初二数学上册期中测试卷附答案
2024年全新八年级数学上册期中试卷及答案(人教版)

2024年全新八年级数学上册期中试卷及答案(人教版)一、选择题1. 若一个数的平方根是3,那么这个数是( )A. 9B. 9C. 3D. 3答案:A2. 下列哪个数是负数?( )A. 2B. 2C. 0D. 1/2答案:B3. 若一个数的三次方是27,那么这个数是( )A. 3B. 3C. 9D. 9答案:B4. 若一个数的绝对值是5,那么这个数可能是( )A. 5B. 5C. 0D. 1答案:A5. 下列哪个数是正数?( )A. 2B. 0C. 1/2D. 1/2答案:C二、填空题1. 若a的平方根是b,那么a的立方根是_________。
答案:b2. 若a的绝对值是5,那么a可能是_________。
答案:5或53. 若a的三次方是27,那么a的平方是_________。
答案:94. 若a的平方根是b,那么b的平方根是_________。
答案:a5. 若a的绝对值是5,那么a的平方是_________。
答案:25三、解答题1. 若一个数的平方根是4,求这个数。
解:设这个数为x,根据题意,有√x = 4。
解这个方程,得到x= 4^2 = 16。
所以这个数是16。
2. 若一个数的三次方是8,求这个数。
解:设这个数为y,根据题意,有y^3 = 8。
解这个方程,得到y = 2。
所以这个数是2。
3. 若一个数的绝对值是7,求这个数的平方。
解:设这个数为z,根据题意,有|z| = 7。
由于绝对值表示数的大小,不考虑正负,所以z可以是7或7。
无论z是正数还是负数,其平方都是49。
所以这个数的平方是49。
4. 若一个数的平方根是5,求这个数的立方。
解:设这个数为w,根据题意,有√w = 5。
解这个方程,得到w= 5^2 = 25。
求w的立方,得到w^3 = 25^3 = 15625。
所以这个数的立方是15625。
5. 若一个数的绝对值是3,求这个数的立方根。
解:设这个数为v,根据题意,有|v| = 3。
由于绝对值表示数的大小,不考虑正负,所以v可以是3或3。
八年级(上)期中数学试卷(含答案解析)

八年级(上)期中数学试卷一、选择题:(本题满分36分,每小题3分)1.以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,62.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A. B. C. D.3.五边形的内角和是()A.180°B.360°C.540°D.600°4.下列图形中有稳定性的是()A.正方形B.直角三角形C.长方形D.平行四边形5.如图,△ABC中,BD是∠ABC的角平分线,DE∥BC,交AB于E,∠A=60°,∠BDC=95°,则∠BED的度数是()A.35°B.70°C.110°D.130°6.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠27.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等8.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)9.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆形 D.线段10.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对11.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16 B.18 C.26 D.2812.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点二、填空题(本题满分24分,每小题4分)13.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.14.已知点P在线段AB的垂直平分线上,PA=6,则PB=.15.已知,如图,∠ACD=130°,∠A=∠B,那么∠A的度数是°.16.已知A(﹣1,﹣2)和B(1,3),将点A向平移个单位长度后得到的点与点B关于y轴对称.17.如图,AC=AD,BC=BD,则△ABC≌△;应用的判定方法是(简写).18.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带去配,这样做的数学依据是.三、解答题(本大题满分50分)19.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠=∠(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD.20.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.21.已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.22.已知:BE⊥CD,BE=DE,BC=DA,求证:△BEC≌△DAE.23.已知:如图,已知△ABC,分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2.24.如图,AC和BD相交于点O,且AB∥DC,OC=OD,求证:OA=OB.参考答案与试题解析一、选择题:(本题满分36分,每小题3分)1.以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,6【考点】三角形三边关系.【分析】三角形的三条边必须满足:任意两边之和>第三边,任意两边之差<第三边.【解答】解:A中,3+3>3,能构成三角形;B中,3+3=6,不能构成三角形;C中,3+2=5,不能构成三角形;D中,3+2<6,不能构成三角形.故选A.【点评】本题主要考查对三角形三边关系的理解应用.判断是否可以构成三角形,只要判断两个较小的数的和<最大的数就可以.2.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形定义可知:A、不是轴对称图形,符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意.故选A.【点评】掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.五边形的内角和是()A.180°B.360°C.540°D.600°【考点】多边形内角与外角.【专题】常规题型.【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:(5﹣2)•180°=540°.故选:C.【点评】本题主要考查了多边形的内角和定理,是基础题,熟记定理是解题的关键.4.下列图形中有稳定性的是()A.正方形B.直角三角形C.长方形D.平行四边形【考点】三角形的稳定性.【分析】根据三角形具有稳定性可得答案.【解答】解:直角三角形有稳定性,故选:B.【点评】此题主要考查了三角形的稳定性,是需要识记的内容.5.