<D .c a b <<【答案】A【解析】因为551log 2log 2a =<=, 0.50.5log 0.2log 0.252b =>=, 10.20.50.50.5c <=<,即112c <<, 所以a c b <<. 故选A. 【方法技巧】(1)若对数值同底数,利用对数函数的单调性比较 (2)若对数值同真数,利用图象法或转化为同底数进行比较 (3)若底数、真数均不同,引入中间量进行比较【变式3】【2019年高考全国Ⅰ卷理数】已知0.20.32log 0.220.2a b c ===,,,则( ) A .a b c << B .a c b << C .c a b <<D .b c a <<【答案】B【解析】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,c <=<=即01,c <<则a c b <<. 故选B .考点四 解简单的对数不等式【典例4】(2019·山东枣庄八中模拟) 设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0.若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)【答案】C【解析】由题意得⎩⎪⎨⎪⎧a >0,log 2a >-log 2a或⎩⎪⎨⎪⎧a <0,-log 2(-a )>log 2(-a ), 解得a >1或-1<a <0.故选C.【方法技巧】解决此类问题时应注意两点:(1)真数大于0;(2)底数a 的值.【变式4】(2019·广东湛江一中模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x,x <1,log 2x ,x ≥1,若方程f (x )-a =0恰有一个实根,则实数a 的取值范围是________.【答案】{0}∪[2,+∞)【解析】作出函数y =f (x )的图象(如图所示).方程f (x )-a =0恰有一个实根,等价于函数y =f (x )的图象与直线y =a 恰有一个公共点, 故a =0或a ≥2,即a 的取值范围是{0}∪[2,+∞).考点五 对数函数的综合应用【典例5】(2019·甘肃兰州一中模拟)若函数f (x )=log 12(-x 2+4x +5)在区间(3m -2,m +2)内单调递增,则实数m 的取值范围为( )A.⎣⎡⎦⎤43,3B.⎣⎡⎦⎤43,2 C.⎣⎡⎭⎫43,2 D.⎣⎡⎭⎫43,+∞【答案】C【解析】由-x 2+4x +5>0,解得-1<x <5。
高中数学对数与对数函数知识点及例题讲解

对数与对数函数1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b .(2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质:①log a (MN )=log a M +log a N .②log aNM=log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =bNa a log log (a >0,a ≠1,b >0,b ≠1,N >0).2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。
但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象xy > Ox y<a <y = l o g x a 111()).(3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题题型1(对数的计算)1.求下列各式的值. (1)355log +212log 1505log -145log ; (2)log 2125×log 318×log 519.练习题 1.计算:lg 12-lg 58+lg12.5-log 89·log 278;2.log 535+212log -log 5150-log 514; 3.log 2125×log 318×log 519.4. 3991log log 4log 32+-. 5. 4lg 2lg 5lg 22+-221(6).log 24lg log lg 2log 32+-- 7.2lg 2lg3111lg 0.36lg823+++例2.已知实数x 、y 、z 满足3x =4y =6z>1. (1)求证:2x +1y =2z; (2)试比较3x 、4y 、6z 的大小.练习题.已知log 189=a ,18b=5,用a 、b 表示log 3645.题型二:(对数函数定义域值域问题)例1.已知函数()22log 1xf x x -=-的定义域为集合A ,关于x 的不等式22a a x --<的解集为B ,若A B ⊆,求实数a 的取值范围.2.设函数22log (22)y ax x =-+定义域为A .(1)若A R =,求实数a 的取值范围;(2)若22log (22)2ax x -+>在[1,2]x ∈上恒成立,求实数a 的取值范围.