(通用版)2019版高考数学二轮复习第一部分专题十八不等式选讲讲义理(重点生,含解析)(选修4_5)

合集下载

2019版二轮复习数学(理·重点生)通用版讲义:第一部分 专题十八 不等式选讲(选修4-5) Word版含解析

2019版二轮复习数学(理·重点生)通用版讲义:第一部分 专题十八 不等式选讲(选修4-5) Word版含解析

专题十八 ⎪⎪⎪不等式选讲(选修4-5)[由题知法][典例] (2018·福州模拟)设函数f (x )=|x -1|,x ∈R . (1)求不等式f (x )≤3-f (x -1)的解集;(2)已知关于x 的不等式f (x )≤f (x +1)-|x -a |的解集为M ,若⎝⎛⎭⎫1,32⊆M ,求实数a 的取值范围.[解] (1)因为f (x )≤3-f (x -1),所以|x -1|≤3-|x -2|⇔|x -1|+|x -2|≤3⇔⎩⎪⎨⎪⎧x <1,3-2x ≤3或⎩⎪⎨⎪⎧1≤x ≤2,1≤3或⎩⎪⎨⎪⎧x >2,2x -3≤3, 解得0≤x <1或1≤x ≤2或2<x ≤3, 所以0≤x ≤3,故不等式f (x )≤3-f (x -1)的解集为[0,3]. (2)因为⎝⎛⎭⎫1,32⊆M ,所以当x ∈⎝⎛⎭⎫1,32时, f (x )≤f (x +1)-|x -a |恒成立,而f (x )≤f (x +1)-|x -a |⇔|x -1|-|x |+|x -a |≤0⇔|x -a |≤|x |-|x -1|≤|x -x +1|=1, 所以|x -a |≤1,即x -1≤a ≤x +1,由题意,知x -1≤a ≤x +1对于任意的x ∈⎝⎛⎭⎫1,32恒成立,所以12≤a ≤2,故实数a 的取值范围为⎣⎡⎦⎤12,2.[类题通法] 含绝对值的不等式的解法 (1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a ; (2)|f (x )|<a (a >0)⇔-a <f (x )<a ;(3)|x -a |+|x -b |≥c (或≤c )(c >0),|x -a |-|x -b |≥c (或≤c )(c >0)型不等式,可通过零点分区间法或利用绝对值的几何意义进行求解.①零点分区间法求解绝对值不等式的一般步骤: (ⅰ)令每个绝对值符号的代数式为零,并求出相应的根; (ⅱ)将这些根按从小到大排列,把实数集分为若干个区间;(ⅲ)由所分区间去掉绝对值符号得若干个不等式,解这些不等式,求出解集; (ⅳ)取各个不等式解集的并集就是原不等式的解集.②利用绝对值的几何意义求解绝对值不等式的方法:由于|x -a |+|x -b |与|x -a |-|x -b |分别表示数轴上与x 对应的点到a ,b 对应的点的距离之和与距离之差,因此对形如|x -a |+|x -b |≤c (c >0)或|x -a |-|x -b |≥c (c >0)的不等式,利用绝对值的几何意义求解更直观.[应用通关]1.(2018·全国卷Ⅰ)已知f (x )=|x +1|-|ax -1|. (1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围. 解:(1)当a =1时,f (x )=|x +1|-|x -1|, 即f (x )=⎩⎪⎨⎪⎧-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为⎩⎨⎧⎭⎬⎫x x >12.(2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立. 若a ≤0,则当x ∈(0,1)时,|ax -1|≥1; 若a >0,则|ax -1|<1的解集为⎩⎨⎧⎭⎬⎫x 0<x <2a ,所以2a ≥1,故0<a ≤2.综上,a 的取值范围为(0,2].2.(2018·合肥质检)已知函数f (x )=|2x -1|. (1)解关于x 的不等式f (x )-f (x +1)≤1;(2)若关于x 的不等式f (x )<m -f (x +1)的解集不是空集,求m 的取值范围. 解:(1)f (x )-f (x +1)≤1⇔|2x -1|-|2x +1|≤1, 则⎩⎪⎨⎪⎧ x ≥12,2x -1-2x -1≤1或⎩⎪⎨⎪⎧-12<x <12,1-2x -2x -1≤1 或⎩⎪⎨⎪⎧x ≤-12,1-2x +2x +1≤1,解得x ≥12或-14≤x <12,即x ≥-14,所以原不等式的解集为⎣⎡⎭⎫-14,+∞. (2)由条件知,不等式|2x -1|+|2x +1|<m 有解, 则m >(|2x -1|+|2x +1|)min 即可.由于|2x -1|+|2x +1|=|1-2x |+|2x +1|≥|1-2x +(2x +1)|=2, 当且仅当(1-2x )(2x +1)≥0,即x ∈⎣⎡⎦⎤-12,12时等号成立,故m >2. 所以m 的取值范围是(2,+∞).[由题知法]1.含有绝对值的不等式的性质 |a |-|b |≤|a ±b |≤|a |+|b |. 2.算术—几何平均不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立. 定理2:如果a ,b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立. 定理3:如果a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.[典例] (2018·沈阳质监)已知a >0,b >0,函数f (x )=|x +a |-|x -b |. (1)当a =1,b =1时,解关于x 的不等式f (x )>1; (2)若函数f (x )的最大值为2,求证:1a +1b ≥2.[解] (1)当a =1,b =1时,f (x )=|x +1|-|x -1|=⎩⎪⎨⎪⎧2,x ≥1,2x ,-1≤x <1,-2,x <-1,①当x ≥1时,f (x )=2>1,不等式恒成立, 此时不等式的解集为{x |x ≥1};②当-1≤x <1时,f (x )=2x >1,所以x >12,此时不等式的解集为⎩⎨⎧⎭⎬⎫x 12<x <1;③当x <-1时,f (x )=-2>1,不等式不成立,此时无解. 综上所述,不等式f (x )>1的解集为⎩⎨⎧⎭⎬⎫xx >12.(2)证明:法一:由绝对值三角不等式可得 |x +a |-|x -b |≤|a +b |,a >0,b >0, ∴a +b =2,∴1a +1b =12(a +b )⎝⎛⎭⎫1a +1b =12⎝⎛⎭⎫2+b a +a b ≥2,当且仅当a =b =1时,等号成立. 法二:∵a >0,b >0,∴-a <0<b , ∴函数f (x )=|x +a |-|x -b | =|x -(-a )|-|x -b | =⎩⎪⎨⎪⎧a +b ,x ≥b ,2x +a -b ,-a ≤x <b ,-(a +b ),x <-a ,结合图象易得函数f (x )的最大值为a +b ,∴a +b =2.∴1a +1b =12(a +b )⎝⎛⎭⎫1a +1b =12⎝⎛⎭⎫2+b a +a b ≥2,当且仅当a =b =1时,等号成立. [类题通法] 证明不等式的方法和技巧(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或是否定性命题、唯一性命题,则考虑用反证法.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的基本思路是化去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.[应用通关]1.(2018·长春质检)设不等式||x +1|-|x -1||<2的解集为A . (1)求集合A ;(2)若a ,b ,c ∈A ,求证:⎪⎪⎪⎪⎪⎪1-abc ab -c >1. 解:(1)由已知,令f (x )=|x +1|-|x -1|=⎩⎪⎨⎪⎧2,x ≥1,2x ,-1<x <1,-2,x ≤-1,由|f (x )|<2得-1<x <1,即A ={x |-1<x <1}.(2)证明:要证⎪⎪⎪⎪⎪⎪1-abc ab -c >1,只需证|1-abc |>|ab -c |,即证1+a 2b 2c 2>a 2b 2+c 2,即证1-a 2b 2>c 2(1-a 2b 2), 即证(1-a 2b 2)(1-c 2)>0,由a ,b ,c ∈A ,得-1<ab <1,c 2<1, 所以(1-a 2b 2)(1-c 2)>0恒成立.综上,⎪⎪⎪⎪⎪⎪1-abc ab -c >1.2.(2018·陕西质检)已知函数f (x )=|2x -1|+|x +1|. (1)解不等式f (x )≤3;(2)记函数g (x )=f (x )+|x +1|的值域为M ,若t ∈M ,求证:t 2+1≥3t+3t .解:(1)依题意,得f (x )=⎝ ⎛-3x ,x ≤-1,2-x ,-1<x <12,3x ,x ≥12,∴f (x )≤3⇔⎩⎪⎨⎪⎧x ≤-1,-3x ≤3或⎩⎪⎨⎪⎧-1<x <12,2-x ≤3或⎩⎪⎨⎪⎧x ≥12,3x ≤3,解得-1≤x ≤1, 即不等式f (x )≤3的解集为{x |-1≤x ≤1}.(2)证明:g (x )=f (x )+|x +1|=|2x -1|+|2x +2|≥|2x -1-2x -2|=3,当且仅当(2x -1)(2x +2)≤0时取等号,∴M =[3,+∞).原不等式等价于t 2-3t +1≥3t,∵t ∈[3,+∞),∴t 2-3t ≥0,∴t 2-3t +1≥1, 又∵3t ≤1,∴t 2-3t +1≥3t ,∴t 2+1≥3t +3t .[由题知法][典例] (2018·郑州第一次质量预测)设函数f (x )=|x +3|,g (x )=|2x -1|. (1)解不等式f (x )<g (x );(2)若2f (x )+g (x )>ax +4对任意的实数x 恒成立,求a 的取值范围. [解] (1)由已知,可得|x +3|<|2x -1|,即|x +3|2<|2x -1|2,∴3x 2-10x -8>0, 解得x <-23或x >4.故所求不等式的解集为⎝⎛⎭⎫-∞,-23∪(4,+∞). (2)由已知,设h (x )=2f (x )+g (x )=2|x +3|+|2x -1|=⎩⎪⎨⎪⎧-4x -5,x ≤-3,7,-3<x <12,4x +5,x ≥12.当x ≤-3时,只需-4x -5>ax +4恒成立, 即ax <-4x -9恒成立,∵x ≤-3<0,∴a >-4x -9x =-4-9x 恒成立,∴a >⎝⎛⎭⎫-4-9x max ,∴a >-1; 当-3<x <12时,只需7>ax +4恒成立,即ax -3<0恒成立,只需⎩⎪⎨⎪⎧-3a -3≤0,12a -3≤0,∴⎩⎪⎨⎪⎧a ≥-1,a ≤6,∴-1≤a ≤6;当x ≥12时,只需4x +5>ax +4恒成立,即ax <4x +1恒成立.∵x ≥12>0,∴a <4x +1x =4+1x 恒成立.∵4+1x >4,且x →+∞时,4+1x →4,∴a ≤4.综上,a 的取值范围是(-1,4].[类题通法] 绝对值不等式的成立问题的求解模型(1)分离参数:根据不等式将参数分离化为a ≥f (x )或a ≤f (x )形式. (2)转化最值:f (x )>a 恒成立⇔f (x )min >a ; f (x )<a 恒成立⇔f (x )max <a ; f (x )>a 有解⇔f (x )max >a ; f (x )<a 有解⇔f (x )min <a ; f (x )>a 无解⇔f (x )max ≤a ; f (x )<a 无解⇔f (x )min ≥a .(3)求最值:利用基本不等式或绝对值不等式求最值. (4)得结论.[应用通关]1.(2018·南宁模拟)已知函数f (x )=|2x +1|-|2x -3|,g (x )=|x +1|+|x -a |. (1)求f (x )≥1的解集;(2)若对任意的t ∈R ,s ∈R ,都有g (s )≥f (t ).求a 的取值范围. 解:(1)因为函数f (x )=|2x +1|-|2x -3|, 故f (x )≥1,等价于|2x +1|-|2x -3|≥1, 等价于⎩⎪⎨⎪⎧x <-12,-2x -1-(3-2x )≥1,①或⎩⎪⎨⎪⎧-12≤x ≤32,2x +1-(3-2x )≥1, ②或⎩⎪⎨⎪⎧x >32,2x +1-(2x -3)≥1.③①无解,解②得34≤x ≤32,解③得x >32.所以不等式的解集为⎩⎨⎧⎭⎬⎫x x ≥34.(2)若对任意的t ∈R ,s ∈R ,都有g (s )≥f (t ),可得g (x )min ≥f (x )max . ∵函数f (x )=|2x +1|-|2x -3|≤|2x +1-(2x -3)|=4,∴f (x )max =4. ∵g (x )=|x +1|+|x -a |≥|x +1-(x -a )|=|a +1|,故g (x )min =|a +1|. ∴|a +1|≥4,∴a +1≥4或a +1≤-4, 解得a ≥3或a ≤-5.故a 的取值范围为(-∞,-5]∪[3,+∞).2.(2019届高三·洛阳第一次联考)已知函数f (x )=|x +1-2a |+|x -a 2|,a ∈R ,g (x )=x 2-2x -4+4(x -1)2. (1)若f (2a 2-1)>4|a -1|,求实数a 的取值范围;(2)若存在实数x ,y ,使f (x )+g (y )≤0,求实数a 的取值范围. 解:(1)∵f (2a 2-1)>4|a -1|,∴|2a 2-2a |+|a 2-1|>4|a -1|, ∴|a -1|(2|a |+|a +1|-4)>0, ∴|2a |+|a +1|>4且a ≠1.①若a ≤-1,则-2a -a -1>4,∴a <-53;②若-1<a <0,则-2a +a +1>4,∴a <-3,此时无解; ③若a ≥0且a ≠1,则2a +a +1>4,∴a >1.综上所述,a 的取值范围为⎝⎛⎭⎫-∞,-53∪(1,+∞). (2)∵g (x )=(x -1)2+4(x -1)2-5≥ 2(x -1)2·4(x -1)2-5=-1,显然可取等号,∴g (x )min =-1.于是,若存在实数x ,y ,使f (x )+g (y )≤0,只需f (x )min ≤1. 又f (x )=|x +1-2a |+|x -a 2|≥|(x +1-2a )-(x -a 2)|=(a -1)2, ∴(a -1)2≤1,∴-1≤a -1≤1,∴0≤a ≤2, 故实数a 的取值范围为[0,2]. [专题跟踪检测](对应配套卷P209)1.(2018·全国卷Ⅱ)设函数f (x )=5-|x +a |-|x -2|. (1)当a =1时,求不等式f (x )≥0的解集; (2)若f (x )≤1,求a 的取值范围.解:(1)当a =1时,f (x )=⎩⎪⎨⎪⎧2x +4,x <-1,2,-1≤x ≤2,-2x +6,x >2.当x <-1时,由2x +4≥0,解得-2≤x <-1; 当-1≤x ≤2时,显然满足题意; 当x >2时,由-2x +6≥0,解得2<x ≤3, 故f (x )≥0的解集为{x |-2≤x ≤3}. (2)f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当x =2时等号成立. 故f (x )≤1等价于|a +2|≥4. 由|a +2|≥4可得a ≤-6或a ≥2.所以a 的取值范围是(-∞,-6]∪[2,+∞). 2.(2018·兰州模拟)设函数f (x )=|x -3|,g (x )=|x -2|.(1)解不等式f (x )+g (x )<2;(2)对于实数x ,y ,若f (x )≤1,g (y )≤1,证明:|x -2y +1|≤3. 解:(1)解不等式|x -3|+|x -2|<2.①当x <2时,原不等式可化为3-x +2-x <2,解得x >32.所以32<x <2.②当2≤x ≤3时,原不等式可化为3-x +x -2<2,解得1<2.所以2≤x ≤3. ③当x >3时,原不等式可化为x -3+x -2<2,解得x <72.所以3<x <72.由①②③可知,不等式的解集为⎩⎨⎧⎭⎬⎫x | 32<x <72.(2)证明:因为f (x )≤1,g (y )≤1,即|x -3|≤1,|y -2|≤1,所以|x -2y +1|=|(x -3)-2(y -2)|≤|x -3|+2|y -2|≤1+2=3.当且仅当⎩⎪⎨⎪⎧ x =4,y =1或⎩⎪⎨⎪⎧x =2,y =3时等号成立. 3.(2018·开封模拟)已知函数f (x )=|x -m |,m <0. (1)当m =-1时,求解不等式f (x )+f (-x )≥2-x ; (2)若不等式f (x )+f (2x )<1的解集非空,求m 的取值范围. 解:(1)当m =-1时,f (x )=|x +1|,f (-x )=|x -1|, 设F (x )=|x -1|+|x +1|=⎩⎪⎨⎪⎧-2x ,x <-1,2,-1≤x <1,2x ,x ≥1,G (x )=2-x ,由F (x )≥G (x ),解得x ≤-2或x ≥0,所以不等式f (x )+f (-x )≥2-x 的解集为{x |x ≤-2或x ≥0}. (2)f (x )+f (2x )=|x -m |+|2x -m |,m <0. 设g (x )=f (x )+f (2x ),当x ≤m 时,g (x )=m -x +m -2x =2m -3x , 则g (x )≥-m ;当m <x <m2时,g (x )=x -m +m -2x =-x ,则-m2<g (x )<-m ;当x ≥m2时,g (x )=x -m +2x -m =3x -2m ,则g (x )≥-m2.所以g (x )的值域为⎣⎡⎭⎫-m2,+∞,若不等式f (x )+f (2x )<1的解集非空, 只需1>-m2,解得m >-2,又m <0,所以m 的取值范围是(-2,0). 4.(2018·全国卷Ⅲ)设函数f (x )=|2x +1|+|x -1|. (1)画出y =f (x )的图象;(2)当x ∈[0,+∞)时,f (x )≤ax +b ,求a +b 的最小值. 解:(1)f (x )=⎩⎪⎨⎪⎧-3x ,x <-12,x +2,-12≤x <1,3x ,x ≥1.y =f (x)的图象如图所示.(2)由(1)知,y =f (x )的图象与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a ≥3且b ≥2时,f (x )≤ax +b 在[0,+∞)成立,因此a +b 的最小值为5.5.已知函数f (x )=|x +1|.(1)求不等式f (x )<|2x +1|-1的解集M ; (2)设a ,b ∈M ,证明:f (ab )>f (a )-f (-b ).解:(1)①当x ≤-1时,原不等式可化为-x -1<-2x -2,解得x <-1;②当-1<x <-12时,原不等式可化为x +1<-2x -2,解得x <-1,此时原不等式无解;③当x ≥-12时,原不等式可化为x +1<2x ,解得x >1.综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |, 所以要证f (ab )>f (a )-f (-b ),只需证|ab +1|>|a +b |,即证|ab +1|2>|a +b |2, 即证a 2b 2+2ab +1>a 2+2ab +b 2,即证a 2b 2-a 2-b 2+1>0,即证(a 2-1)(b 2-1)>0. 因为a ,b ∈M ,所以a 2>1,b 2>1,所以(a 2-1)(b 2-1)>0成立,所以原不等式成立. 6.(2018·广东五市联考)已知函数f (x )=|x -a |+12a(a ≠0). (1)若不等式f (x )-f (x +m )≤1恒成立,求实数m 的最大值; (2)当a <12时,函数g (x )=f (x )+|2x -1|有零点,求实数a 的取值范围.解:(1)f (x +m )=|x +m -a |+12a. ∵f (x )-f (x +m )=|x -a |-|x +m -a |≤|m |, ∴当且仅当|m |≤1时,f (x )-f (x +m )≤1恒成立, ∴-1≤m ≤1,即实数m 的最大值为1. (2)当a <12时,g (x )=f (x )+|2x -1|=|x -a |+|2x -1|+12a=⎩⎪⎨⎪⎧-3x +a +12a+1,x <a ,-x -a +12a +1,a ≤x ≤12,3x -a +12a -1,x >12,∴g (x )min =g ⎝⎛⎭⎫12=12-a +12a =-2a 2+a +12a ≤0, ∴⎩⎪⎨⎪⎧0<a <12,-2a 2+a +1≤0或⎩⎪⎨⎪⎧a <0,-2a 2+a +1≥0, 解得-12≤a <0,∴实数a 的取值范围是⎣⎡⎭⎫-12,0. 7.(2018·郑州模拟)已知函数f (x )=|2x -1|+|ax -5|(0<a <5). (1)当a =1时,求不等式f (x )≥9的解集; (2)若函数y =f (x )的最小值为4,求实数a 的值.解:(1)当a =1时,f (x )=|2x -1|+|x -5|=⎩⎪⎨⎪⎧6-3x ,x <12,x +4,12≤x <5,3x -6,x ≥5,所以f (x )≥9⇔⎩⎪⎨⎪⎧ x <12,6-3x ≥9或⎩⎪⎨⎪⎧12≤x <5,x +4≥9或⎩⎪⎨⎪⎧x ≥5,3x -6≥9.解得x ≤-1或x ≥5,即所求不等式的解集为(-∞,-1]∪[5,+∞). (2)∵0<a <5,∴5a>1,则f (x )=⎩⎪⎨⎪⎧-(a +2)x +6,x <12,(2-a )x +4,12≤x ≤5a ,(a +2)x -6,x >5a.∵当x <12时,f (x )单调递减,当x >5a 时,f (x )单调递增,∴f (x )的最小值在⎣⎡⎦⎤12,5a 上取得.∵在⎣⎡⎦⎤12,5a 上,当0<a ≤2时,f (x )单调递增, 当2<a ≤5时,f (x )单调递减,∴⎩⎪⎨⎪⎧ 0<a ≤2,f (x )min =f ⎝⎛⎭⎫12=4或⎩⎪⎨⎪⎧2<a ≤5,f (x )min =f ⎝⎛⎭⎫5a =4. 解得a =2.8.(2018·成都模拟)已知函数f (x )=|x -2|+k |x +1|,k ∈R .(1)当k =1时,若不等式f (x )<4的解集为{x |x 1<x <x 2},求x 1+x 2的值; (2)当x ∈R 时,若关于x 的不等式f (x )≥k 恒成立,求k 的最大值. 解:(1)由题意,得|x -2|+|x +1|<4.当x >2时,原不等式可化为2x <5,∴2<x <52;当-1≤x ≤2时,原不等式可化为3<4,∴-1≤x ≤2. 当x <-1时,原不等式可化为-2x <3, ∴-32<x <-1;综上,原不等式的解集为⎩⎨⎧⎭⎬⎫x -32<x <52,即x 1=-32,x 2=52.∴x 1+x 2=1.(2)由题意,得|x -2|+k |x +1|≥k .当x =2时,即不等式3k ≥k 成立,∴k ≥0. 当x ≤-2或x ≥0时,∵|x +1|≥1,∴不等式|x -2|+k |x +1|≥k 恒成立. 当-2<x ≤-1时,原不等式可化为2-x -kx -k ≥k , 可得k ≤2-x x +2=-1+4x +2,∴k ≤3. 当-1<x <0时,原不等式可化为2-x +kx +k ≥k ,可得k ≤1-2x ,∴k <3.综上,可得0≤k ≤3,即k 的最大值为3.。