如图,△ABC中,BD是∠ABC的角平分线,DE∥BC,交AB于E,∠A=60°,∠BDC=95°,则∠BED的度数是()A.35°B.70°C.110°D.130°【考点】平行线的性质.【分析】由三角形的外角性质得出∠ABD=35°,由角平分线的定义求出∠ABC=2∠ABD=70°,再由平行线的性质得出同旁内角互补∠BED+∠ABC=180°,即可得出结果.【解答】解:∵∠BDC=∠A+∠ABD,∴∠ABD=95°﹣60°=35°,∵BD是∠ABC的角平分线,∴∠ABC=2∠ABD=70°,∵DE∥BC,∴∠BED+∠ABC=180°,∴∠BED=180°﹣70°=110°.故选C.【点评】本题考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质,运用三角形的外角性质求出∠ABD的度数是解决问题的关键.6.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠2【考点】全等三角形的判定与性质.【分析】先根据角角边证明△ABC与△CED全等,再根据全等三角形对应边相等,全等三角形的对应角相等的性质对各选项判断后,利用排除法求解.【解答】解:∵AC⊥CD,∴∠1+∠2=90°,∵∠B=90°,∴∠1+∠A=90°,∴∠A=∠2,在△ABC和△CED中,,∴△ABC≌△CED(AAS),故B、C选项正确;∵∠2+∠D=90°,∴∠A+∠D=90°,故A选项正确;∵AC⊥CD,∴∠ACD=90°,∠1+∠2=90°,故D选项错误.故选D.【点评】本题主要考查全等三角形的性质,先证明三角形全等是解决本题的突破口,也是难点所在.做题时,要结合已知条件与全等的判定方法对选项逐一验证.7.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等【考点】全等图形.【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.【点评】此题主要考查了全等图形,关键是掌握全等形的概念.8.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点M(1,2)关于x轴对称的点的坐标为(1,﹣2),故选:C.【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.9.下列图形中对称轴最多的是()A.等腰三角形B.正方形C.圆形 D.线段【考点】轴对称的性质.【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可进行选择.【解答】解:A、因为等腰三角形分别沿底边的中线所在的直线对折,对折后的两部分都能完全重合,则等腰三角形是轴对称图形,底边的中线所在的直线就是对称轴,所以等腰三角形有1条对称轴;B、因为正方形沿对边的中线及其对角线所在的直线对折,对折后的两部分都能完全重合,则正方形是轴对称图形,对边的中线及其对角线所在的直线就是其对称轴,所以正方形有4条对称轴;C、因为圆沿任意一条直径所在的直线对折,对折后的两部分都能完全重合,则圆是轴对称图形,任意一条直径所在的直线就是圆的对称轴,所以说圆有无数条对称轴.D、线段是轴对称图形,有两条对称轴.故选:C.【点评】本题考查了轴对称图形的性质,解答此题的主要依据是:轴对称图形的定义及其对称轴的条数.10.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对【考点】等腰三角形的性质.【分析】分边11cm是腰长与底边两种情况讨论求解.【解答】解:①11cm是腰长时,腰长为11cm,②11cm是底边时,腰长=(26﹣11)=7.5cm,所以,腰长是11cm或7.5cm.故选C.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.11.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16 B.18 C.26 D.28【考点】线段垂直平分线的性质.【分析】利用线段垂直平分线的性质得AE=CE,再等量代换即可求得三角形的周长.【解答】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=10,∴△EBC的周长=BC+BE+CE=10厘米+8厘米=18厘米,故选B.【点评】本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.12.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点【考点】角平分线的性质.【分析】利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交点.【解答】解:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交P.故选D.【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质.做题时注意题目要求要满足两个条件①到角两边距离相等,②点在CD上,要同时满足.二、填空题(本题满分24分,每小题4分)13.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.【点评】此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.14.已知点P在线段AB的垂直平分线上,PA=6,则PB=6.【考点】线段垂直平分线的性质.【分析】直接根据线段垂直平分线的性质进行解答即可.【解答】解:∵点P在线段AB的垂直平分线上,PA=6,∴PB=PA=6.故答案为:6.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.15.已知,如图,∠ACD=130°,∠A=∠B,那么∠A的度数是65°.【考点】三角形的外角性质.【分析】直接根据三角形内角与外角的性质解答即可.【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠A+∠B,∵∠ACD=130°,∠A=∠B,∴∠A==65°.【点评】本题比较简单,考查的是三角形外角的性质,即三角形的外角等于不相邻的两个内角的和.16.已知A(﹣1,﹣2)和B(1,3),将点A向上平移5个单位长度后得到的点与点B关于y轴对称.【考点】关于x轴、y轴对称的点的坐标.【分析】熟悉:关于y轴对称的点,纵坐标相同,横坐标互为相反数;把一个点左右平移,则横坐标是左减右加,把一个点上下平移,则纵坐标是上加下减.【解答】解:根据平面直角坐标系中对称点的规律可知,点B关于y轴对称的点为(﹣1,3),又点A(﹣1,﹣2),所以将点A向上平移5个单位长度后得到的点(﹣1,3).【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.平移时坐标变化规律:把一个点左右平移,则横坐标是左减右加,把一个点上下平移,则纵坐标是上加下减.17.如图,AC=AD,BC=BD,则△ABC≌△ABD;应用的判定方法是(简写)SSS.【考点】全等三角形的判定.【分析】此题不难,关键是找对对应点,即A对应A,B对应B,C对应D,即可.