练习题1.已知函数()()2lg 21f x ax x =++(1)若()f x 的定义域是R ,求实数a 的取值范围及()f x 的值域; (2)若()f x 的值域是R ,求实数a 的取值范围及()f x 的定义域2 求函数y =2lg (x -2)-lg (x -3)的最小值.题型三(奇偶性及其单调性)例题1.已知定义域为R 的函数f(x)为奇函数,且满足f(x +2)=-f(x),当x ∈[0,1]时,f(x)=2x-1. (1)求f(x)在[-1,0)上的解析式; (2)求f(12log 24)的值.2. 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间.3.已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.4.已知函数()lg(2)lg(2)f x x x =++-. (Ⅰ)求函数()y f x =的定义域; (Ⅱ)判断函数()y f x =的奇偶性;(Ⅲ)若(2)()f m f m -<,求m 的取值范围.练习题1.已知函数f(x)=log a (x +1)-log a (1-x)(a >0,a≠1) (1)求f(x)的定义域;(2)判断f(x)的奇偶性,并给出证明;(3)当a >1时,求使f(x)>0的x 的取值范围2.函数()f x 是定义在R 上的偶函数,(0)0f =,当0x >时,12()log f x x =.(1)求函数()f x 的解析式; (2)解不等式2(1)2f x ->-;3.已知()f x 是定义在R 上的偶函数,且0x ≤时,12()log (1)f x x =-+.(Ⅰ)求(0)f ,(1)f ; (Ⅱ)求函数()f x 的表达式;(Ⅲ)若(1)1f a -<-,求a 的取值范围.题型4(函数图像问题)例题1.函数f (x )=|log 2x |的图象是11xy y y OA BC D2.求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间.3.设f(x)=|lg x|,a ,b 为实数,且0<a <b. (1)求方程f(x)=1的解; (2)若a ,b 满足f(a)=f(b)=2f 2a b +⎛⎫⎪⎝⎭,求证:a·b=1,2a b+>1.练习题:1.已知0>a 且1≠a ,函数)1(log )(+=x x f a ,xx g a -=11log )(,记)()(2)(x g x f x F += (1)求函数)(x F 的定义域及其零点;(2)若关于x 的方程2()2350F x m m -++=在区间)1,0[内仅有一解,求实数m 的取值范围. 2.已知函数f(x)=log 4(4x+1)+kx(k∈R)是偶函数. (1)求k 的值;(2)设g(x)=log 44•23xa a ⎡⎤⎢⎥⎣⎦-,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a 的取值范围.3.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于题型五:函数方程1方程lg x +lg (x +3)=1的解x =___________________.2.已知函数f (x )=⎪⎩⎪⎨⎧<+≥,4),1(,4,)21(x x f x x则f (2+log 23)的值为4.已知函数1,0)((log )(≠>-=a a x ax x f a 为常数).(Ⅰ)求函数()f x 的定义域;(Ⅱ)若2a =,[]1,9x ∈,求函数()f x 的值域; (Ⅲ)若函数()f x y a =的图像恒在直线21y x =-+的上方,求实数a 的取值范围.5.已知函数221log log (28).242x xy x =⋅⋅≤≤ (Ⅰ)令x t 2log =,求y 关于t 的函数关系式及t 的取值范围; (Ⅱ)求函数的值域,并求函数取得最小值时的x 的值.6.设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小.。
对数与对数函数知识点与例题讲解

对数与对数函数知识点与例题讲解知识梳理: 一、对数1、定义:一般地,如果()0,1x a N a a =>≠,那么实数x 叫做以a 为底N 的对数,记作a x log N =,其中a 叫做对数的底数,N 叫做对数的真数.2、特殊对数⑴通常以10为底的对数叫做常用对数,并把10log N 记为lgN ; ⑵通常以e 为底的对数叫做自然对数,并把e log N 记为lnN . 3、对数的运算⑴运算性质:如果0,1,0,0a a M N >≠>>且,那么:①()a a a log MN log M log N =+;②a a a Mlog log M log N N=-;③()n a a log M nlog M n R =∈;④(),0m na a n log M log M n R m m=∈≠;⑤1a b log b log a =;⑥a log N a N =.