高三理科数学一轮总复习第十八章 不等式选讲

高三理科数学一轮总复习第十八章 不等式选讲

第十八章不等式选讲高考导航考试要求重难点击命题展望1.理解绝对值的几何意义,并能用它证明绝对值三角不等式等较简单的不等式.①|a+b|≤|a|+|b|;②|a-b|≤|a-c|+|c-b|.2.能用绝对值的几何意义解几类简单的绝对值型不等式,如|ax+b|≤c或|ax+b|≥c,以及|x-a|+|x-b|≥c或|x-a|+|x-b|≤c类型.3.了解证明不等式的基本方法:比较法、综合法、分析法、反证法和放缩法.4.了解数学归纳法的原理及其使用范围,会用它证明一些简单不等式及其他问题.5.了解柯西不等式的几种不同形式:二维形式(a2+b2)(c2+d2)≥(ac+bd)2、向量形式|α|·|β|≥|α·β|、一般形式∑∑∑===∙nininiiiiibaba112122)(≥,理解它们的几何意义.掌握柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用.6.了解排序不等式的推导及意义并能简单应用.7.会用数学归纳法证明贝努利不等式:.)1,0,1>(>1)1(的正整数为大于nxxnxx n≠-++本章重点:不等式的基本性质;基本不等式及其应用、绝对值型不等式的解法及其应用;用比较法、分析法、综合法证明不等式;柯西不等式、排序不等式及其应用.本章难点:三个正数的算术——几何平均不等式及其应用;绝对值不等式的解法;用反证法、放缩法证明不等式;运用柯西不等式和排序不等式证明不等式.本专题在数学必修5“不等式”的基础上,进一步学习一些重要的不等式,如绝对值不等式、柯西不等式、排序不等式以及它们的证明,同时了解证明不等式的一些基本方法,如比较法、综合法、分析法、反证法、放缩法、数学归纳法等,会用绝对值不等式、平均值不等式、柯西不等式、排序不等式等解决一些简单问题.高考中,只考查上述知识和方法,不对恒等变形的难度和一些技巧作过高的要求.知识网络18.1 绝对值型不等式典例精析题型一 解绝对值不等式 【例1】设函数f (x )=|x -1|+|x -2|. (1)解不等式f (x )>3;(2)若f (x )>a 对x ∈R 恒成立,求实数a 的取值范围.【解析】(1)因为f (x )=|x -1|+|x -2|=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,11,<,23x x x x x所以当x <1时,3-2x >3,解得x <0; 当1≤x ≤2时,f (x )>3无解; 当x >2时,2x -3>3,解得x >3.所以不等式f (x )>3的解集为(-∞,0)∪(3,+∞).(2)因为f (x )=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,1<1,,23x x x x x 所以f (x )min =1.因为f (x )>a 恒成立,所以a <1,即实数a 的取值范围是(-∞,1). 【变式训练1】设函数f (x )=|x +1|+|x -2|+a . (1)当a =-5时,求函数f (x )的定义域; (2)若函数f (x )的定义域为R ,试求a 的取值范围.【解析】(1)由题设知|x +1|+|x -2|-5≥0,如图,在同一坐标系中作出函数y =|x +1|+|x -2|和y =5的图象,知定义域为(-∞,-2]∪[3,+∞).(2)由题设知,当x ∈R 时,恒有|x +1|+|x -2|+a ≥0,即|x +1|+|x -2|≥-a ,又由(1)知|x +1|+|x -2|≥3,所以-a ≤3,即a ≥-3. 题型二 解绝对值三角不等式【例2】已知函数f (x )=|x -1|+|x -2|,若不等式|a +b |+|a -b |≥|a |f (x )对a ≠0,a 、b ∈R 恒成立,求实数x 的范围.【解析】由|a +b |+|a -b |≥|a |f (x )且a ≠0得|a +b |+|a -b ||a |≥f (x ).又因为|a +b |+|a -b ||a |≥|a +b +a -b ||a |=2,则有2≥f (x ).解不等式|x -1|+|x -2|≤2得12≤x ≤52.【变式训练2】(2010深圳)若不等式|x +1|+|x -3|≥a +4a对任意的实数x 恒成立,则实数a 的取值范围是 .【解析】(-∞,0)∪{2}.题型三 利用绝对值不等式求参数范围 【例3】(2009辽宁)设函数f (x )=|x -1|+|x -a |. (1)若a =-1,解不等式f (x )≥3; (2)如果∀x ∈R ,f (x )≥2,求a 的取值范围. 【解析】(1)当a =-1时,f (x )=|x -1|+|x +1|.由f (x )≥3得|x -1|+|x +1|≥3,①当x ≤-1时,不等式化为1-x -1-x ≥3,即-2x ≥3,不等式组⎩⎨⎧-3≥)(1,≤x f x 的解集为(-∞,-32];②当-1<x ≤1时,不等式化为1-x +x +1≥3,不可能成立,不等式组⎩⎨⎧-3≥)(1,≤<1x f x 的解集为∅;③当x >1时,不等式化为x -1+x +1≥3,即2x ≥3,不等式组⎩⎨⎧3≥)(1,>x f x 的解集为[32,+∞).综上得f (x )≥3的解集为(-∞,-32]∪[32,+∞).(2)若a =1,f (x )=2|x -1|不满足题设条件.若a <1,f (x )=⎪⎩⎪⎨⎧+-++-1,≥1),(-2<1,<,1,≤,12x a x x a a a x a xf (x )的最小值为1-a .由题意有1-a ≥2,即a ≤-1.若a >1,f (x )=⎪⎩⎪⎨⎧+-++-,≥1),(-2,<<1,11,≤,12a x a x a x a x a xf (x )的最小值为a -1,由题意有a -1≥2,故a ≥3.综上可知a 的取值范围为(-∞,-1]∪[3,+∞).【变式训练3】关于实数x 的不等式|x -12(a +1)2|≤12(a -1)2与x 2-3(a +1)x +2(3a +1)≤0 (a ∈R )的解集分别为A ,B .求使A ⊆B 的a 的取值范围.【解析】由不等式|x -12(a +1)2|≤12(a -1)2⇒-12(a -1)2≤x -12(a +1)2≤12(a -1)2,解得2a ≤x ≤a 2+1,于是A ={x |2a ≤x ≤a 2+1}.由不等式x 2-3(a +1)x +2(3a +1)≤0⇒(x -2)[x -(3a +1)]≤0, ①当3a +1≥2,即a ≥13时,B ={x |2≤x ≤3a +1},因为A ⊆B ,所以必有⎩⎨⎧++1,3≤1,2≤22a a a 解得1≤a ≤3;②当3a +1<2,即a <13时,B ={x |3a +1≤x ≤2},因为A ⊆B ,所以⎩⎨⎧++2,≤1,2≤132a a a 解得a =-1.综上使A ⊆B 的a 的取值范围是a =-1或1≤a ≤3.总结提高1.“绝对值三角不等式”的理解及记忆要结合三角形的形状,运用时注意等号成立的条件.2.绝对值不等式的解法中,||x <a 的解集是(-a ,a );||x >a 的解集是(-∞,-a )∪(a ,+∞),它可以推广到复合型绝对值不等式||ax +b ≤c ,||ax +b ≥c 的解法,还可以推广到右边含未知数x 的不等式,如||3x +1≤x -1⇒1-x ≤3x +1≤x -1.3.含有两个绝对值符号的不等式,如||x -a +||x -b ≥c 和||x -a +||x -b ≤c 型不等式的解法有三种,几何解法和代数解法以及构造函数的解法,其中代数解法主要是分类讨论的思想方法,这也是函数解法的基础,这两种解法都适宜于x 前面系数不为1类型的上述不等式,使用范围更广.18.2 不等式的证明(一)典例精析题型一 用综合法证明不等式【例1】 若a ,b ,c 为不全相等的正数,求证: lg a +b 2+lg b +c 2+lg a +c 2>lg a +lg b +lg c .【证明】 由a ,b ,c 为正数,得 lg a +b 2≥lg ab ;lg b +c 2≥lg bc ;lg a +c 2≥lg ac .而a ,b ,c 不全相等,所以lg a +b 2+lg b +c 2+lg a +c2>lg ab +lg bc +lg ac =lg a 2b 2c 2=lg(abc )=lg a +lg b +lg c .即lg a +b 2+lg b +c 2+lg a +c 2>lg a +lg b +lg c .【点拨】 本题采用了综合法证明,其中基本不等式是证明不等式的一个重要依据(是一个定理),在证明不等式时要注意结合运用.而在不等式的证明过程中,还要特别注意等号成立的条件是否满足.【变式训练1】已知a ,b ,c ,d 都是实数,且a 2+b 2=1,c 2+d 2=1.求证:|ac +bd |≤1. 【证明】因为a ,b ,c ,d 都是实数,所以|ac +bd |≤|ac |+|bd |≤a 2+c 22+b 2+d 22=a 2+b 2+c 2+d 22.又因为a 2+b 2=1,c 2+d 2=1,所以|ac +bd |≤1. 题型二 用作差法证明不等式【例2】 设a ,b ,c 为△ABC 的三边,求证:a 2+b 2+c 2<2(ab +bc +ca ). 【证明】a 2+b 2+c 2-2(ab +bc +ca )=(a -b )2+(b -c )2+(c -a )2-a 2-b 2-c 2=[(a -b )2-c 2]+[(b -c )2-a 2]+[(c -a )2-b 2].而在△ABC 中,||b -a <c ,所以(a -b )2<c 2,即(a -b )2-c 2<0.同理(a -c )2-b 2<0,(b -c )2-a 2<0,所以a 2+b 2+c 2-2(ab +bc +ca )<0. 故a 2+b 2+c 2<2(ab +bc +ca ).【点拨】 不等式的证明中,比较法特别是作差比较法是最基本的证明方法,而在牵涉到三角形的三边时,要注意运用三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.【变式训练2】设a ,b 为实数,0<n <1,0<m <1,m +n =1,求证:a 2m +b 2n≥(a +b )2.【证明】因为a 2m +b2n -(a +b )2=na 2+mb 2mn -nm (a 2+2ab +b 2)mn=na 2(1-m )+mb 2(1-n )-2mnab mn=n 2a 2+m 2b 2-2mnab mn =(na -mb )2mn≥0,所以不等式a 2m +b 2n≥(a +b )2成立.题型三 用分析法证明不等式【例3】已知a 、b 、c ∈R +,且a +b +c =1. 求证:(1+a )(1+b )(1+c )≥8(1-a )(1-b )(1-c ).【证明】因为a 、b 、c ∈R +,且a +b +c =1,所以要证原不等式成立,即证[(a +b +c )+a ][(a +b +c )+b ][(a +b +c )+c ] ≥8[(a +b +c )-a ][(a +b +c )-b ][(a +b +c )-c ],也就是证[(a +b )+(c +a )][(a +b )+(b +c )][(c +a )+(b +c )]≥8(b +c )(c +a )(a +b ).① 因为(a +b )+(b +c )≥2(a +b )(b +c )>0, (b +c )+(c +a )≥2(b +c )(c +a )>0, (c +a )+(a +b )≥2(c +a )(a +b )>0, 三式相乘得①式成立,故原不等式得证.【点拨】 本题采用的是分析法.从待证不等式出发,分析并寻求使这个不等式成立的充分条件的方法叫分析法,概括为“执果索因”.分析法也可以作为寻找证题思路的方法,分析后再用综合法书写证题过程.【变式训练3】设函数f (x )=x -a (x +1)ln(x +1)(x >-1,a ≥0). (1)求f (x )的单调区间;(2)求证:当m >n >0时,(1+m )n <(1+n )m . 【解析】(1)f ′(x )=1-a ln(x +1)-a ,①a =0时,f ′(x )>0,所以f (x )在(-1,+∞)上是增函数; ②当a >0时,f (x )在(-1,aa -1e -1]上单调递增,在[aa-1e -1,+∞)单调递减.(2)证明:要证(1+m )n <(1+n )m ,只需证n ln(1+m )<m ln(1+n ),只需证ln(1+m )m <ln(1+n )n.设g (x )=ln(1+x )x (x >0),则g ′(x )=x1+x -ln(1+x )x 2=x -(1+x )ln(1+x )x 2(1+x ). 由(1)知x -(1+x )ln(1+x )在(0,+∞)单调递减, 所以x -(1+x )ln(1+x )<0,即g (x )是减函数, 而m >n ,所以g (m )<g (n ),故原不等式成立.总结提高1.一般在证明不等式的题目中,首先考虑用比较法,它是最基本的不等式的证明方法.比较法一般有“作差比较法”和“作商比较法”,用得较多的是“作差比较法”,其中在变形过程中往往要用到配方、因式分解、通分等计算方法.2.用综合法证明不等式的过程中,所用到的依据一般是定义、公理、定理、性质等,如基本不等式、绝对值三角不等式等.3.用分析法证明不等式的关键是对原不等式的等价转换,它是从要证明的结论出发,逐步寻找使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立.4.所谓“综合法”、“分析法”其实是证明题的两种书写格式,而不是真正意义上的证明方法,并不像前面所用的比较法及后面要复习到的三角代换法、放缩法、判别式法、反证法等是一种具体的证明方法(或者手段),而只是两种互逆的证明题的书写格式.18.3 不等式的证明(二)典例精析题型一 用放缩法、反证法证明不等式【例1】已知a ,b ∈R ,且a +b =1,求证:(a +2)2+(b +2)2≥252.【证明】 方法一:(放缩法) 因为a +b =1,所以左边=(a +2)2+(b +2)2≥2[(a +2)+(b +2)2]2=12[(a +b )+4]2=252=右边.方法二:(反证法)假设(a +2)2+(b +2)2<252,则 a 2+b 2+4(a +b )+8<252.由a +b =1,得b =1-a ,于是有a 2+(1-a )2+12<252.所以(a -12)2<0,这与(a -12)2≥0矛盾.故假设不成立,所以(a +2)2+(b +2)2≥252.