【解答】解:∵AC=AD,BC=BD,AB=AB(公共边),∴△ABC≌△ABD(SSS).【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,本题要用SSS.18.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带③去配,这样做的数学依据是两个角及它们的夹边对应相等的两个三角形全等.【考点】全等三角形的应用.【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故答案为:③;两个角及它们的夹边对应相等的两个三角形全等.【点评】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.三、解答题(本大题满分50分)19.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD SAS.【考点】全等三角形的判定;等腰三角形的性质.【专题】推理填空题.【分析】根据角平分线的定义及全等三角形的判定定理,填空即可.【解答】解:∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义),在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).【点评】本题考查了全等三角形的判定,解答本题的关键是掌握全等三角形的判定定理及角平分线的定义.20.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.【考点】全等三角形的判定.【专题】证明题.【分析】首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.【解答】证明:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS).【点评】本题考查了全等三角形全等的判定,熟练掌握各判定定理是解题的关键.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.21.已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】要证明AF=DE,可以证明它们所在的三角形全等,即证明△ABF≌△DEC,已知两边(由BE=CF得出BF=CE,AB=DC)及夹角(∠B=∠C),由SAS可以证明.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,又∵AB=DC,∠B=∠C,∴△ABF≌△DCE,∴AF=DE.【点评】本题考查了全等三角形的判定及性质;证明两边相等时,如果这两边不在同一个三角形中,通常是证明它们所在的三角形全等来证明它们相等,是一种很重要的方法.22.已知:BE⊥CD,BE=DE,BC=DA,求证:△BEC≌△DAE.【考点】全等三角形的判定.【专题】证明题.【分析】根据已知得出Rt△CEB和Rt△AED,利用HL定理得出即可.【解答】证明:∵BE⊥CD,∴∠CEB=∠AED=90°,∴在Rt△CEB和Rt△AED中,∴Rt△CEB≌Rt△AED(HL).【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.23.已知:如图,已知△ABC,分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2.【考点】作图-轴对称变换.【分析】根据关于坐标轴对称的点的坐标特点画出图形即可.【解答】解:如图所示.【点评】本题考查的是作图﹣轴对称变换,熟知关于坐标轴对称的点的坐标特点是解答此题的关键.24.如图,AC和BD相交于点O,且AB∥DC,OC=OD,求证:OA=OB.【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据OC=OD得,△ODC是等腰三角形;根据AB∥DC,得出对应角相等,求得△AOB是等腰三角形,证明最后结果.【解答】证明:∵OC=OD,∴△ODC是等腰三角形,∴∠C=∠D,又∵AB∥DC,∴∠A=∠C,∠B=∠D,∴∠A=∠B,∴△AOB是等腰三角形,∴OA=OB.【点评】本题主要考查了等腰三角形的判定和平行线的性质:两直线平行,内错角相等.。
八年级(上)期中数学试卷含答案解析

八年级(上)期中数学试卷一、选择题:每小题3分,共30分.1.下列图形不具有稳定性的是()A.正方形B.等腰三角形C.直角三角形D.钝角三角形2.下列大学的校徽图案是轴对称图形的是()A.B.C.D.3.如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点D的坐标为()A.(2,2) B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)4.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB 的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSS B.SAS C.AAS D.HL5.如图,五边形ABCDE中,AB∥CD,则图中x的值是()A.75°B.65°C.60°D.55°6.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线7.如图,△ABC≌△DEC,点B的对应点E在线段AB上,若AB∥CD,∠D=32°,则∠B的度数是()A.56°B.68°C.74°D.75°8.等腰三角形两条边的长分别为5,2,则该等腰三角形的周长为()A.9 B.10 C.12 D.9或129.图中有三个正方形,其中构成的三角形中全等三角形的对数有()A.2对 B.3对 C.4对 D.5对10.如图,在Rt△ABC中,AC=BC,点D是△ABC内一点,若AC=AD,∠CAD=30°,连接BD,则∠ADB的度数为()A.120°B.135°C.150° D.165°二、填空题:每小题3分,共18分.11.如图,AB∥CD,∠B=32°,∠ACD=56°,则∠ACB的度数是°.12.若点A(3,﹣2)与点B关于y轴对称,则点B的坐标为.13.如图,下列四组条件中:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③AB=DE,AC=DF,∠B=∠E;④∠B=∠E,BC=EF,∠C=∠F.其中不一定能使△ABC≌△DEF的条件是(只填序号).14.如图,在△ABC中,AC边的垂直平分线交BC于点D,若AC=4cm,△ABC 的周长为13cm,则△ABD的周长为cm.15.如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE 翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为°.16.如图,在△ABC中,E为AC的中点,点D为BC上一点,BD:CD=2:3,AD、BE交于点O,若S△AOE﹣S△BOD=1,则△ABC的面积为.三、解答题:共8小题,共72分.17.在△ABC中,∠A=∠B﹣10°,∠C=∠B﹣5°,求△ABC的各个内角的度数.18.