⑵换底公式:c a c log blog b log a=.二、对数函数1、定义:一般地,函数()01a y log x a a =>≠,且叫做对数函数,其中x 是自变量,函数的定义域是()0,+∞.2、图像和性质1>a10<<a图像性质定义域: 值域:过定点 ,即当1=x 时,0=y在R 上是在R 上是非奇非偶函数3、同底的指数函数xa y =与对数函数x y a log =互为反函数,它们的图像关于直线x y =对称.【课前小测】1、2193-⎛⎫= ⎪⎝⎭写成对数式,正确的是( )A 、9123log =- B 、1392log =- C 、()1329log -= D 、()9123log -= 2、函数()0,1a y log x a a =>≠的图像过定点( )A 、()1,1B 、()1,0C 、()0,1D 、()0,0 3、49343log 等于( ) A 、7 B 、2 C 、23 D 、324、函数()()31f x lg x =+的定义域是( )A 、1,3⎛⎫-+∞ ⎪⎝⎭ B 、()0,+∞ C 、(),0-∞ D 、1,3⎛⎫-∞- ⎪⎝⎭5、函数()21f x log x =+的定义域是( )A 、(),-∞+∞B 、()0,+∞C 、1,2⎡⎫+∞⎪⎢⎣⎭D 、10,2⎛⎤ ⎥⎝⎦考点一、化简和求值例1、⑴552log 10log 0.25+=( ) A 、0 B 、1 C 、2 D 、4 解析:2log 510+log 50.25=log 5100+log 50.25=log 525=2 ⑵计算:3948(log 2log 2)(log 3log 3)+⋅+. 解:原式lg 2lg 2lg3lg3lg 2lg 2lg3lg3()()()()lg3lg9lg 4lg8lg32lg32lg 23lg 2=+⋅+=+⋅+3lg 25lg 352lg 36lg 24=⋅=. 变式、⑴(辽宁卷文10)设25abm +=,且112a b+=,则m =( ) A 、10 B 、10 C 、20 D 、100 ⑵已知32a=,用a 表示33log 4log 6-;⑶已知3log 2a =,35b=,用a 、b 表示 30log 3.考点二、比较大小例2、较下列比较下列各组数中两个值的大小:⑴6log 7,7log 6; ⑵3log π,2log 0.8; ⑶0.91.1, 1.1log 0.9,0.7log 0.8; ⑷5log 3,6log 3,7log 3. 答案:⑴>;⑵>;⑶>,>;⑷>,>.变式、⑴已知函数()|lg |f x x =,若11a b c>>>,则()f a 、()f b 、()f c 从小到大依次为 ;a c b <<⑵已知log 4log 4m n <,比较m ,n 的大小. 解:∵log 4log 4m n <, ∴4411log log m n <,当1m >,1n >时,得44110log log m n<<,∴44log log n m <, ∴1m n >>.当01m <<,01n <<时,得44110log log m n<<,∴44log log n m <, ∴01n m <<<.当01m <<,1n >时,得4log 0m <,40log n <, ∴01m <<,1n >, ∴01m n <<<.综上所述,m ,n 的大小关系为1m n >>或01n m <<<或01m n <<<. 考点三、解与对数相关的不等式 例3、⑴解不等式2)1(log 3≥--x x .解:原不等式等价于⎪⎩⎪⎨⎧-≥->->-2)3(11301x x x x 或⎪⎩⎪⎨⎧-≤-<-<>-2)3(113001x x x x解之得:4<x ≤5 ∴原不等式的解集为{x |4<x ≤5}⑵解关于x 的不等式:)1,0(,2log )12(log )34(log 2≠>>---+a a x x x a a a . 解:原不等式可化为)12(2log )34(log 2->-+x x x a a当a >1时有221234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧<<-<<->⇒⎪⎩⎪⎨⎧->-+>-+>-x x x x x x x x x x(其实中间一个不等式可省,为什么?