【点拨】 根据不等式左边是平方和及a +b =1这个特点,选用重要不等式a 2 + b 2≥ 2(a + b 2)2来证明比较好,它可以将具备a 2+b 2形式的式子缩小.而反证法的思路关键是先假设命题不成立,结合条件a +b =1,得到关于a 的不等式,最后与数的平方非负的性质矛盾,从而证明了原不等式.当然本题也可以用分析法和作差比较法来证明.【变式训练1】设a 0,a 1,a 2,…,a n -1,a n 满足a 0=a n =0,且有 a 0-2a 1+a 2≥0, a 1-2a 2+a 3≥0, …a n -2-2a n -1+a n ≥0, 求证:a 1,a 2,…,a n -1≤0.【证明】由题设a 0-2a 1+a 2≥0得a 2-a 1≥a 1-a 0. 同理,a n -a n -1≥a n -1-a n -2≥…≥a 2-a 1≥a 1-a 0.假设a 1,a 2,…,a n -1中存在大于0的数,假设a r 是a 1,a 2,…,a n -1中第一个出现的正数. 即a 1≤0,a 2≤0,…,a r -1≤0,a r >0,则有a r -a r -1>0,于是有a n -a n -1≥a n -1-a n -2≥…≥a r -a r -1>0. 并由此得a n ≥a n -1≥a n -2≥…≥a r >0.这与题设a n =0矛盾.由此证得a 1,a 2,…,a n -1≤0成立. 题型二 用数学归纳法证明不等式 【例2】用放缩法、数学归纳法证明:设a n =1×2+2×3+…+n (n +1),n ∈N *,求证:n (n +1)2<a n <(n +1)22.【证明】 方法一:(放缩法)n 2<n (n +1)<n +(n +1)2,即n <n (n +1)<2n +12.所以1+2+…+n <a n <12[1+3+…+(2n +1)].所以n (n +1)2<a n <12·(n +1)(1+2n +1)2,即n (n +1)2<a n <(n +1)22.方法二:(数学归纳法)①当n =1时,a 1=2,而1<2<2,所以原不等式成立.②假设n =k (k ≥1)时,不等式成立,即k (k +1)2<a k <(k +1)22.则当n =k +1时,a k +1=1×2+2×3+…+k (k +1)+(k +1)(k +2),所以k (k +1)2+(k +1)(k +2)<a k +1<(k +1)22+(k +1)(k +2).而k (k +1)2+(k +1)(k +2)>k (k +1)2+(k +1)(k +1)=k (k +1)2+(k +1)=(k +1)(k +2)2, (k +1)22+(k +1)(k +2)<(k +1)22+(k +1)+(k +2)2=k 2+4k +42=(k +2)22. 所以(k +1)(k +2)2<a k +1<(k +2)22.故当n =k +1时,不等式也成立.综合①②知当n ∈N *,都有n (n +1)2<a n <(n +1)22.【点拨】 在用放缩法时,常利用基本不等式n (n +1)<n +(n +1)2将某个相乘的的式子进行放缩,而在上面的方法二的数学归纳法的关键步骤也要用到这个公式.在用数学归纳法时要注意根据目标来寻找思路.【变式训练2】已知数列8×112×32,8×232×52,…,8n (2n -1)2(2n +1)2,…,S n 为其前n 项和,计算得S 1=89,S 2=2425,S 3=4849,S 4=8081,观察上述结果推测出计算S n 的公式且用数学归纳法加以证明.【解析】猜想S n =(2n +1)2-1(2n +1)2(n ∈N +).证明:①当n =1时,S 1=32-132=89,等式成立.②假设当n =k (k ≥1)时等式成立,即S k =(2k +1)2-1(2k +1)2.则S k +1=S k +8(k +1)(2k +1)2(2k +3)2=(2k +1)2-1(2k +1)2+8(k +1)(2k +1)2(2k +3)2=(2k +1)2(2k +3)2-(2k +1)2(2k +1)2(2k +3)2=[2(k +1)+1]2-1[2(k +1)+1]2.即当n =k +1时,等式也成立.综合①②得,对任何n ∈N +,等式都成立. 题型三 用不等式证明方法解决应用问题【例3】某地区原有森林木材存量为a ,且每年增长率为25%,因生产建设的需要每年年底要砍伐的木材量为b ,设a n 为n 年后该地区森林木材存量.(1)求a n 的表达式;(2)为保护生态环境,防止水土流失,该地区每年森林木材量应不少于79a ,如果b =1972a ,那么该地区今后会发生水土流失吗?若会,需要经过几年?(取lg 2=0.30)【解析】(1)依题意得a 1=a (1+14)-b =54a -b ,a 2=54a 1-b =54(54a -b )-b =(54)2a -(54+1)b ,a 3=54a 2-b =(54)3a -[(54)2+(54+1)]b ,由此猜测a n =(54)n a -[(54)n -1+(54)n -2+…+54+1]b =(54)n a -4[(54)n -1]b (n ∈N +).下面用数学归纳法证明:①当n =1时,a 1=54a -b ,猜测成立.②假设n =k (k ≥2)时猜测成立,即a k =(54)k a -4[(54)k -1]b 成立.那么当n =k +1时,a k +1=54a k -b =54⎩⎨⎧⎭⎬⎫(54)k a -4[(54)k -1]b -b =(54)k +1a -4[(54)k +1-1]b ,即当n =k +1时,猜测仍成立. 由①②知,对任意n ∈N +,猜测成立.(2)当b =1972a 时,若该地区今后发生水土流失,则森林木材存量必须少于79a ,所以(54)n a -4[(54)n -1]·1972a <79a ,整理得(54)n >5,两边取对数得n lg 54>lg 5,所以n >lg 5lg 5-2lg 2=1-lg 21-3lg 2≈1-0.301-3×0.30=7.故经过8年该地区就开始水土流失.【变式训练3】经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/时)与汽车的平均速度v (千米/时)之间的函数关系为y =920vv 2+3v +1 600(v >0).(1)在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少?(精确到0.1千辆/时)(2)若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应在什么范围内?【解析】(1)依题意,y =9203+(v +1 600v)≤9203+2 1 600=92083,当且仅当v =1 600v,即v =40时,上式等号成立,所以y max =92083≈11.1(千辆/时).(2)由条件得920vv 2+3v +1 600>10,整理得v 2-89v +1 600<0,即(v -25)(v -64)<0,解得25<v <64.答:当v =40千米/时时,车流量最大,最大车流量约为11.1千辆/时.如果要求在该时段内车流量超过10千辆/时,则汽车的平均速度应大于25千米/时且小于64千米/时.总结提高1.有些不等式,从正面证如果不易说清,可以考虑反证法,凡是含有“至少”、“唯一”或者其他否定词的命题适用反证法.在一些客观题如填空、选择题之中,也可以用反证法的方法进行命题正确与否的判断.2.放缩法是证明不等式特有的方法,在证明不等式过程中常常要用到它,放缩要有目标,目标在结论和中间结果中寻找.常用的放缩方法有:(1)添加或舍去一些项,如a 2+1>||a ,n (n +1)>n ; (2)将分子或分母放大(或缩小);(3)利用基本不等式,如n (n +1)<n +(n +1)2;(4)利用常用结论,如k +1-k =1k +1+k <12k,1k 2<1k (k -1)=1k -1-1k; 1k 2>1k (k +1)=1k -1k +1(程度大); 1k 2<1k 2-1=1(k -1)(k +1)=12(1k -1-1k +1) (程度小). 3.用数学归纳法证明与自然数有关的不等式的证明过程与用数学归纳法证明其他命题一样,先要奠基,后进行假设与推理,二者缺一不可.18.4 柯西不等式和排序不等式典例精析题型一 用柯西不等式、排序不等式证明不等式【例1】设a 1,a 2,…,a n 都为正实数,证明:a 21a 2+a 22a 3+…+a 2n -1a n +a 2n a 1≥a 1+a 2+…+a n .【证明】方法一:由柯西不等式,有(a 21a 2+a 22a 3+…+a 2n -1a n +a 2na 1)(a 2+a 3+…+a n +a 1)≥ (a 1a 2·a 2+a 2a 3·a 3+…+a n a 1·a 1)2=(a 1+a 2+…+a n )2. 不等式两边约去正数因式a 1+a 2+…+a n 即得所证不等式.方法二:不妨设a 1≤a 2≤…≤a n ,则a 21≤a 22≤…≤a 2n,1a 1≥1a 2≥…≥1a n. 由排序不等式有a 21·1a 2+a 22·1a 3+…+a 2n -1·1a n +a 2n ·1a 1≥a 21·1a 1+a 22·1a 2+…+a 2n ·1a n =a 1+a 2+…+a n , 故不等式成立.方法三:由均值不等式有 a 21a 2+a 2≥2a 1,a 22a 3+a 3≥2a 2,…,a 2na 1+a 1≥2a n ,将这n 个不等式相加得 a 21a 2+a 22a 3+…+a 2n -1a n +a 2na 1+a 2+a 3+…+a n +a 1≥2(a 1+a 2+…+a n ),整理即得所证不等式. 【点拨】 根据所证不等式的结构形式观察是否符合柯西不等式、排序不等式的结构形式或有相似之处.将其配成相关结构形式是解决问题的突破口,有时往往要进行添项、拆项、重组、配方等方法的处理.【变式训练1】已知a +b +c =1,且a 、b 、c 是正数,求证:2a +b +2b +c +2c +a≥9.【证明】左边=[2(a +b +c )](1a +b +1b +c +1c +a )=[(a +b )+(b +c )+(c +a )](1a +b +1b +c +1c +a)≥(1+1+1)2=9,(或左边=[(a +b )+(b +c )+(c +a )](1a +b +1b +c +1c +a)=3+a +b b +c +a +b c +a +b +c a +b +b +c c +a +c +a a +b +c +a b +c≥3+2b ac b c b b a ++++∙+2b a a c a c b a ++++∙+2c b ac a c c b ++++∙=9) 所以2a +b +2b +c +2c +a≥9.题型二 用柯西不等式求最值【例2】 若实数x ,y ,z 满足x +2y +3z =2,求x 2+y 2+z 2的最小值. 【解析】 由柯西不等式得,(12+22+32)(x 2+y 2+z 2)≥(x +2y +3z )2=4 (当且仅当1=kx,2=ky,3=kz 时等号成立,结合x +2y +3z =2,解得x =17,y =27,z =37),所以14(x 2+y 2+z 2)≥4.所以x 2+y 2+z 2≥27.故x 2+y 2+z 2的最小值为27.【点拨】 根据柯西不等式,要求x 2+y 2+z 2的最小值,就要给x 2+y 2+z 2再配一个平方和形式的因式,再考虑需要出现定值,就要让柯西不等式的右边出现x +2y +3z 的形式,从而得到解题思路.由此可见,柯西不等式可以应用在求代数式的最值中.【变式训练2】已知x 2+2y 2+3z 2=1817,求3x +2y +z 的最小值.【解析】因为(x 2+2y 2+3z 2)[32+(2)2+(13)2]≥(3x +2y ·2+3z ·13)2≥(3x +2y +z )2,所以(3x +2y +z )2≤12,即-23≤3x +2y +z ≤23,当且仅当x =-9317,y =-3317,z =-317时,3x +2y +z 取最小值,最小值为-2 3. 题型三 不等式综合证明与运用【例3】 设x >0,求证:1+x +x 2+…+x 2n ≥(2n +1)x n .【证明】(1)当x ≥1时,1≤x ≤x 2≤…≤x n ,由排序原理:顺序和≥反序和得 1·1+x ·x +x 2·x 2+…+x n ·x n ≥1·x n +x ·x n -1+…+x n -1·x +x n ·1,即1+x 2+x 4+…+x 2n ≥(n +1)x n .①又因为x ,x 2,…,x n ,1为序列1,x ,x 2,…,x n 的一个排列,于是再次由排序原理:乱序和≥反序和得1·x +x ·x 2+…+x n -1·x n +x n ·1≥1·x n +x ·x n -1+…+x n -1·x +x n ·1,即x +x 3+…+x 2n -1+x n ≥(n +1)x n ,②将①和②相加得1+x +x 2+…+x 2n ≥(2n +1)x n .③ (2)当0<x <1时,1>x >x 2>…>x n . 由①②仍然成立,于是③也成立. 综合(1)(2),原不等式成立.【点拨】 分类讨论的目的在于明确两个序列的大小顺序.【变式训练3】把长为9 cm 的细铁线截成三段,各自围成一个正三角形,求这三个正三角形面积和的最小值.【解析】设这三个正三角形的边长分别为a 、b 、c ,则a +b +c =3,且这三个正三角形面积和S 满足:3S =34(a 2+b 2+c 2)(12+12+12)≥34(a +b +c )2=934⇒S ≥334.当且仅当a =b =c =1时,等号成立.总结提高1.柯西不等式是基本而重要的不等式,是推证其他许多不等式的基础,有着广泛的应用.教科书首先介绍二维形式的柯西不等式,再从向量的角度来认识柯西不等式,引入向量形式的柯西不等式,再介绍一般形式的柯西不等式,以及柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用.2.排序不等式也是基本而重要的不等式.一些重要不等式可以看成是排序不等式的特殊情形,例如不等式a 2+b 2≥2ab .有些重要不等式则可以借助排序不等式得到简捷的证明.证明排序不等式时,教科书展示了一个“探究——猜想——证明——应用”的研究过程,目的是引导学生通过自己的数学活动,初步认识排序不等式的数学意义、证明方法和简单应用.3.利用柯西不等式或排序不等式常常根据所求解(证)的式子结构入手,构造适当的两组数,有难度的逐步调整去构造.对于具体明确的大小顺序、数目相同的两列数考虑它们对应乘积之和的大小关系时,通常考虑排序不等式.。