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.19.已知:如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.20.如图,△ABC中,点D、E分别在AB、AC上,△ABE≌△ACD.(1)求证:△BEC≌△CDB;(2)若∠A=50°,BE⊥AC,求∠BCD的度数.21.如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).(1)画出△ABC及关于y轴对称的△A1B1C1;(2)写出点A的对应点A1的坐标是,点B的对应点B1的坐标是,点C 的对应点C1的坐标是;(3)请直接写出以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标.22.如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A、C重合).(1)如图①,若点C落在AB边上的点E处,求△ADE的周长;(2)如图②,若点C落在AB变下方的点E处,求△ADE的周长的取值范围.23.如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE﹣BE的值.24.如图,在平面直角坐标系中,已知A(7a,0),B(0,﹣7a),点C为x轴负半轴上一点,AD⊥AB,∠1=∠2.(1)求∠ABC+∠D的度数;(2)如图①,若点C的坐标为(﹣3a,0),求点D的坐标(结果用含a的式子表示);(3)如图②,在(2)的条件下,若a=1,过点D作DE⊥y轴于点E,DF⊥x轴于点F,点M为线段DF上一点,若第一象限内存在点N(n,2n﹣3),使△EMN 为等腰直角三角形,请直接写出符合条件的N点坐标,并选取一种情况计算说明.参考答案与试题解析一、选择题:每小题3分,共30分.1.下列图形不具有稳定性的是()A.正方形B.等腰三角形C.直角三角形D.钝角三角形【考点】多边形;三角形的稳定性.【分析】根据三角形的性质,四边形的性质,可得答案.【解答】解:正方形不具有稳定性,故A符合题意;故选:A.2.下列大学的校徽图案是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.3.如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点D的坐标为()A.(2,2) B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)【考点】正方形的性质;坐标与图形性质.【分析】根据题意得:A与B关于x轴对称,A与D关于y轴对称,A与C关于原点对称,进而得出答案.【解答】解:如图所示:∵以正方形ABCD的中心O为原点建立坐标系,点A的坐标为(2,2),∴点B、C、D的坐标分别为:(2,﹣2),(﹣2,﹣2),(﹣2,2).故选B4.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB 的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()A.SSS B.SAS C.AAS D.HL【考点】全等三角形的判定.【分析】利用判定方法“HL”证明Rt△OMP和Rt△ONP全等,进而得出答案.【解答】解:在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP是∠AOB的平分线.故选:D5.如图,五边形ABCDE中,AB∥CD,则图中x的值是()A.75°B.65°C.60°D.55°【考点】多边形内角与外角;平行线的性质.【分析】先根据平行线的性质求得∠B的值,再根据多边形内角和定理即可求得∠E的值即可.【解答】解:∵AB∥CD,∴∠B=180°﹣∠C=180°﹣60°=120°,∵五边形ABCDE内角和为(5﹣2)×180°=540°,∴在五边形ABCDE中,∠E=540°﹣135°﹣120°﹣60°﹣150°=75°.故图中x的值是75°.故选:A.6.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线【考点】角平分线的性质.【分析】由角平分线性质的逆定理:到角的两边的距离相等的点在角的平分线上,则这个点是三角形三条角平分线的交点.【解答】解:∵到角的两边的距离相等的点在角的平分线上,∴这个点是三角形三条角平分线的交点.故选A.7.如图,△ABC≌△DEC,点B的对应点E在线段AB上,若AB∥CD,∠D=32°,则∠B的度数是()A.56°B.68°C.74°D.75°【考点】全等三角形的性质.【分析】直接利用角平分线的性质结合平行线的性质得出∠B=∠CEB=∠CED,进而得出∠DEA+∠DEC+∠CEB=2∠B+∠DEA求出答案.【解答】解:∵△ABC≌△DEC,∴∠D=∠A=32°,EC=BC,∴∠B=∠CEB=∠CED,∵AB∥CD,∴∠DCA=∠A=∠DEA=32°,∴∠DEA+∠DEC+∠CEB=2∠B+∠DEA=2∠B+32°=180°,解得:∠B=74°.故选:C.8.等腰三角形两条边的长分别为5,2,则该等腰三角形的周长为()A.9 B.10 C.12 D.9或12【考点】等腰三角形的性质;三角形三边关系.【分析】根据2和5可分别作等腰三角形的腰,结合三边关系定理,分别讨论求解.【解答】解:当2为腰时,三边为2,2,5,由三角形三边关系定理可知,不能构成三角形,当5为腰时,三边为5,5,2,符合三角形三边关系定理,周长为:5+5+2=12.故选C.9.图中有三个正方形,其中构成的三角形中全等三角形的对数有()A.2对 B.3对 C.4对 D.5对【考点】全等三角形的判定.【分析】根据图形,结合正方形的性质,利用全等三角形的判定方法可得出答案.【解答】解:如图,∵四边形ABCD为正方形,∴AB=BC=CD=AD,∠ABC=∠ADC=90°,在△ABC和△ADC中∴△ABC≌△ADC(SAS);∵四边形BEFK为正方形,∴EF=FK=BE=BK,∵AB=BC,∴CK=KF=EF=AE,在△AEF和△CKF中∴△AEF≌△CKF(SAS);∵四边形HIJG为正方形,∴IH=GJ,∠AIH=∠GJC=90°,且∠IAH=∠JCG=45°,在△AIH和△CJG中∴△AIH≌△CJG(AAS),综上可知全等的三角形有3对,故选B.10.如图,在Rt△ABC中,AC=BC,点D是△ABC内一点,若AC=AD,∠CAD=30°,连接BD,则∠ADB的度数为()A.120°B.135°C.150° D.165°【考点】等腰直角三角形.【分析】先根据△ABC是等腰直角三角形得:∠CAB=∠ABC=45°,作辅助线,构建全等三角形,证明△CDB≌△AED,则∠ADE=∠CBD,ED=BD,设∠CBD=x,则∠ADE=x,∠DEB=∠DBE=15+x,根据∠ABC=45°列方程可求x的值,根据三角形内角和得∠BDC=150°,最后由周角得出结论.