让学生思考)当0<a <1时有42234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧>-<<<->⇒⎪⎩⎪⎨⎧-<-+>-+>-x x x x x x x x x x x 或∴当a >1时不等式的解集为221<<x ;当0<a <1时不等式的解集为42<<x ⑶解不等式24log ax x xxa > 解:两边取以a 为底的对数:当0<a <1时原不等式化为:2log 29)(log 2-<x x a a ∴0)1log 2)(4(log <--x x a a ,4log 21<<x a , ∴a x a <<4 当a >1时原不等式化为:2log 29)(log 2->x x a a ∴0)1log 2)(4(log >--x x a a ,∴ 21log 4log <>x x a a 或 ,∴a x a x <<>04或 ∴原不等式的解集为}10,|{4<<<<a a x a x 或}1,0|{4><<>a a x a x x 或考点四、对数型函数的性质 ① 定义域、值域例4、⑴函数2()lg(31)f x x ++的定义域是( ) A 、1(,)3-+∞ B 、1(,1)3- C 、11(,)33- D 、1(,)3-∞-⑵函数(21)log x y -= )A 、()2,11,3⎛⎫+∞⎪⎝⎭B 、()1,11,2⎛⎫+∞ ⎪⎝⎭C 、2,3⎛⎫+∞⎪⎝⎭ D 、1,2⎛⎫+∞ ⎪⎝⎭⑶函数()()2log 31xf x =+的值域为( )A 、()0,+∞B 、[)0,+∞C 、()1,+∞D 、[)1,+∞ 变式、求函数y =的定义域.② 单调性、奇偶性例5、⑴函数y =log 3(x 2-2x )的单调减区间是________. 解: 令u =x 2-2x ,则y =log 3u . ∵y =log 3u是增函数,u =x 2-2x >0的减区间是(-∞,0),∴y =log 3(x 2-2x )的减区间是(-∞,0).⑵设0<a <1,函数f (x )=log a (a 2x -2a x -2),则使f (x )<0的x 的取值范围是( ) A 、(-∞,0) B 、(0,+∞) C 、(-∞,log a 3)D 、(log a 3,+∞)解:由f (x )<0,即a 2x -2a x -2>1,整理得(a x -3)(a x +1)>0,则a x >3.∴x <log a 3. ⑶函数y =log 22-x2+x 的图象( )A 、关于原点对称B 、关于直线y =-x 对称C 、关于y 轴对称D 、关于直线y =x 对称解:∵f (x )=log 22-x 2+x ,∴f (-x )=log 22+x 2-x =-log 22-x2+x∴f (-x )=-f (x ),∴f (x )是奇函数.故选A .变式、⑴若011log 22<++aa a,则a 的取值范围是( ) A 、),21(+∞ B 、),1(+∞ C 、)1,21( D 、)21,0(⑵若02log )1(log 2<<+a a a a ,则a 的取值范围是 .⑶若函数)2(log )(22a x x x f a ++= 是奇函数,则a = .③综合应用例6、设函数f (x )=log a ⎝⎛⎭⎫1-ax ,其中0<a <1. ⑴证明:f (x )是(a ,+∞)上的减函数; ⑵解不等式f (x )>1.解析:⑴证明:设0<a <x 1<x 2,g (x )=1-ax ,则g (x 1)-g (x 2)=1-a x 1-1+a x 2=a (x 1-x 2)x 1x 2<0,∴g (x 1)<g (x 2).又∵0<a <1,∴f (x 1)>f (x 2). ∴f (x )在(a ,+∞)上是减函数.⑵∵log a ⎝⎛⎭⎫1-a x >1,∴0<1-ax <a ,解得:⎩⎪⎨⎪⎧x >a ,x <a 1-a ,∴不等式的解集为:{x |a <x <a1-a}.变式、已知函数22()log (32)f x x x =+-.⑴求函数()f x 的定义域;⑵求证()f x 在(1,3)x ∈上是减函数;⑶求函数()f x 的值域. 随堂巩固1、6632log log +等于( )A 、6B 、5C 、1D 、65log 2、在()23a b log -=中,实数a 的取值范围是( )A 、2a <B 、2a >C 、23,3a a <<>或D 、3a > 3、下列格式中成立的是( )A 、22a a log b log b = B 、a a a log xy log x log y =+C 、()()()a a a log xy log x log y =•D 、a a a xlog log y log x y=- 4、213alog > ,则a 的取值范围是( ) A 、312a <<B 、30112a a <<<<或C 、213a <<D 、2013a a <<>或 5、已知ab M =()0,0,1a b M >>≠,且log M b x =,则log M a 等于( ) A 、1x - B 、1x + C 、1xD 、1x - 6、(08山东济宁)已知8log 9a =,2log 5b =,则lg 3等于( ) A 、1ab - B 、()321a b - C 、()321a b + D 、()312a b -7、已知函数()()32f x lg x =+的定义域为F ,函数()()()12g x lg x lg x =-+-的定义域为G ,那么( )A 、G F ≠⊂B 、G F =C 、F G ⊆D 、FG =∅8、(08山东)已知函数()2300x x f x log x x ⎧≤=⎨>⎩,,,12f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦( ) A 、1- B、log CD 、139、若()6430log log log x =⎡⎤⎣⎦,则12x -等于( )A 、9B 、91C 、3D 、3310、若M =⋅32log 4log 3log 3132 ,则M 的值是( ) A 、5 B 、6 C 、7 D 、8 11、已知3log 2a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、5a -C 、23(1)a a -+ D 、231a a -- 12、已知偶函数()x f 在[]4,2上单调递减,那么)8(log 21f 与)(π-f 的大小关系是( )A 、)8(log 21f >)(π-f B 、)8(log 21f =)(π-fC 、)8(log 21f < )(π-f D 、不能确定13、若312log 19x-=,则x = ; 14、已知:lg 21.3a =,则lg0.213=___________;15、()2211log log 1a a x x -->+,则a 的取值范围为________________; 16、比较大小⑴8.1log 3 7.2log 3;⑵5log 6 7log 6; 17、若14log 3=x ,则=+-xx44___________;18、已知log 1a x =,log 2b x =,log 4c x =,则log abc x =____________; 19、(08山东) 知()lg lg 2lg 2x y x y +=-,求的值.20、⑴已知a =2lg ,b =3lg ,试用b a 、表示5log 12;⑵已知a =3log 2,b =7log 3,试用b a 、表示56log 14.21、已知())lgf x x =.⑴求()f x 的定义域; ⑵求证:()f x 是奇函数.22、解关于x 的不等式:)1,0(,2log )12(log )34(log 2≠>>---+a a x x x a a a 解:原不等式可化为)12(2log )34(log 2->-+x x x a a当a >1时有221234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧<<-<<->⇒⎪⎩⎪⎨⎧->-+>-+>-x x x x x x x x x x当0<a <1时有42234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧>-<<<->⇒⎪⎩⎪⎨⎧-<-+>-+>-x x x x x x x x x x x 或∴ 当a >1时不等式的解集为221<<x ; 当0<a <1时不等式的解集为42<<x课后巩固1、()0,1,0log >≠>=N b b a N b 对应的指数式是( )A 、N a b =B 、N b a =C 、b a N= D 、a b N =2、设255lg =x,则x 的值等于( )A 、10B 、0.01C 、100D 、1000 3、()[]0log log log 234=x ,那么21-x等于( )A 、2B 、21C 、4D 、414、化简9log 8log 5log 4log 8543•••的结果是( ) A 、1 B 、23C 、2D 、3 5、函数()1log 21-=x y 的定义域是( )A 、()+∞,1B 、()2,∞-C 、()+∞,2D 、(]2,1 6、若09log 9log <<n m ,那么n m ,满足的条件是( )A 、1>>n mB 、1>>m nC 、10<<<m nD 、10<<<n m7、若132log <a ,则a 的取值范围是( )A 、()+∞⎪⎭⎫ ⎝⎛,132,0B 、⎪⎭⎫ ⎝⎛+∞,32C 、⎪⎭⎫⎝⎛1,32 D 、⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛,3232,08、函数()176log 221+-=x x y 的值域是( )A 、RB 、[)+∞,8C 、()3,-∞-D 、[)+∞,39、函数⎪⎭⎫⎝⎛--=112lg x y 的图像关于( ) A 、y 轴对称 B 、x 轴对称 C 、原点对称 D 、直线x y =对称 10、图中的曲线是x y a log =的图像,已知a 的值为51,103,34,2,则相应曲线4321,,,C C C C 的a 依次为( )A 、103,51,34,2B 、51,103,34,2C 、2,34,103,51D 、51,103,2,3411、比较两个对数值的大小:7ln 12ln ;7.0log 5.0 8.0log 5.0. 12、计算()=•+50lg 2lg 5lg 2.13、函数()()x xx f -+=1lg2是 函数.(填“奇”、“偶”或“非奇非偶”).14、函数xa y =的反函数的图像经过点()2,9,则a 的值为 . 