不等式选讲-2019年高考数学(理)新课标全国卷Ⅰ考点讲评与真题分析+Word版含解析

不等式选讲-2019年高考数学(理)新课标全国卷Ⅰ考点讲评与真题分析+Word版含解析

2019年新课标全国卷1理科数学考点讲评与真题分析10.不等式选讲一、考试大纲(一)不等式选讲1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1)a b a b +≤+ (2)a b a c c b -≤-+-(3)会利用绝对值的几何意义求解以下类型的不等式:ax b c +≤;ax b c +≥;x a x b c -+-≥2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明. (1)a b a b ⋅≥⋅;(2)22222()()()a b c d ac bd ++≥+;(3)222222121223231313()()()()()()x x y y x x y y x x y y -+-+-+-≥-+-. (此不等式通常称为平面三角不等式.)3.会用参数配方法讨论柯西不等式的一般情形:222111()n nni ii i i i i a ba b ===⋅≥∑∑∑4.会用向量递归方法讨论排序不等式.5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题. 6.会用数学归纳法证明伯努利不等式:(1)1n x nx +>+ (1x >-,0x ≠,n 为大于1的正整数),了解当n 为大于1的实数时伯努利不等式也成立.7.会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值. 8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法. (二)基本不等式 1.基本不等式:(a ≥0,b ≥0)(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.二、考点讲评与真题分析不等式选讲部分主要以考查以考查绝对值不等式的解法为主,偶尔也考查不等式证明的方法,经常与函数结合,考查数形结合和转化与化归思想是,考查去绝对值的方法是试题变化中不变的规律,基本不等式是考查不等式证明方法的主要依据;在求解过程中考查绝对值三角不等式的灵活应用能力。