【解答】解:∵AC=BC,∠ACB=90°,∴∠CAB=∠ABC=45°,∵AC=AD,∴AD=BC,∵∠CAD=30°,∴∠ACD=∠ADC=75°,∠DAB=45°﹣30°=15°,∴∠DCB=90°﹣75°=15°,∴∠EAD=∠DCB,在AB上取一点E,使AE=CD,连接DE,在△CDB和△AED中,∵,∴△CDB≌△AED(SAS),∴∠ADE=∠CBD,ED=BD,∴∠DEB=∠DBE,设∠CBD=x,则∠ADE=x,∠DEB=∠DBE=15+x,∵∠ABC=45°,∴x+15+x=45,x=15°,∴∠DCB=∠DBC=15°,∴∠BDC=180°﹣15°﹣15°=150°,∴∠ADB=360°﹣75°﹣150°=135°;故选B.二、填空题:每小题3分,共18分.11.如图,AB∥CD,∠B=32°,∠ACD=56°,则∠ACB的度数是92°.【考点】平行线的性质.【分析】首先根据CD∥AB,可得∠BCD=148°;然后根据∠ACD=56°,求出∠ACB 的度数即可.【解答】解:∵CD∥AB,∠B=32°,∴∠ACB=180°﹣∠B=148°,又∵∠ACD=56°,∴∠ACB的度数为148°﹣56°=92°.故答案为:9212.若点A(3,﹣2)与点B关于y轴对称,则点B的坐标为(﹣3,﹣2).【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:∵点A(3,﹣2)与点B关于y轴对称,∴点B的坐标为(﹣3,﹣2).故答案为:(﹣3,﹣2).13.如图,下列四组条件中:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③AB=DE,AC=DF,∠B=∠E;④∠B=∠E,BC=EF,∠C=∠F.其中不一定能使△ABC≌△DEF的条件是③(只填序号).【考点】全等三角形的判定.【分析】根据全等三角形的判定方法逐个判断即可.【解答】解:①由AB=DE,BC=EF,AC=DF,可知在△ABC和△DEF中,满足SSS,可使△ABC ≌△DEF;②由AB=DE,∠B=∠E,BC=EF,可知在△ABC和△DEF中,满足SAS,可使△ABC ≌△DEF;③由AB=DE,AC=DF,∠B=∠E,可知在△ABC和△DEF中,满足SSA,不能使△ABC≌△DEF;④由∠B=∠E,BC=EF,∠C=∠F,可知在△ABC和△DEF中,满足ASA,可使△ABC≌△DEF.∴不一定能使△ABC≌△DEF的条件是③.故答案为:③.14.如图,在△ABC中,AC边的垂直平分线交BC于点D,若AC=4cm,△ABC的周长为13cm,则△ABD的周长为9cm.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出AD=DC,求出AB+BC,求出△ABD的周长=AB+BC,代入请求出即可.【解答】解:∵AC边的垂直平分线交BC于点D,∴AD=CD,∵AC=4cm,△ABC的周长为13cm,∴AB+BC=9cm,∴△ABD的周长为AB+BD+AD=AB+BD+DC=AB+AD=9cm,故答案为:9.15.如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE 翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为65°.【考点】翻折变换(折叠问题);三角形内角和定理.【分析】由点D为BC边的中点,得到BD=CD,根据折叠的性质得到DF=CD,∠EFD=∠C,得到DF=BD,根据等腰三角形的性质得到∠BFD=∠B,由三角形的内角和和平角的定义得到∠A=∠AFE,于是得到结论.【解答】解:∵点D为BC边的中点,∴BD=CD,∵将∠C沿DE翻折,使点C落在AB上的点F处,∴DF=CD,∠EFD=∠C,∴DF=BD,∴∠BFD=∠B,∵∠A=180°﹣∠C﹣∠B,∠AFE=180°﹣∠EFD﹣∠DFB,∴∠A=∠AFE,∵∠AEF=50°,∴∠A==65°.故答案为:65°.16.如图,在△ABC中,E为AC的中点,点D为BC上一点,BD:CD=2:3,AD、BE交于点O,若S△AOE﹣S△BOD=1,则△ABC的面积为10.【考点】三角形的面积.【分析】根据E为AC的中点可知,S△ABE =S△ABC,再由BD:CD=2:3可知,S△ABD=S△ABC,进而可得出结论.【解答】解:∵点E为AC的中点,∴S△ABE =S△ABC.∵BD:CD=2:3,∴S△ABD=S△ABC,∵S△AOE ﹣S△BOD=1,∴S△ABE =S△ABD=S△ABC﹣S△ABC=1,解得S△ABC=10.故答案为:10.三、解答题:共8小题,共72分.17.在△ABC中,∠A=∠B﹣10°,∠C=∠B﹣5°,求△ABC的各个内角的度数.【考点】三角形内角和定理.【分析】然后根据三角形的内角和等于180°列式计算求出∠B,然后求解即可.【解答】解:∵∠A=∠B﹣10°,∠C=∠B﹣5°,∴∠B﹣10°+∠B+∠B﹣5°=180°,∴∠B=65°,∴∠A=65°﹣10°=55°,∠C=65°﹣5°=60°,∴△ABC的内角的度数为55°,60°,65°.18.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.【考点】多边形内角与外角;三角形内角和定理.【分析】由五边形ABCDE的内角都相等,先求出五边形的每个内角度数,再求出∠1=∠2=∠3=∠4=36°,从而求出x=108°﹣72°=36度.【解答】解:因为五边形的内角和是540°,则每个内角为540°÷5=108°,∴∠E=∠C=108°,又∵∠1=∠2,∠3=∠4,由三角形内角和定理可知,∠1=∠2=∠3=∠4=÷2=36°,∴x=∠EDC﹣∠1﹣∠3=108°﹣36°﹣36°=36°.19.已知:如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【考点】全等三角形的判定与性质.【分析】由BE=CF可证得BC=EF,又有AB=DE,AC=DF,根据SSS证得△ABC≌△DEF⇒∠A=∠D.【解答】证明:∵BE=CF,∴BC=EF,又∵AB=DE,AC=DF,∴△ABC≌△DEF.∴∠A=∠D.20.如图,△ABC中,点D、E分别在AB、AC上,△ABE≌△ACD.(1)求证:△BEC≌△CDB;(2)若∠A=50°,BE⊥AC,求∠BCD的度数.【考点】全等三角形的判定与性质.【分析】(1)根据全等三角形的性质得到AB=AC,AD=AE,BE=CD,根据全等三角形的判定定理即可得到结论;(2)根据等腰三角形的性质和三角形的内角和得到∠ACB=∠ABC=65°,根据垂直的定义得到∠BEC=∠AEB=90°,于是得到结论.【解答】(1)证明:∵△ABE≌△ACD,∴AB=AC,AD=AE,BE=CD,∴BD=CE,在△BEC与△CDB中,,∴△BEC≌△CDB;(2)解:∵AB=AC,∠A=50°,∴∠ACB=∠ABC=65°,∵BE⊥AC,∴∠BEC=∠AEB=90°,∴∠ABE=∠ACD=40°,∴∠BCD=15°.21.如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).(1)画出△ABC及关于y轴对称的△A1B1C1;(2)写出点A的对应点A1的坐标是(1,﹣1),点B的对应点B1的坐标是(﹣4,﹣1),点C的对应点C1的坐标是(﹣3,1);(3)请直接写出以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标(0,﹣3)或(0,1)或(3,﹣3).