15、已知函数()()1log +=x x f a ,()()x x g a -=1log ()10≠>a a ,且 ⑴求函数()()x g x f +的定义域;(10分) ⑵判断函数()()x g x f +的奇偶性.(10分)16、已知log 4log 4m n <,比较m ,n 的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题2.7 对数与对数函数1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点,会画底数为2,10,12的对数函数的图象;3.体会对数函数是一类重要的函数模型;4.了解指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.知识点一 对数的概念如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.知识点二 对数的性质、换底公式与运算性质 (1)对数的性质:①a log a N =N ;②log a a b =b (a >0,且a ≠1). (2)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ;②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R);④log a m M n =nmlog a M (m ,n ∈R,且m ≠0).(3)换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1).知识点三 对数函数及其性质(1)概念:函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)对数函数的图象与性质a >10<a <1图象性质定义域:(0,+∞)值域:R当x=1时,y=0,即过定点(1,0)当x>1时,y>0;当0<x<1时,y<0当x>1时,y<0;当0<x<1时,y>0在(0,+∞)上是增函数在(0,+∞)上是减函数知识点四反函数指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数,它们的图象关于直线y=x对称. 【特别提醒】1.换底公式的两个重要结论(1)log a b=1log b a;(2)log a m bn=nm log a b.其中a>0,且a≠1,b>0,且b≠1,m,n∈R.2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.3.对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),⎝⎛⎭⎫1a,-1,函数图象只在第一、四象限. 考点一对数的运算【典例1】(2019·广东中山一中模拟)计算:⎝⎛⎭⎫lg14-lg 25÷100-12=________.【答案】-20【解析】原式=(lg 2-2-lg 52)×10012=lg ⎝⎛⎭⎫122×52×10=lg 10-2×10=-2×10=-20. 【方法技巧】1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.3.a b =N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化. 【变式1】(2019·河南新乡一中模拟)已知a >b >1,若log a b +log b a =52,a b =b a ,则a =________,b =________.【答案】4 2【解析】设log b a =t ,则t >1,因为t +1t =52,所以t =2,则a =b 2. 又a b =b a ,所以b 2b =b b 2,即2b =b 2,又a >b >1,解得b =2,a =4. 考点二 对数函数图象及其应用【典例2】(2019·广西桂林十八中模拟) 当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1 C .(1,2) D .(2,2)【答案】B【解析】易知0<a <1,函数y =4x 与y =log a x 的大致图象如图,则由题意可知只需满足log a 12>412,解得a >22,∴22<a <1,故选B.【方法技巧】(1)识别对数函数图象时,要注意底数a 以1为分界:当a >1时,是增函数;当0<a <1时,是减函数.注意对数函数图象恒过定点(1,0),且以y 轴为渐近线.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. 【变式2】 (2019·四川棠湖中学模拟)设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=0 C .x 1x 2>1 D .0<x 1x 2<1【答案】D【解析】作出y =10x 与y =|lg(-x )|的大致图象,如图.显然x 1<0,x 2<0.