2019高考数学二轮复习第18讲不等式选讲课件理

2019高考数学二轮复习第18讲不等式选讲课件理

2 ≥1,故0<a≤2. 所以 a
综上,a的取值范围为(0,2].
方法归纳 含绝对值不等式恒成立问题,用等价转化思想. 方法一,利用三角不等式求出最值进行转化. 方法二,利用分类讨论思想,转化成求函数值域. 方法三,数形结合进行转化.
(2018福州质量检测)已知函数f(x)=x2-|x|+1.
1 1 1 x , x , 或 2 2 2 1 2 x 2 x 1 1, 1 2 x (2 x 1) 1 1 1 1 1 解得x≥ 或- ≤x< ,即x≥- , 2 4 2 4 1 所以原不等式的解集为 , . 4
设a,b,c,d均为正数,且a-c=d-b,证明: (1)若ab>cd,则 a+ b> c + d ; (2) a+ b> c + d 是|a-b|<|c-d|的充要条件.
证明
ab , b )2=a+b+2 (1)因为( a +
cd , c + d )2=c+d+2 (
d )2. b )2>( c + 由a+b=c+d,ab>cd得( a +
即a+b+2 ab >c+d+2 cd .
因为a+b=c+d,所以ab>cd. 于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2. 因此|a-b|<|c-d|.
b > c + d 是|a-b|<|c-d|的充要条件. 综上, a +

2019版高考数学二轮复习课件+训练:第二层级重点增分专题十五不等式选讲讲义理(含解析)(选修4-5)

2019版高考数学二轮复习课件+训练:第二层级重点增分专题十五不等式选讲讲义理(含解析)(选修4-5)

重点增分专题十五 不等式选讲[全国卷3年考情分析](1)不等式选讲是高考的选考内容之一,考查的重点是不等式的证明、绝对值不等式的解法等,命题的热点是绝对值不等式的求解,以及绝对值不等式与函数的综合问题的求解.(2)此部分命题形式单一、稳定,难度中等,备考本部分内容时应注意分类讨论思想的应用.考点一 含绝对值不等式的解法 保分考点·练后讲评1.[解|f xg x 型不等式]解不等式|x +3|<|2x -1|.解:由已知,可得|x +3|<|2x -1|, 即|x +3|2<|2x -1|2,∴3x 2-10x -8>0,解得x <-23或x >4.故所求不等式的解集为⎝ ⎛⎭⎪⎫-∞,-23∪(4,+∞). 2.[解|f x +|gx a 型不等式](2018·全国卷Ⅱ)设函数f (x )=5-|x +a |-|x -2|.(1)当a =1时,求不等式f (x )≥0的解集; (2)若f (x )≤1,求a 的取值范围. 解:(1)当a =1时,f (x )=⎩⎪⎨⎪⎧2x +4,x <-1,2,-1≤x ≤2,-2x +6,x >2.当x <-1时,由2x +4≥0,解得-2≤x <-1; 当-1≤x ≤2时,显然满足题意; 当x >2时,由-2x +6≥0,解得2<x ≤3, 故f (x )≥0的解集为{x |-2≤x ≤3}.(2)f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当x =2时等号成立. 故f (x )≤1等价于|a +2|≥4. 由|a +2|≥4可得a ≤-6或a ≥2.所以a 的取值范围是(-∞,-6]∪[2,+∞). [解题方略] 绝对值不等式的常用解法(1)基本性质法:对a ∈R +,|x |<a ⇔-a <x <a ,|x |>a ⇔x <-a 或x >a . (2)平方法:两边平方去掉绝对值符号.(3)零点分区间法:含有两个或两个以上绝对值符号的不等式,可用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解.(4)几何法:利用绝对值的几何意义,画出数轴,将绝对值转化为数轴上两点的距离求解. (5)数形结合法:在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解.考点二 不等式的证明 保分考点·练后讲评1.[综合法证明不等式]已知f (x )=|x -1|+|x |,且α>1,β>1,f (α)+f (β)=2,求证:4α+1β≥92.证明:因为α>1,β>1,f (α)+f (β)=2α-1+2β-1=2, 所以α+β=2.所以4α+1β=12(α+β)⎝ ⎛⎭⎪⎫4α+1β =12⎝⎛⎭⎪⎫5+4βα+αβ≥12⎝ ⎛⎭⎪⎫5+24βα·αβ=92, 当且仅当α=2β=43时取等号.2.[分析法证明不等式]已知函数f (x )=|x +1|. (1)求不等式f (x )<|2x +1|-1的解集M ; (2)设a ,b ∈M ,证明:f (ab )>f (a )-f (-b ). 解:(1)由题意,|x +1|<|2x +1|-1, ①当x ≤-1时,不等式可化为-x -1<-2x -2, 解得x <-1; ②当-1<x <-12时,不等式可化为x +1<-2x -2,此时不等式无解; ③当x ≥-12时,不等式可化为x +1<2x ,解得x >1. 综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |, 所以要证f (ab )>f (a )-f (-b ), 只需证|ab +1|>|a +b |, 即证|ab +1|2>|a +b |2, 即证a 2b 2+2ab +1>a 2+2ab +b 2, 即证a 2b 2-a 2-b 2+1>0, 即证(a 2-1)(b 2-1)>0.因为a ,b ∈M ,所以a 2>1,b 2>1,所以(a 2-1)(b 2-1)>0成立,所以原不等式成立.3.[放缩法或反证法证明不等式]已知a ,b ∈R ,且a +b =1,求证:(a +2)2+(b +2)2≥252.证明:法一:(放缩法)因为a +b =1, 所以(a +2)2+(b +2)2≥2⎣⎢⎡⎦⎥⎤a ++b +22=12[(a +b )+4]2=252当且仅当a +2=b +2,即a =b =12时,等号成立.法二:(反证法)假设(a +2)2+(b +2)2<252,则a 2+b 2+4(a +b )+8<252.因为a +b =1,则b =1-a ,所以a 2+(1-a )2+12<252.所以⎝ ⎛⎭⎪⎫a -122<0,这与⎝ ⎛⎭⎪⎫a -122≥0矛盾,故假设不成立.所以(a +2)2+(b +2)2≥252.[解题方略] 证明不等式的常用方法不等式证明的常用方法有比较法、分析法、综合法、放缩法、反证法等. (1)如果已知条件与待证结论直接联系不明显,则考虑用分析法.(2)利用放缩法证明不等式,就是舍掉式中的一些正项或负项,或者在分式中放大或缩小分子、分母,还可把和式中各项或某项换为较大或较小的数或式子,从而达到证明不等式的目的.(3)如果待证的是否定性命题、唯一性命题或以“至少”“至多”等方式给出的问题,则考虑用反证法.用反证法证明不等式的关键是作出假设,推出矛盾.考点三 与绝对值不等式有关的最值问题 增分考点深度精研[析母题——高考年年“神”相似][典例] 已知函数f (x )=|2x -a |+|x -1|,a ∈R.(1)若不等式f (x )+|x -1|≥2对任意的x ∈R 恒成立,求实数a 的取值范围; (2)当a <2时,函数f (x )的最小值为a -1,求实数a 的值. [解] (1)f (x )+|x -1|≥2可化为⎪⎪⎪⎪⎪⎪x -a 2+|x -1|≥1.∵⎪⎪⎪⎪⎪⎪x -a 2+|x -1|≥⎪⎪⎪⎪⎪⎪a2-1, ∴⎪⎪⎪⎪⎪⎪a2-1≥1, ∴a ≤0或a ≥4,∴实数a 的取值范围为(-∞,0]∪[4,+∞).(2)当a <2时,易知函数f (x )=|2x -a |+|x -1|的零点分别为a 2和1,且a2<1,∴f (x )=⎩⎪⎨⎪⎧-3x +a +1,x <a2,x -a +1,a 2≤x ≤1,3x -a -1,x >1,易知f (x )在⎝ ⎛⎭⎪⎫-∞,a2上单调递减,在⎝ ⎛⎭⎪⎫a2,+∞上单调递增,∴f (x )min =f ⎝ ⎛⎭⎪⎫a 2=-a 2+1=a -1,解得a =43,又43<2,∴a =43. [练子题——高考年年“形”不同]1.在本例条件下,若f (x )≤|2x +1|的解集包含⎣⎢⎡⎦⎥⎤32,3,求a 的取值范围.解:由题意可知f (x )≤|2x +1|在⎣⎢⎡⎦⎥⎤32,3上恒成立, 当x ∈⎣⎢⎡⎦⎥⎤32,3时,f (x )=|2x -a |+|x -1| =|2x -a |+x -1≤|x +1|=x +1, ∴|2x -a |≤2,即2x -2≤a ≤2x +2, ∴(2x -2)max =4, (2x +2)min =5,因此a 的取值范围为[4,5].2.函数f (x )不变,若存在实数x ,使不等式f (x )-3|x -1|≥2能成立,求实数a 的取值范围.解:∵f (x )-3|x -1|=|2x -a |-2|x -1| =|2x -a |-|2x -2|≤|a -2|. ∴|a -2|≥2. ∴a ≤0或a ≥4.∴实数a 的取值范围为(-∞,0]∪[4,+∞). [解题方略]解决不等式恒成立、能成立、恰成立问题的策略[多练强化]已知函数f (x )=|x |+|x +1|.(1)若任意x ∈R ,恒有f (x )≥λ成立,求实数λ的取值范围. (2)若存在m ∈R ,使得m 2+2m +f (t )=0成立,求实数t 的取值范围. 解:(1)由f (x )=|x |+|x +1|≥|x -(x +1)|=1知,f (x )min =1, 欲使任意x ∈R ,恒有f (x )≥λ成立, 则需满足λ≤f (x )min ,所以实数λ的取值范围为(-∞,1].(2)由题意得f (t )=|t |+|t +1|=⎩⎪⎨⎪⎧-2t -1,t <-1,1,-1≤t ≤0,2t +1,t >0,存在m ∈R ,使得m 2+2m +f (t )=0成立, 即有Δ=4-4f (t )≥0,所以f (t )≤1,又f (t )≤1可等价转化为⎩⎪⎨⎪⎧t <-1,-2t -1≤1,或⎩⎪⎨⎪⎧-1≤t ≤0,1≤1,或⎩⎪⎨⎪⎧t >0,2t +1≤1,所以实数t 的取值范围为[-1,0].[专题过关检测] 1.(2019届高三·湖北五校联考)已知函数f (x )=|2x -1|,x ∈R. (1)解不等式f (x )<|x |+1;(2)若对x ,y ∈R ,有|x -y -1|≤13,|2y +1|≤16,求证:f (x )<1.解:(1)∵f (x )<|x |+1,∴|2x -1|<|x |+1, 即⎩⎪⎨⎪⎧x ≥12,2x -1<x +1或⎩⎪⎨⎪⎧0<x <12,1-2x <x +1或⎩⎪⎨⎪⎧x ≤0,1-2x <-x +1,得12≤x <2或0<x <12或无解. 故不等式f (x )<|x |+1的解集为{x |0<x <2}.(2)证明:f (x )=|2x -1|=|2(x -y -1)+(2y +1)|≤|2(x -y -1)|+|2y +1|=2|x -y -1|+|2y +1|≤2×13+16=56<1.2.(2018·全国卷Ⅰ)已知f (x )=|x +1|-|ax -1|. (1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围. 解:(1)当a =1时,f (x )=|x +1|-|x -1|, 即f (x )=⎩⎪⎨⎪⎧-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为⎩⎨⎧⎭⎬⎫x|x >12.(2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立. 若a ≤0,则当x ∈(0,1)时,|ax -1|≥1;若a >0,则|ax -1|<1的解集为⎩⎨⎧⎭⎬⎫x|0<x <2a , 所以2a≥1,故0<a ≤2.综上,a 的取值范围为(0,2].3.设不等式0<|x +2|-|1-x |<2的解集为M ,a ,b ∈M .(1)证明:⎪⎪⎪⎪⎪⎪a +12b <34.(2)比较|4ab -1|与2|b -a |的大小,并说明理由. 解:(1)证明:记f (x )=|x +2|-|1-x | =⎩⎪⎨⎪⎧-3,x ≤-2,2x +1,-2<x <1,3,x ≥1,所以由0<2x +1<2,解得-12<x <12,所以M =⎝ ⎛⎭⎪⎫-12,12, 所以⎪⎪⎪⎪⎪⎪a +12b ≤|a |+12|b |<12+12×12=34. (2)由(1)可得a 2<14,b 2<14,所以(4ab -1)2-4(b -a )2=(4a 2-1)(4b 2-1)>0, 所以|4ab -1|>2|b -a |.4.已知a ,b ∈(0,+∞),且2a 4b=2. (1)求2a +1b的最小值.(2)若存在a ,b ∈(0,+∞),使得不等式|x -1|+|2x -3|≥2a +1b成立,求实数x 的取值范围.解:(1)由2a 4b=2可知a +2b =1, 又因为2a +1b =⎝ ⎛⎭⎪⎫2a +1b (a +2b )=4b a +ab+4,由a ,b ∈(0,+∞)可知4b a +ab+4≥24b a ·ab+4=8,当且仅当a =2b 时取等号,所以2a +1b的最小值为8.(2)由(1)及题意知不等式等价于|x -1|+|2x -3|≥8, ①⎩⎪⎨⎪⎧x ≤1,1-x +-2x ,所以x ≤-43.②⎩⎪⎨⎪⎧1<x <32,x -1+3-2x ≥8,无解,③⎩⎪⎨⎪⎧x ≥32,x -1+2x -3≥8,所以x ≥4.综上,实数x 的取值范围为⎝ ⎛⎦⎥⎤-∞,-43∪[4,+∞).5.(2018·全国卷Ⅲ)设函数f (x )=|2x +1|+|x -1|. (1)画出y =f (x )的图象;(2)当x ∈[0,+∞)时,f (x )≤ax +b ,求a +b 的最小值.解:(1)f (x )=⎩⎪⎨⎪⎧-3x ,x <-12,x +2,-12≤x <1,3x ,x ≥1.y =f (x )的图象如图所示.(2)由(1)知,y =f (x )的图象与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a ≥3且b ≥2时,f (x )≤ax +b 在[0,+∞)成立,因此a +b 的最小值为5.6.已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解:(1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0,解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x|23<x <2.(2)由题设可得f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1),所以△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).7.(2018·郑州二检)已知函数f (x )=|3x +2|. (1)解不等式f (x )<4-|x -1|;(2)已知m +n =1(m ,n >0),若|x -a |-f (x )≤1m +1n(a >0)恒成立,求实数a 的取值范围.解:(1)不等式f (x )<4-|x -1|,即|3x +2|+|x -1|<4. 当x <-23时,即-3x -2-x +1<4,解得-54<x <-23;当-23≤x ≤1时,即3x +2-x +1<4,解得-23≤x <12;当x >1时,即3x +2+x -1<4,无解.综上所述,x ∈⎝ ⎛⎭⎪⎫-54,12.(2)1m +1n =⎝ ⎛⎭⎪⎫1m +1n (m +n )=1+1+n m +mn≥4,当且仅当m =n =12时等号成立.令g (x )=|x -a |-f (x )=|x -a |-|3x +2|=⎩⎪⎨⎪⎧2x +2+a ,x <-23,-4x -2+a ,-23≤x ≤a ,-2x -2-a ,x >a .所以x =-23时,g (x )max =23+a ,要使不等式恒成立,只需g (x )max =23+a ≤4,即0<a ≤103.所以实数a 的取值范围是⎝⎛⎦⎥⎤0,103.8.已知函数f (x )=|x -a |+2|x +b |(a >0,b >0)的最小值为1. (1)求a +b 的值;(2)若m ≤1a +2b恒成立,求实数m 的最大值.解:(1)f (x )=⎩⎪⎨⎪⎧-3x +a -2b ,x ≤-b ,x +a +2b ,-b <x <a ,3x -a +2b ,x ≥a .则f (x )在区间(-∞,-b ]上单调递减,在区间[-b ,+∞)上单调递增, 所以f (x )min =f (-b )=a +b ,所以a +b =1. (2)因为a >0,b >0,且a +b =1, 所以1a +2b =(a +b )⎝ ⎛⎭⎪⎫1a +2b =3+b a +2a b,又3+b a+2ab ≥3+2b a ·2a b =3+22,当且仅当b a =2ab时,等号成立, 所以当a =2-1,b =2-2时,1a +2b有最小值3+2 2. 所以m ≤3+22,所以实数m 的最大值为3+2 2.。