【考点】作图﹣轴对称变换;坐标确定位置.【分析】(1)根据各点坐标画出三角形即可,再根据轴对称的性质,画出三角形即可;(2)根据△△A1B1C1各顶点的位置写出其坐标即可;(3)根据以AB为公共边且与△ABC全等的三角形的第三个顶点的位置,写出其坐标即可.【解答】解:(1)画图如图所示:(2)由图可得,点A1的坐标是(1,﹣1),点B1的坐标是(﹣4,﹣1),点C1的坐标是(﹣3,1);(3)∵AB为公共边,∴与△ABC全等的三角形的第三个顶点的坐标为(0,﹣3),(0,1)或(3,﹣3).22.如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A、C重合).(1)如图①,若点C落在AB边上的点E处,求△ADE的周长;(2)如图②,若点C落在AB变下方的点E处,求△ADE的周长的取值范围.【考点】翻折变换(折叠问题);三角形三边关系.【分析】根据翻折变换的性质可得CE=CD,BE=BC,然后求出AE,再求出AD+DE=AC,最后根据三角形的周长公式列式计算即可得解.【解答】解:∵折叠这个三角形顶点C落在AB边上的点E处,∴CE=CD,BE=BC=6,∴AE=AB﹣BE=8﹣6=2,∵AD+DE=AD+CD=AC=5,∴△AED的周长=5+2=7;(2)∵折叠这个三角形顶点C落在AB边上的点E处,∴CE=CD,BE=BC=6,∴在△ADE中,AD+DE=AD+CD=AC=5,∴AE<AD+DE,∴在△ABE中,AE>AB+BE,∴AE<5,AE>2,即2<AE<5,∴7<△AED的周长<1.23.如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE﹣BE的值.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】(1)先根据条件得出∠ACD=∠BDE,BD=AC,再根据ASA判定△ADC≌△BED,即可得到CD=DE;(2)先根据条件得出∠DCB=∠CDE,进而得到CE=DE,再在DE上取点F,使得FD=BE,进而判定△CDF≌△DBE(SAS),得出CF=DE=CE,再根据CH⊥EF,运用三线合一即可得到FH=HE,最后得出DE﹣BE=DE﹣DF=EF=2HE=2.【解答】解:(1)∵AC=BC,∠CDE=∠A,∴∠A=∠B=∠CDE,∴∠ACD=∠BDE,又∵BC=BD,∴BD=AC,在△ADC和△BED中,,∴△ADC≌△BED(ASA),∴CD=DE;(2)∵CD=BD,∴∠B=∠DCB,又∵∠CDE=∠B,∴∠DCB=∠CDE,∴CE=DE,如图,在DE上取点F,使得FD=BE,在△CDF和△DBE中,,∴△CDF≌△DBE(SAS),∴CF=DE=CE,又∵CH⊥EF,∴FH=HE,∴DE﹣BE=DE﹣DF=EF=2HE=2.24.如图,在平面直角坐标系中,已知A(7a,0),B(0,﹣7a),点C为x轴负半轴上一点,AD⊥AB,∠1=∠2.(1)求∠ABC+∠D的度数;(2)如图①,若点C的坐标为(﹣3a,0),求点D的坐标(结果用含a的式子表示);(3)如图②,在(2)的条件下,若a=1,过点D作DE⊥y轴于点E,DF⊥x轴于点F,点M为线段DF上一点,若第一象限内存在点N(n,2n﹣3),使△EMN 为等腰直角三角形,请直接写出符合条件的N点坐标,并选取一种情况计算说明.【考点】三角形综合题.【分析】(1)如图1中,设CD与y轴交于点E.根据四边形内角和定理,只要证明∠BCD+∠BAD=180°即可解决问题.(2)如图1中,求出直线AB、BC的解析式,再求出直线AD、CD的解析式,利用方程组求交点D坐标.(3)分四种情形,利用全等三角形的性质,列出方程分别求解即可.【解答】解:(1)如图1中,设CD与y轴交于点E.∵AD⊥AB,∴∠BAD=90°,∵∠1+∠BCO=90°,∠1=∠2,∴∠BCO+∠2=90°,∴∠BCD=90°,∴∠BCD+∠BAD=180°,∴∠ABC+∠D=360°﹣(∠BCD+∠BAD)=180°.(2)如图1中,∵A(7a,﹣7a),B(0,﹣7a),∴直线AB的解析式为y=x﹣7a,∵AD⊥AB,∴直线AD的解析式为y=﹣x+7a,∵C(﹣3a,0),B(0,﹣7a),∴直线BC的解析式为y=﹣x﹣7a,∵CD⊥BC,∴直线CD的解析式为y=x+a,由解得,∴点D的坐标为(4a,3a).(3)①如图2中,作NG⊥OE于G,GN的延长线交DF于H.∵△NEM是等腰直角三角形,∴EN=MN,∠ENM=90°,由△ENG≌△NMH,得EG=NH,∵N(n,2n﹣3),D(4,3),∴HN=EG=3﹣(2n﹣3)=6﹣2n∵GH=4,∴n+6﹣2n=4,∴n=2,∴N(2,1).②如图3中,作NG⊥OE于G,MH⊥OE于H.由△ENG≌△MEH,得GE=HM=4,∴OG=7=2n﹣3,∴n=5,∴N(5,7).③如图4中,作NG⊥OE于G,GN的延长线交DF于H.由△ENG≌△NMH得EG=NH=4﹣n,∴3+4﹣n=2n﹣3,∴n=,∴N(,).④如图5中,作MG⊥OE于G,NH⊥GM于H.由△EMG≌△MNH得EG=MH=n﹣4,MG=NH=4∴GH=n,∴3﹣(n﹣4)+4=2n﹣3,∴n=,∴N(,).综上所述,满足条件的点N的坐标为(2,1)或(5,7)或(,)或(,).。
八年级数学上学期期中考试试卷及答案

八年级数学上学期期中考试试卷及答案一、选择题(每题5分,共25分)1. 已知实数 $a$,$b$ 满足 $a^2 + b^2 = 6$,则下列选项中正确的是:A. $a^2 + b^2 \geq 6$B. $a^2 + b^2 \leq 6$C. $a^2 + b^2 = 6$D. $a^2 + b^2 \in [4,8]$2. 已知函数 $f(x) = x^3 - 3x$,则 $f'(x)$ 是:A. $f'(x) = 3x^2 - 3$B. $f'(x) = 3x^2$C. $f'(x) = 3x$D. $f'(x) = 1$3. 下列等式正确的是:A. $\sqrt[3]{27} = 3$B. $\sqrt{9} = 3$C. $\sqrt[4]{64} = 4$D. $\sqrt{2} \times \sqrt{2} = 2$4. 若 $a$,$b$ 是方程 $x^2 - 4x + 3 = 0$ 的根,则 $a + b$ 的值为:A. $1$B. $2$C. $3$D. $4$5. 已知等差数列的前三项分别为 $a-2$,$a$,$a+2$,则该数列的通项公式为:A. $a_n = 3n-4$B. $a_n = 2n-3$C. $a_n = n^2-3n+2$D. $a_n = 3n^2-4n+2$二、填空题(每题5分,共25分)1. 若 $a$,$b$ 是方程 $x^2 - 2ax + a^2 = 0$ 的根,则 $a^2 +b^2 = ______.$2. 函数 $f(x) = 2x^3 - 6x + 1$ 的导数 $f'(x)$ 在 $x = 1$ 处的值为______.3. 若等差数列的前三项分别为 $2$,$5$,$8$,则该数列的通项公式为 ______.4. 下列等式中正确的是 ______: $\sqrt{36} = 6$,$\sqrt[3]{27} = 3$,$\sqrt{9} = 3$,$\sqrt[4]{64} = 4$.5. 若复数 $z$ 满足 $|z| = 2$,且 $z$ 在复平面内对应的点位于第二象限,则 $z$ 可能的值为 ______.三、解答题(每题10分,共30分)1. 解方程:$2x^2 - 5x + 2 = 0$2. 已知函数 $f(x) = x^3 - 3x$,求 $f'(x)$ 的值。