不妨令x 1<x 2,则x 1<-1<x 2<0, 所以10x 1=lg(-x 1),10x 2=-lg(-x 2), 此时10x 1<10x 2, 即lg(-x 1)<-lg(-x 2), 由此得lg(x 1x 2)<0, 所以0<x 1x 2<1,故选D. 考点三 比较对数值的大小【典例3】【2019年高考天津理数】已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为( )A .a c b <<B .a b c <<C .b c a <<D .c a b <<【答案】A【解析】因为551log 2log 2a =<=, 0.50.5log 0.2log 0.252b =>=, 10.20.50.50.5c <=<,即112c <<, 所以a c b <<. 故选A. 【方法技巧】(1)若对数值同底数,利用对数函数的单调性比较 (2)若对数值同真数,利用图象法或转化为同底数进行比较 (3)若底数、真数均不同,引入中间量进行比较【变式3】【2019年高考全国Ⅰ卷理数】已知0.20.32log 0.220.2a b c ===,,,则( ) A .a b c << B .a c b << C .c a b <<D .b c a <<【答案】B【解析】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,c <=<=即01,c <<则a c b <<. 故选B .考点四 解简单的对数不等式【典例4】(2019·山东枣庄八中模拟) 设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0.若f (a )>f (-a ),则实数a的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)【答案】C【解析】由题意得⎩⎪⎨⎪⎧a >0,log 2a >-log 2a或⎩⎪⎨⎪⎧a <0,-log 2(-a )>log 2(-a ), 解得a >1或-1<a <0.故选C.【方法技巧】解决此类问题时应注意两点:(1)真数大于0;(2)底数a 的值.【变式4】(2019·广东湛江一中模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x <1,log 2x ,x ≥1,若方程f (x )-a =0恰有一个实根,则实数a 的取值范围是________.【答案】{0}∪[2,+∞)【解析】作出函数y =f (x )的图象(如图所示).方程f (x )-a =0恰有一个实根,等价于函数y =f (x )的图象与直线y =a 恰有一个公共点, 故a =0或a ≥2,即a 的取值范围是{0}∪[2,+∞). 考点五 对数函数的综合应用【典例5】(2019·甘肃兰州一中模拟)若函数f (x )=log 12(-x 2+4x +5)在区间(3m -2,m +2)内单调递增,则实数m 的取值范围为( )A.⎣⎡⎦⎤43,3 B.⎣⎡⎦⎤43,2 C.⎣⎡⎭⎫43,2 D.⎣⎡⎭⎫43,+∞【答案】C【解析】由-x 2+4x +5>0,解得-1<x <5.二次函数y =-x 2+4x +5的对称轴为x =2.由复合函数单调性可得函数f (x )=log 12(-x 2+4x +5)的单调递增区间为(2,5).要使函数f (x )=log 12(-x 2+4x +5)在区间(3m -2,m +2)内单调递增,只需⎩⎪⎨⎪⎧3m -2≥2,m +2≤5,3m -2<m +2,解得43≤m <2.【方法技巧】解决此类问题有以下三个步骤: (1)求出函数的定义域;(2)判断对数函数的底数与1的大小关系,当底数是含字母的代数式(包含单独一个字母)时,若涉及其单调性,就必须对底数进行分类讨论;(3)判断内层函数和外层函数的单调性,运用复合函数“同增异减”原则判断函数的单调性 【变式5】(2019·湖南长郡中学模拟)已知函数f (x )=log a (3-ax ). (1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.【解析】 (1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数, x ∈[0,2]时,t (x )的最小值为3-2a , 当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0.∴a <32.又a >0且a ≠1,∴a 的取值范围是(0,1)∪⎝⎛⎭⎫1,32. (2)t (x )=3-ax ,∵a >0, ∴函数t (x )为减函数.∵f (x )在区间[1,2]上为减函数,∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ), ∴⎩⎪⎨⎪⎧3-2a >0,log a(3-a )=1,即⎩⎨⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1.。