全国通用近年高考数学一轮复习选考部分不等式选讲学案理(2021年整理)

全国通用近年高考数学一轮复习选考部分不等式选讲学案理(2021年整理)

(全国通用版)2019版高考数学一轮复习选考部分不等式选讲学案理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2019版高考数学一轮复习选考部分不等式选讲学案理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2019版高考数学一轮复习选考部分不等式选讲学案理的全部内容。

不等式选讲第1课绝对值不等式[过双基] 1.绝对值三角不等式定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|〈a与|x|〉a的解集不等式a>0a=0a<0|x|<a错误!∅∅|x|〉a错误!错误!R(2)|ax+b|≤①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.(3)|x-a|+|x-b|≥c,|x-a|+|x-b|≤c(c>0)型不等式的解法:①利用绝对值不等式的几何意义求解;②利用零点分段法求解;③构造函数,利用函数的图象求解.错误!1.不等式|x+1|-|x-2|≥1的解集是________.解析:f(x)=|x+1|-|x-2|=错误!当-1<x〈2时,由2x-1≥1,解得1≤x<2.又当x≥2时,f(x)=3>1,所以不等式的解集为错误!。

答案:{x|x≥1}2.若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是________.解析:∵|x-a|+|x-1|≥|(x-a)-(x-1)|=|a-1|,要使|x-a|+|x-1|≤3有解,可使|a-1|≤3,∴-3≤a-1≤3,∴-2≤a≤4.答案:[-2,4]3.若不等式|kx-4|≤2的解集为错误!,则实数k=________.解析:由|kx-4|≤2⇔2≤kx≤6。

2019高考数学一轮复习第十八章不等式选讲18不等式选讲课时练理

2019高考数学一轮复习第十八章不等式选讲18不等式选讲课时练理

2019高考数学一轮复习第十八章不等式选讲18不等式选讲课时练理1.[2016·枣强中学期中]不等式|x |+x ≤2的解集为________. 答案 (-∞,1]解析 当x ≥0时,原不等式即2x ≤2,得x ≤1,所以0≤x ≤1;当x <0时,原不等式即0≤2,总成立.综上知原不等式的解集为(-∞,1].2.[2016·冀州中学期末]函数y =|2x -1|-2|x +1|的最大值为________. 答案 3解析 因为y =|2x -1|-2|x +1|=|2x -1|-|2x +2|≤|2x -1-(2x +2)|=3(当x ≤-1时取等号),所以函数的最大值为3.3.[2016·衡水中学预测]不等式|2x +1|-2|x -1|>0的解集为________.答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >14 解析 解法一:原不等式可化为|2x +1|>2|x -1|,两边平方得4x 2+4x +1>4(x 2-2x +1),解得x >14,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >14. 解法二:原不等式等价于⎩⎪⎨⎪⎧x <-12-x ++x -或⎩⎪⎨⎪⎧-12≤x ≤1x ++x -或⎩⎪⎨⎪⎧x >1x +-x -.解得x >14,所以原不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >14.4.[2016·枣强中学热身]不等式|x +3|-|x -2|≥3的解集为________. 答案 {x |x ≥1}解析 原不等式等价于⎩⎪⎨⎪⎧x ≤-3-x -3+x -2≥3或⎩⎪⎨⎪⎧-3<x <2x +3+x -2≥3或⎩⎪⎨⎪⎧x ≥2x +3-x +2≥3,解得1≤x <2或x ≥2, 故原不等式的解集为{x |x ≥1}.5.[2016·衡水中学猜题]若a >b >1,则a +1a 与b +1b的大小关系是________.答案 a +1a >b +1b解析 a +1a -⎝ ⎛⎭⎪⎫b +1b =a -b +b -aab=a -bab -ab.由a >b >1得ab >1,a -b >0, 所以a -bab -ab >0.即a +1a>b +1b.6.[2016·衡水中学一轮检测]若1a <1b<0,则下列四个结论:①|a |>|b |;②a +b <ab ;③b a +a b >2;④a 2b<2a -b ,其中正确的是________. 答案 ②③④解析 ∵1a <1b <0,∴b <a <0,∴|b |>|a |,①错;∵a +b <0,ab >0,∴a +b <ab ,②对;ba+a b >2b a ·a b=2,③对;由b <0,④变形为a 2+b 2>2ab 恒成立,④对. 7.[2016·冀州中学模拟]已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为________.答案 32解析 2x +2x -a =2(x -a )+2x -a +2a ≥ 2x -a2x -a +2a =2a +4≥7,∴a ≥32. 8.[2016·衡水二中周测]以下三个命题:①若|a -b |<1,则|a |<|b |+1;②若a ,b ∈R ,则|a +b |-2|a |≤|a -b |;③若|x |<2,|y |>3,则|x y |<23,其中正确命题的序号是________.答案 ①②③解析 ①|a |-|b |≤|a -b |<1,所以|a |<|b |+1; ②|a +b |-|a -b |≤|(a +b )+(a -b )|=|2a |, 所以|a +b |-2|a |≤|a -b |; ③|x |<2,|y |>3,所以1|y |<13,所以⎪⎪⎪⎪⎪⎪x y =|x |·1|y |<23.故三个命题都正确. 9.[2016·枣强中学仿真]若关于x 的不等式|x -1|+|x +m |>3的解集为R ,则实数m 的取值范围是________.答案 (-∞,-4)∪(2,+∞) 解析 若|x -1|+|x +m |>3的解集为R ,即不等式恒成立,则|x -1|+|x +m |≥|(x +m )-(x -1)|=|m +1|>3, 解得m >2或m <-4.10.[2016·衡水二中月考]对于任意实数a (a ≠0)和b ,不等式|a +b |+|a -b |≥|a ||x-1|恒成立,则实数x 的取值范围是________.答案 -1≤x ≤3解析 不等式恒成立,只需不等式的左边的最小值≥|a ||x -1|,由绝对值三角不等式得|a +b |+|a -b |≥|(a +b )+(a -b )|=|2a |=2|a |,故只需求解2|a |≥|a ||x -1|即可,解得-1≤x ≤3.11.[2016·武邑中学热身]已知关于x 的不等式|ax -2|+|ax -a |≥2(a >0). (1)当a =1时,求此不等式的解集;(2)若此不等式的解集为R ,求实数a 的取值范围. 解 (1)当a =1时,原不等式为|x -2|+|x -1|≥2.∴原不等式的解集为⎩⎪⎨⎪⎧x ≤13-2x ≥2或⎩⎪⎨⎪⎧1<x <21≥2或⎩⎪⎨⎪⎧x ≥22x -3≥2,即x ≥52或x ≤12,∴不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥52或x ≤12. (2)∵|ax -2|+|ax -a |≥|a -2|,∴原不等式的解集为R 等价于|a -2|≥2, ∴a ≥4或a ≤0,又a >0,∴实数a 的取值范围为a ≥4.12.[2016·冀州中学猜题]在△ABC 中,∠A ,∠B ,∠C 的对边分别是a 、b 、c ,若a 、b 、c 三边边长的倒数成等差数列,求证:∠B <90°.证明 假设∠B <90°不成立, 即∠B ≥90°,从而∠B 是△ABC 的最大角, ∴b 是△ABC 的最大边, 即b >a ,b >c . ∴1a >1b ,1c >1b,相加得1a +1c >1b +1b =2b .这与已知1a +1c =2b矛盾, 故∠B ≥90°不成立, 从而∠B <90°.能力组13.[2016·武邑中学仿真]若P =x 1+x +y 1+y +z1+z (x >0,y >0,z >0),则P 与3的大小关系为________.答案 P <3解析 ∵1+x >0,1+y >0,1+z >0, ∴x1+x +y 1+y +z 1+z <1+x 1+x +1+y 1+y +1+z 1+z=3. 即P <3.14.[2016·衡水中学模拟]设函数f (x )=|x -4|+|x -1|,则f (x )的最小值是________,若f (x )≤5,则x 的取值范围是________.答案 3 [0,5]解析 函数f (x )=⎩⎪⎨⎪⎧5-2x ,x <1,3, 1≤x ≤4,2x -5,x >4,x <1时,5-2x >3,x >4时,2x -5>3,得f (x )min =3.解不等式组⎩⎪⎨⎪⎧x <1,5-2x ≤5或⎩⎪⎨⎪⎧1≤x ≤4,3≤5或⎩⎪⎨⎪⎧x >4,2x -5≤5,求并集得x 的取值范围是[0,5].15. [2016·冀州中学期中]已知函数f (x )=|x -1|. (1)解不等式:1≤f (x )+f (x -1)≤2; (2)若a >0,求证:f (ax )-af (x )≤f (a ).解 (1)由题f (x )+f (x -1)=|x -1|+|x -2|≥|x -1+2-x |=1. 因此只需解不等式|x -1|+|x -2|≤2.当x ≤1时,原不等式等价于-2x +3≤2,即12≤x ≤1;当1<x ≤2时,原不等式等价于1≤2,即1<x ≤2; 当x >2时,原不等式等价于2x -3≤2,即2<x ≤52.综上,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤52. (2)证明:由题f (ax )-af (x )=|ax -1|-a |x -1|. 当a >0时,f (ax )-af (x )=|ax -1|-|ax -a | =|ax -1|-|a -ax |≤|ax -1+a -ax | =|a -1|=f (a ).16.[2016·衡水中学仿真]已知x +y >0,且xy ≠0. (1)求证:x 3+y 3≥x 2y +y 2x ;(2)如果x y 2+y x 2≥m 2⎝ ⎛⎭⎪⎫1x +1y 恒成立,试求实数m 的取值范围.解 (1)证明:∵x 3+y 3-(x 2y +y 2x )=x 2(x -y )-y 2(x -y )=(x +y )(x -y )2,且x +y >0,(x -y )2≥0,∴x 3+y 3-(x 2y +y 2x )≥0, ∴x 3+y 3≥x 2y +y 2x .(2)①若xy <0,则x y 2+y x 2≥m 2⎝ ⎛⎭⎪⎫1x +1y 等价于m 2≥x 3+y 3xy x +y =x 2-xy +y 2xy,又∵x 2-xy +y 2xy =x +y 2-3xy xy <-3xy xy =-3,即x 3+y 3xy x +y <-3,∴m >-6;②若xy >0,则x y 2+y x 2≥m 2⎝ ⎛⎭⎪⎫1x +1y 等价于m 2≤x 3+y 3xy x +y =x 2-xy +y 2xy ,又∵x 2-xy +y 2xy ≥2xy -xy xy =1,即x 3+y 3xy x +y≥1,∴m ≤2.综上所述,实数m 的取值范围是(-6,2].。