人教版八年级数学上册期中试卷及答案(共十套)

人教版2019年八年级数学期中试卷(一)一.用心选一选:(每小题3分,共30分) 1. 下列图形中是轴对称图形的是( ).A B C D2. 下列各式中,正确的是( ).A .212+=+a ba b B .2623121cdd cd cd +=+ C .cba cba +=+- D .22)2(422--=-+a a a a 3. 如下图,△ABC 中,AB 的垂直平分线交AC 于D ,如果AC=5 cm , BC=4cm ,那么△DBC 的周长是( ).A .6 cmB .7 cmC .8 cmD .9 cm4.下列因式分解结果正确的是( )A. )23(51015223a a a a a +=+B. )43)(43(492x x x -+=-C. 22)5(2510-=--a aD. )5)(2(1032-+=--a a a a5. 如图,用三角尺可按下面方法画角平分线:在已知的∠AOB 的两边上分别取点M 、N ,使OM =ON ,再分别过点M 、N 作OA 、OB 的垂线,交点为P ,画射线OP .可证得△POM ≌△PON ,OP 平分∠AOB .以上依画法证明 △POM ≌△PON 根据的是( ).A .SSSB .SASC .AASD .HL 6. 甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等。
如果设甲每小时做x 个零件,那么下面所列方程中正确的是( ). A.x x 60690=- B. x x 60690=+ C. 66090+=x x D. 66090-=x x7. 如图,已知△ABC ,则甲、乙、丙三个三角形中和△ABC 全等的是( ).A. 只有乙B. 甲和乙C.只有丙D. 乙和丙8.如图,点E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别是C ,D.下列结论中正确的有( ). (1)ED=EC (2)OD=OC (3)∠ECD=∠EDC(4)EO 平分∠DEC (5)OE ⊥CD (6)直线OE 是线段CD 的垂直平分线 A .3个 B .4个 C .5个 D .6个 9.如图,正方形的边长为4,将一个足够大的直角三角板的直角顶点放于点处,该三角板的两条直角边与交于点,与延长线交于点.四边形的面积是( ).A. 16 B .12 C .8 D.4 10.在数学活动课上,小明提出这样一个问题:如右图, ∠B =∠C = 90︒,E 是BC 的中点, DE 平分∠ADC, ∠CED = 35︒, 则∠EAB 的度数是 ( ) . A .65︒ B .55︒ C .45︒ D .35︒ 二.细心填一填:(每小题3分,共24分) . 11.计算:2220132014-= . 12. 点A (2,-1)关于x 轴的对称点坐标是 . 13. 如果分式25+-x x 的值是零,那么x 的值是 _________________ . 14.计算:2325--+x x =__________________. 15. 如图,AC 、BD 相交于点O ,∠A =∠D ,请你再补充一个条件,使得△AOB ≌△DOC ,你补充的条件是 .16. 如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E . 已知PE =3,则点P 到AB 的距离是_________________.17. 在平面直角坐标系中,已知点A (1,2),B (5,5),C (5,2),存在点E ,baca cc aa丙72︒50︒乙50︒甲50︒CBA50︒72︒58︒ABCD A CD F CB E AECF B AO E DCE DCBA使△ACE 和△ACB 全等,写出所有满足条件的E 点的坐标 .18. 已知:如图,正方形ABCD 的边长为2,M 、N 分别为AB 、AD 的中点, 在对角线BD 上找一点P ,使△MNP 的周长最小, 则此时PM+PN= .三.用心做一做(每题5分,共35分) 19.因式分解: 643242+-a a20.计算: 112223+----x x x x x x21. 已知,如图,在△AFD 和△CEB 中,点A ,E ,F ,C 在同一直线上, AE=CF ,∠B=∠D ,AD ∥BC. 求证:AD=CB22.解分式方程: 114112=---+x x xMFDCB A ENMC D AB EMNab23.先化简: 44)44122(22-÷+----+x x x x x x x ,再选择一个恰当的数代入求值.24. 已知:如图,AB=AD ,BC=DE ,且BA ⊥AC ,DA ⊥AE . 求证:AM=AN25. a ,b 分别代表铁路和公路,点M 、N 分别代表蔬菜和杂货批发市场.现要建中转站O 点,使O 点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O 点位置,不写作法,保留作图痕迹).四.解答题(26题5分,27题各6分,共11分)26. 如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC,求证:∠PCB+∠BAP=180ºF C27. 如下图,在△ABC 中,AP 平分∠CAB(∠CAB<60°)(1)如图(1)点P 在BC 上,若 ∠CAB=42°, ∠B=32°,确定AB ,AC ,PB 之间的数量关系,并证明.(2) 如图(2),点P 在△ABC 内,若 ∠CAB=2α, ∠ABC=60°-α, 且∠CBP=30°, 求∠APC 的度数(用含α的式子表示).图(2)图(1)人教版2019年八年级数学期中试卷(二)一、精心选一选(本大题共10小题,每题3分,共30分,在每题所给出的四个选项中,只有一项是符合题意的.)1.下列长度(单位:cm)的三根小木棒,把它们首尾顺次相接能摆成一个三角形的是()A. 1,2,3 B. 5,6,7 C. 6,8,18 D. 3,3,6 2.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()A. 125°B. 120°C. 140°D. 130°3.下面四幅图案中,属于轴对称图形的是()A. B.C.D.4.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形一定能够重合D.全等三角形一定关于某直线对称5.已知等腰三角形的一个角的度数是50°,那么它的其它两个角的度数是() A. 50°,80°B. 65°,65°C. 50°,80°或65°,65°D. 60°,70°或30°,100°6.一个多边形的内角和是外角和的3倍,则这个多边形是()A.六边形B.七边形C.八边形D.九边形7.如果AD是△ABC的中线,那么下列结论一定成立的有()①BD=CD;②AB=AC;③S△ABD =S△ABC.A. 3个B. 2个C. 1个D. 0个8.