2019年高考数学大二轮专题复习与测试课件:1.8.2不等式选讲

2019年高考数学大二轮专题复习与测试课件:1.8.2不等式选讲

2 所以 ≥1,故 0<a≤2. a 综上,a 的取值范围为(0,2].
解|x-a|+|x-b|≥c(或≤c)型不等式,其一般步骤: (1)令每个绝对值符号里的代数式为零,并求出相应的根; (2)把这些根由小到大排序,它们把定义域分为若干个区间; (3)在所分区间上,去掉绝对值符号组成若干个不等式,解这些不等式,求出 它们的解集; (4)这些不等式解集的并集就是原不等式的解集.
(2018· 全国卷Ⅰ)已知 f(x)=|x+1|-|ax-1|. (1)当 a=1 时,求不等式 f(x)>1 的解集; (2)若 x∈(0,1)时不等式 f(x)>x 成立,求 a 的取值范围. 解析: (1)当 a=1 时,f(x)=|x+1|-|x-1|, -2,x≤-1, 即 f(x)=2x,-1<x<1, 2,x≥1. 故不等式 f(x)>1
(2)证明:x>0,y>0, y 1=x+4≥2 y x· 4= xy,即 xy≤1,
xy-xy= xy(1- xy), 又由 0< xy≤1, 则 xy-xy= xy(1- xy)≥0,即 xy≥xy.
题型三
Hale Waihona Puke 题型三 含绝对值不等式的恒成立问题 定理 1:如果 a,b 是实数,则|a+b|≤|a|+|b|,当且仅当 ab≥0 时,等号成立. 定理 2:如果 a,b,c 是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b -c)≥0 时,等号成立.
已知函数 f(x)=|x|+|x+1|. (1)若任意 x∈R,恒有 f(x)≥λ 成立,求实数 λ 的取值范围; (2)若存在 m∈R,使得 m2+2m+f(t)=0 成立,求实数 t 的取值范围. 解析: (1)由 f(x)=|x|+|x+1|≥|x-(x+1)|=1 知,f(x)min=1,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题十八不等式选讲[由题知法][典例](2018·福州模拟)设函数f (x)=|x-1|,x∈R.(1)求不等式f (x)≤3-f (x-1)的解集;(2)已知关于x 的不等式f (x )≤f (x +1)-|x -a |的解集为M ,若⎝ ⎛⎭⎪⎫1,32⊆M ,求实数a 的取值范围.[解] (1)因为f (x )≤3-f (x -1),所以|x -1|≤3-|x -2|⇔|x -1|+|x -2|≤3⇔⎩⎪⎨⎪⎧x <1,3-2x ≤3或⎩⎪⎨⎪⎧1≤x ≤2,1≤3或⎩⎪⎨⎪⎧x >2,2x -3≤3,解得0≤x <1或1≤x ≤2或2<x ≤3, 所以0≤x ≤3,故不等式f (x )≤3-f (x -1)的解集为[0,3].(2)因为⎝ ⎛⎭⎪⎫1,32⊆M ,所以当x ∈⎝ ⎛⎭⎪⎫1,32时,f (x )≤f (x +1)-|x -a |恒成立,而f (x )≤f (x +1)-|x -a |⇔|x -1|-|x |+|x -a |≤0⇔|x -a |≤|x |-|x -1|≤|x -x +1|=1,所以|x -a |≤1,即x -1≤a ≤x +1,由题意,知x -1≤a ≤x +1对于任意的x ∈⎝ ⎛⎭⎪⎫1,32恒成立,所以12≤a ≤2,故实数a 的取值范围为⎣⎢⎡⎦⎥⎤12,2.[类题通法] 含绝对值的不等式的解法 (1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a ; (2)|f (x )|<a (a >0)⇔-a <f (x )<a ;(3)|x -a |+|x -b |≥c (或≤c )(c >0),|x -a |-|x -b |≥c (或≤c )(c >0)型不等式,可通过零点分区间法或利用绝对值的几何意义进行求解.①零点分区间法求解绝对值不等式的一般步骤: (ⅰ)令每个绝对值符号的代数式为零,并求出相应的根; (ⅱ)将这些根按从小到大排列,把实数集分为若干个区间;(ⅲ)由所分区间去掉绝对值符号得若干个不等式,解这些不等式,求出解集; (ⅳ)取各个不等式解集的并集就是原不等式的解集. ②利用绝对值的几何意义求解绝对值不等式的方法:由于|x -a |+|x -b |与|x -a |-|x -b |分别表示数轴上与x 对应的点到a ,b 对应的点的距离之和与距离之差,因此对形如|x -a |+|x -b |≤c (c >0)或|x -a |-|x -b |≥c (c >0)的不等式,利用绝对值的几何意义求解更直观.[应用通关]1.(2018·全国卷Ⅰ)已知f (x )=|x +1|-|ax -1|. (1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围. 解:(1)当a =1时,f (x )=|x +1|-|x -1|, 即f (x )=⎩⎪⎨⎪⎧-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为⎩⎨⎧⎭⎬⎫x x >12.(2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立. 若a ≤0,则当x ∈(0,1)时,|ax -1|≥1;若a >0,则|ax -1|<1的解集为⎩⎨⎧⎭⎬⎫x 0<x <2a ,所以2a≥1,故0<a ≤2.综上,a 的取值范围为(0,2].2.(2018·合肥质检)已知函数f (x )=|2x -1|. (1)解关于x 的不等式f (x )-f (x +1)≤1;(2)若关于x 的不等式f (x )<m -f (x +1)的解集不是空集,求m 的取值范围. 解:(1)f (x )-f (x +1)≤1⇔|2x -1|-|2x +1|≤1, 则⎩⎪⎨⎪⎧x ≥12,2x -1-2x -1≤1或⎩⎪⎨⎪⎧-12<x <12,1-2x -2x -1≤1或⎩⎪⎨⎪⎧x ≤-12,1-2x +2x +1≤1,解得x ≥12或-14≤x <12,即x ≥-14,所以原不等式的解集为⎣⎢⎡⎭⎪⎫-14,+∞.(2)由条件知,不等式|2x -1|+|2x +1|<m 有解, 则m >(|2x -1|+|2x +1|)min 即可.由于|2x -1|+|2x +1|=|1-2x |+|2x +1|≥|1-2x +(2x +1)|=2,当且仅当(1-2x )(2x +1)≥0,即x ∈⎣⎢⎡⎦⎥⎤-12,12时等号成立,故m >2. 所以m 的取值范围是(2,+∞).[由题知法]1.含有绝对值的不等式的性质 |a |-|b |≤|a ±b |≤|a |+|b |. 2.算术—几何平均不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立. 定理2:如果a ,b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a ,b ,c 为正数,则a +b +c3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.[典例] (2018·沈阳质监)已知a >0,b >0,函数f (x )=|x +a |-|x -b |. (1)当a =1,b =1时,解关于x 的不等式f (x )>1; (2)若函数f (x )的最大值为2,求证:1a +1b≥2.[解] (1)当a =1,b =1时,f (x )=|x +1|-|x -1|=⎩⎪⎨⎪⎧2,x ≥1,2x ,-1≤x <1,-2,x <-1,①当x ≥1时,f (x )=2>1,不等式恒成立, 此时不等式的解集为{x |x ≥1};②当-1≤x <1时,f (x )=2x >1,所以x >12,此时不等式的解集为⎩⎨⎧⎭⎬⎫x 12<x <1; ③当x <-1时,f (x )=-2>1,不等式不成立,此时无解.综上所述,不等式f (x )>1的解集为⎩⎨⎧⎭⎬⎫xx >12.(2)证明:法一:由绝对值三角不等式可得 |x +a |-|x -b |≤|a +b |,a >0,b >0, ∴a +b =2,∴1a +1b =12(a +b )⎝ ⎛⎭⎪⎫1a +1b =12⎝ ⎛⎭⎪⎫2+b a +a b ≥2,当且仅当a =b =1时,等号成立.法二:∵a >0,b >0,∴-a <0<b , ∴函数f (x )=|x +a |-|x -b | =|x -(-a )|-|x -b |=⎩⎪⎨⎪⎧a +b ,x ≥b ,2x +a -b ,-a ≤x <b ,-a +b ,x <-a ,结合图象易得函数f (x )的最大值为a +b ,∴a +b =2.∴1a +1b =12(a +b )⎝ ⎛⎭⎪⎫1a +1b =12⎝ ⎛⎭⎪⎫2+b a +a b ≥2,当且仅当a =b =1时,等号成立. [类题通法] 证明不等式的方法和技巧(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或是否定性命题、唯一性命题,则考虑用反证法.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的基本思路是化去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.[应用通关]1.(2018·长春质检)设不等式||x +1|-|x -1||<2的解集为A . (1)求集合A ;(2)若a ,b ,c ∈A ,求证:⎪⎪⎪⎪⎪⎪1-abc ab -c >1.解:(1)由已知,令f (x )=|x +1|-|x -1|=⎩⎪⎨⎪⎧2,x ≥1,2x ,-1<x <1,-2,x ≤-1,由|f (x )|<2得-1<x <1,即A ={x |-1<x <1}.(2)证明:要证⎪⎪⎪⎪⎪⎪1-abc ab -c >1,只需证|1-abc |>|ab -c |,即证1+a 2b 2c 2>a 2b 2+c 2,即证1-a 2b 2>c 2(1-a 2b 2), 即证(1-a 2b 2)(1-c 2)>0,由a ,b ,c ∈A ,得-1<ab <1,c 2<1, 所以(1-a 2b 2)(1-c 2)>0恒成立. 综上,⎪⎪⎪⎪⎪⎪1-abc ab -c >1.2.(2018·陕西质检)已知函数f (x )=|2x -1|+|x +1|. (1)解不等式f (x )≤3;(2)记函数g (x )=f (x )+|x +1|的值域为M ,若t ∈M ,求证:t 2+1≥3t+3t .解:(1)依题意,得f (x )=⎝ ⎛-3x ,x ≤-1,2-x ,-1<x <12,3x ,x ≥12,∴f (x )≤3⇔⎩⎪⎨⎪⎧x ≤-1,-3x ≤3或⎩⎪⎨⎪⎧-1<x <12,2-x ≤3或⎩⎪⎨⎪⎧x ≥12,3x ≤3,解得-1≤x ≤1,即不等式f (x )≤3的解集为{x |-1≤x ≤1}.(2)证明:g (x )=f (x )+|x +1|=|2x -1|+|2x +2|≥|2x -1-2x -2|=3,当且仅当(2x -1)(2x +2)≤0时取等号,∴M =[3,+∞).原不等式等价于t 2-3t +1≥3t,∵t ∈[3,+∞),∴t 2-3t ≥0,∴t 2-3t +1≥1, 又∵3t ≤1,∴t 2-3t +1≥3t ,∴t 2+1≥3t+3t .[由题知法][典例] (2018·郑州第一次质量预测)设函数f (x )=|x +3|,g (x )=|2x -1|. (1)解不等式f (x )<g (x );(2)若2f (x )+g (x )>ax +4对任意的实数x 恒成立,求a 的取值范围. [解] (1)由已知,可得|x +3|<|2x -1|, 即|x +3|2<|2x -1|2,∴3x 2-10x -8>0, 解得x <-23或x >4.故所求不等式的解集为⎝ ⎛⎭⎪⎫-∞,-23∪(4,+∞). (2)由已知,设h (x )=2f (x )+g (x )=2|x +3|+|2x -1|=⎩⎪⎨⎪⎧-4x -5,x ≤-3,7,-3<x <12,4x +5,x ≥12.当x ≤-3时,只需-4x -5>ax +4恒成立, 即ax <-4x -9恒成立,∵x ≤-3<0,∴a >-4x -9x=-4-9x恒成立,∴a >⎝ ⎛⎭⎪⎫-4-9x max ,∴a >-1;当-3<x <12时,只需7>ax +4恒成立,即ax -3<0恒成立, 只需⎩⎪⎨⎪⎧-3a -3≤0,12a -3≤0,∴⎩⎪⎨⎪⎧a ≥-1,a ≤6,∴-1≤a ≤6;当x ≥12时,只需4x +5>ax +4恒成立,即ax <4x +1恒成立.∵x ≥12>0,∴a <4x +1x =4+1x 恒成立.∵4+1x >4,且x →+∞时,4+1x→4,∴a ≤4.综上,a 的取值范围是(-1,4].[类题通法] 绝对值不等式的成立问题的求解模型(1)分离参数:根据不等式将参数分离化为a ≥f (x )或a ≤f (x )形式. (2)转化最值:f (x )>a 恒成立⇔f (x )min >a ;f (x )<a 恒成立⇔f (x )max <a ; f (x )>a 有解⇔f (x )max >a ; f (x )<a 有解⇔f (x )min <a ; f (x )>a 无解⇔f (x )max ≤a ; f (x )<a 无解⇔f (x )min ≥a .(3)求最值:利用基本不等式或绝对值不等式求最值. (4)得结论.[应用通关]1.(2018·南宁模拟)已知函数f (x )=|2x +1|-|2x -3|,g (x )=|x +1|+|x -a |. (1)求f (x )≥1的解集;(2)若对任意的t ∈R ,s ∈R ,都有g (s )≥f (t ).求a 的取值范围. 解:(1)因为函数f (x )=|2x +1|-|2x -3|, 故f (x )≥1,等价于|2x +1|-|2x -3|≥1, 等价于⎩⎪⎨⎪⎧x <-12,-2x -1--2x ,①或⎩⎪⎨⎪⎧-12≤x ≤32,2x +1--2x ,②或⎩⎪⎨⎪⎧x >32,2x +1-x -③①无解,解②得34≤x ≤32,解③得x >32.所以不等式的解集为⎩⎨⎧⎭⎬⎫x x ≥34.(2)若对任意的t ∈R ,s ∈R ,都有g (s )≥f (t ),可得g (x )min ≥f (x )max . ∵函数f (x )=|2x +1|-|2x -3|≤|2x +1-(2x -3)|=4,∴f (x )max =4. ∵g (x )=|x +1|+|x -a |≥|x +1-(x -a )|=|a +1|,故g (x )min =|a +1|. ∴|a +1|≥4,∴a +1≥4或a +1≤-4, 解得a ≥3或a ≤-5.故a 的取值范围为(-∞,-5]∪[3,+∞).2.(2019届高三·洛阳第一次联考)已知函数f (x )=|x +1-2a |+|x -a 2|,a ∈R ,g (x )=x 2-2x -4+4x -2.(1)若f (2a 2-1)>4|a -1|,求实数a 的取值范围;(2)若存在实数x ,y ,使f (x )+g (y )≤0,求实数a 的取值范围. 解:(1)∵f (2a 2-1)>4|a -1|, ∴|2a 2-2a |+|a 2-1|>4|a -1|, ∴|a -1|(2|a |+|a +1|-4)>0, ∴|2a |+|a +1|>4且a ≠1.①若a ≤-1,则-2a -a -1>4,∴a <-53;②若-1<a <0,则-2a +a +1>4,∴a <-3,此时无解; ③若a ≥0且a ≠1,则2a +a +1>4,∴a >1.综上所述,a 的取值范围为⎝ ⎛⎭⎪⎫-∞,-53∪(1,+∞). (2)∵g (x )=(x -1)2+4x -2-5≥2x -2·4x -2-5=-1,显然可取等号,∴g (x )min =-1.于是,若存在实数x ,y ,使f (x )+g (y )≤0,只需f (x )min ≤1. 又f (x )=|x +1-2a |+|x -a 2|≥|(x +1-2a )-(x -a 2)|=(a -1)2, ∴(a -1)2≤1,∴-1≤a -1≤1,∴0≤a ≤2, 故实数a 的取值范围为[0,2]. [专题跟踪检测](对应配套卷P209)1.(2018·全国卷Ⅱ)设函数f (x )=5-|x +a |-|x -2|. (1)当a =1时,求不等式f (x )≥0的解集; (2)若f (x )≤1,求a 的取值范围. 解:(1)当a =1时,f (x )=⎩⎪⎨⎪⎧2x +4,x <-1,2,-1≤x ≤2,-2x +6,x >2.当x <-1时,由2x +4≥0,解得-2≤x <-1; 当-1≤x ≤2时,显然满足题意;当x >2时,由-2x +6≥0,解得2<x ≤3, 故f (x )≥0的解集为{x |-2≤x ≤3}. (2)f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当x =2时等号成立. 故f (x )≤1等价于|a +2|≥4. 由|a +2|≥4可得a ≤-6或a ≥2.所以a 的取值范围是(-∞,-6]∪[2,+∞).2.(2018·兰州模拟)设函数f (x )=|x -3|,g (x )=|x -2|. (1)解不等式f (x )+g (x )<2;(2)对于实数x ,y ,若f (x )≤1,g (y )≤1,证明:|x -2y +1|≤3. 解:(1)解不等式|x -3|+|x -2|<2.①当x <2时,原不等式可化为3-x +2-x <2,解得x >32.所以32<x <2.②当2≤x ≤3时,原不等式可化为3-x +x -2<2,解得1<2.所以2≤x ≤3. ③当x >3时,原不等式可化为x -3+x -2<2,解得x <72.所以3<x <72.由①②③可知,不等式的解集为⎩⎨⎧⎭⎬⎫x| 32<x <72.(2)证明:因为f (x )≤1,g (y )≤1,即|x -3|≤1,|y -2|≤1,所以|x -2y +1|=|(x -3)-2(y -2)|≤|x -3|+2|y -2|≤1+2=3.当且仅当⎩⎪⎨⎪⎧x =4,y =1或⎩⎪⎨⎪⎧x =2,y =3时等号成立.3.(2018·开封模拟)已知函数f (x )=|x -m |,m <0. (1)当m =-1时,求解不等式f (x )+f (-x )≥2-x ; (2)若不等式f (x )+f (2x )<1的解集非空,求m 的取值范围. 解:(1)当m =-1时,f (x )=|x +1|,f (-x )=|x -1|, 设F (x )=|x -1|+|x +1|=⎩⎪⎨⎪⎧-2x ,x <-1,2,-1≤x <1,2x ,x ≥1,G (x )=2-x ,由F (x )≥G (x ),解得x ≤-2或x ≥0,所以不等式f (x )+f (-x )≥2-x 的解集为{x |x ≤-2或x ≥0}. (2)f (x )+f (2x )=|x -m |+|2x -m |,m <0. 设g (x )=f (x )+f (2x ),当x ≤m 时,g (x )=m -x +m -2x =2m -3x , 则g (x )≥-m ;当m <x <m2时,g (x )=x -m +m -2x =-x ,则-m2<g (x )<-m ;当x ≥m2时,g (x )=x -m +2x -m =3x -2m ,则g (x )≥-m2.所以g (x )的值域为⎣⎢⎡⎭⎪⎫-m2,+∞,若不等式f (x )+f (2x )<1的解集非空, 只需1>-m2,解得m >-2,又m <0,所以m 的取值范围是(-2,0).4.(2018·全国卷Ⅲ)设函数f (x )=|2x +1|+|x -1|. (1)画出y =f (x )的图象;(2)当x ∈[0,+∞)时,f (x )≤ax +b ,求a +b 的最小值.解:(1)f (x )=⎩⎪⎨⎪⎧-3x ,x <-12,x +2,-12≤x <1,3x ,x ≥1.y =f (x)的图象如图所示.(2)由(1)知,y =f (x )的图象与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a ≥3且b ≥2时,f (x )≤ax +b 在[0,+∞)成立,因此a +b 的最小值为5.5.已知函数f (x )=|x +1|.(1)求不等式f (x )<|2x +1|-1的解集M ; (2)设a ,b ∈M ,证明:f (ab )>f (a )-f (-b ).解:(1)①当x ≤-1时,原不等式可化为-x -1<-2x -2,解得x <-1;②当-1<x <-12时,原不等式可化为x +1<-2x -2,解得x <-1,此时原不等式无解;③当x ≥-12时,原不等式可化为x +1<2x ,解得x >1.综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |, 所以要证f (ab )>f (a )-f (-b ),只需证|ab +1|>|a +b |,即证|ab +1|2>|a +b |2, 即证a 2b 2+2ab +1>a 2+2ab +b 2,即证a 2b 2-a 2-b 2+1>0,即证(a 2-1)(b 2-1)>0. 因为a ,b ∈M ,所以a 2>1,b 2>1,所以(a 2-1)(b 2-1)>0成立,所以原不等式成立. 6.(2018·广东五市联考)已知函数f (x )=|x -a |+12a(a ≠0). (1)若不等式f (x )-f (x +m )≤1恒成立,求实数m 的最大值;(2)当a <12时,函数g (x )=f (x )+|2x -1|有零点,求实数a 的取值范围.解:(1)f (x +m )=|x +m -a |+12a.∵f (x )-f (x +m )=|x -a |-|x +m -a |≤|m |, ∴当且仅当|m |≤1时,f (x )-f (x +m )≤1恒成立, ∴-1≤m ≤1,即实数m 的最大值为1. (2)当a <12时,g (x )=f (x )+|2x -1|=|x -a |+|2x -1|+12a=⎩⎪⎨⎪⎧-3x +a +12a+1,x <a ,-x -a +12a +1,a ≤x ≤12,3x -a +12a -1,x >12,∴g (x )min =g ⎝ ⎛⎭⎪⎫12=12-a +12a =-2a 2+a +12a ≤0,∴⎩⎪⎨⎪⎧0<a <12,-2a 2+a +1≤0或⎩⎪⎨⎪⎧a <0,-2a 2+a +1≥0,解得-12≤a <0,∴实数a 的取值范围是⎣⎢⎡⎭⎪⎫-12,0. 7.(2018·郑州模拟)已知函数f (x )=|2x -1|+|ax -5|(0<a <5). (1)当a =1时,求不等式f (x )≥9的解集; (2)若函数y =f (x )的最小值为4,求实数a 的值.解:(1)当a =1时,f (x )=|2x -1|+|x -5|=⎩⎪⎨⎪⎧6-3x ,x <12,x +4,12≤x <5,3x -6,x ≥5,所以f (x )≥9⇔⎩⎪⎨⎪⎧x <12,6-3x ≥9或⎩⎪⎨⎪⎧12≤x <5,x +4≥9或⎩⎪⎨⎪⎧x ≥5,3x -6≥9.解得x ≤-1或x ≥5,即所求不等式的解集为(-∞,-1]∪[5,+∞). (2)∵0<a <5,∴5a>1,则f (x )=⎩⎪⎨⎪⎧-a +x +6,x <12,-a x +4,12≤x ≤5a,a +x -6,x >5a.∵当x <12时,f (x )单调递减,当x >5a 时,f (x )单调递增,∴f (x )的最小值在⎣⎢⎡⎦⎥⎤12,5a 上取得.∵在⎣⎢⎡⎦⎥⎤12,5a 上,当0<a ≤2时,f (x )单调递增, 当2<a ≤5时,f (x )单调递减, ∴⎩⎪⎨⎪⎧0<a ≤2,f x min =f ⎝ ⎛⎭⎪⎫12=4或⎩⎪⎨⎪⎧2<a ≤5,f x min =f ⎝ ⎛⎭⎪⎫5a =4.解得a =2.8.(2018·成都模拟)已知函数f (x )=|x -2|+k |x +1|,k ∈R. (1)当k =1时,若不等式f (x )<4的解集为{x |x 1<x <x 2},求x 1+x 2的值; (2)当x ∈R 时,若关于x 的不等式f (x )≥k 恒成立,求k 的最大值. 解:(1)由题意,得|x -2|+|x +1|<4. 当x >2时,原不等式可化为2x <5,∴2<x <52;当-1≤x ≤2时,原不等式可化为3<4,∴-1≤x ≤2. 当x <-1时,原不等式可化为-2x <3, ∴-32<x <-1;综上,原不等式的解集为⎩⎨⎧⎭⎬⎫x -32<x <52, 即x 1=-32,x 2=52.∴x 1+x 2=1.(2)由题意,得|x -2|+k |x +1|≥k . 当x =2时,即不等式3k ≥k 成立,∴k ≥0. 当x ≤-2或x ≥0时,∵|x +1|≥1,∴不等式|x -2|+k |x +1|≥k 恒成立. 当-2<x ≤-1时,原不等式可化为2-x -kx -k ≥k , 可得k ≤2-x x +2=-1+4x +2,∴k ≤3.当-1<x <0时,原不等式可化为2-x +kx +k ≥k ,可得k ≤1-2x,∴k <3.综上,可得0≤k≤3,即k的最大值为3.。

相关文档
最新文档