如图,小牛利用全等三角形的知识测量池塘两端A、B的距离,如图△CDO≌△BAO,则只需测出其长度的线段是()A. AO B. CB C. BO D. CD9.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=8,ED=2,AC=3,则AB 的长是()A. 5 B. 6 C. 7 D. 8 10.如图,在平面直角坐标系中,△ABC与△DEF关于直线m=1对称,点M、N 分别是这两个三角形中的对应点,如果点M的横坐标是a,那么点N的横坐标是()A.﹣a B.﹣a+1 C. a+2 D.﹣a+2二、细心填一填(本大题共5小题,每小题3分,共15分)11.部分中国黑体汉字具有轴对称的美,如“口、干、非、…”,请你再写出几个具有这种轴对称美的汉字(至少写3个).12.如图,△ABC≌△EBD,点C在BE上,若CE=2,BD=3,则AB的长度是.13.如果一个三角形的两边长分别2、8,它的第三边长为偶数,那么这个三角形的周长等于.14.如图,已知∠1=∠2,请你添上一个条件:,使△ABC≌△ADC.15.将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=41°,∠2=51°,那么∠3的度数等于.三、认真答一答(本大题共7题,满分55分,解答应写出文字说明、证明过程或推演过程.)16.已知:△ABC的三边长分别为a,b,c,化简:|a﹣b+c|+|a﹣b﹣c|17.已知:如图,点A、B、C、D在同一条直线上,AE∥BF,AE=BF,AB=CD.求证:CE∥DF.18.已知A村和B村坐落在两相交公路内(如图所示),为繁荣当地经济,A、B 两付计划合建一座物流中心,要求所建物流中心必须满足下列条件:①到两条公路的距离相等;②到A、B两村的距离也相等.请你通过作图确定物流中心的位置.(要求:尺规作图,保留作图痕迹,不写作法)19.已知:如图,AE=AC,AD=AB,ED=CB,BC延长线分别交AD、ED于点G、F.(1)求证:△ADE≌△ABC.(2)如果∠CAD=10°,∠B=20°,∠EAB=130°,求∠EFG的度数.20.已知:如图,在△ABC中,∠C=90°,AE是△ABC的角平分线;ED平分∠AEB,交AB于点D;∠CAE=∠B.(1)求∠B的度数.(2)猜想:ED与AB的位置关系,并证明你的猜想.(3)如果AC=3cm,请直接写出AB的长度(不要求写出解答过程).21.知识重现:“能够完全重合的两个图形叫做全等形.”理解应用:我们可以把4×4网格图形划分为两个全等图形.范例:如图1和图2是两种不同的划分方法,其中图3与图1视为同一种划分方法.请你再提供四种与上面不同的划分方法,分别在图4中画出来.22.已知:如图1,△ABC和△EDC都是等边三角形,点D、E分别在BC、AC上.(1)填空:∠AED= = 度.(2)求证:AD=BE.(3)如图将图1中的△EDC沿BC所在直线翻折(如图2所示),其它条件不变,(2)中结论是否还成立?请说明理由.人教版2019年八年级数学期中试卷(三)一、选择题(本大题共10题,每小题3分,共30分)1.(3分)下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.(3分)下面各组线段中,能组成三角形的是()A.5,11,6 B.8,8,16 C.10,5,4 D.6,9,143.(3分)等腰三角形的一个角是50°,则它的底角是()A.50°B.50°或65°C.80°D.65°4.(3分)和点P(2,﹣5)关于x轴对称的点是()A.(﹣2,﹣5)B.(2,﹣5)C.(2,5)D.(﹣2,5)5.(3分)如图:Rt△ABC≌Rt△DEF,则∠D的度数为()A.30°B.45°C.60°D.90°6.(3分)如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN 的是()A.∠M=∠N B.AM∥CN C.AB=CD D.AM=CN7.(3分)如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE8.(3分)等腰三角形的两边分别为4和6,则这个三角形的周长是()A.14 B.16 C.24 D.14或169.(3分)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去10.(3分)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.都有可能二、填空题(共30分)11.(3分)已知点(2,﹣3)与点(﹣2,y )关于y轴对称,那么y= .12.(3分)如图,PM=PN,∠BOC=30°,则∠AOB= .13.(3分)一个汽车牌在水中的倒影为,则该车牌照号码.14.(3分)一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.15.(3分)已知点A(m﹣1,3)与点B(2,n+1)关于x轴对称,则m+n= .16.(3分)如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是(只写一个即可,不添加辅助线).17.(3分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点D,过点D作EF∥BC交AB,AC于点E,F,若BE+CF=20,则EF= .18.(3分)小明沿30°的山坡从山脚步行到山顶,共走了400m,则山高为m.19.(3分)如下图,在△ABC中,AB=8,BC=6,AC的垂直平分线MN交AB、AC 于点M、N.则△BCM的周长为.20.(3分)如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为.三、静心画一画.21.(8分)a,b分别代表铁路和公路,点M、N分别代表蔬菜和杂货批发市场.现要建中转站O点,使O点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O点位置(不写作法,保留作图痕迹).22.(12分)(1)如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标(直接写答案)A 1 B1C1(3)求△ABC各边的长.四、解答题(共40分)23.(8分)如图所示,已知△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=30°.求证:AB=4BD证明:∵△ABC中,∠ACB=90°,∠A=30°∴BC= AB∠B=又∵△BCD中,CD⊥AB∴∠BCD=∴BD= BC∴BD= AB即.24.(10分)如图,AB=AC,AD=AE,∠1=∠2,试说明△ABD与△ACE全等.25.(10分)AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,且DB=DC,求证:EB=FC.26.(12分)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.人教版2019年八年级数学期中试卷(四)一、选择题(每小题3分,共30分)1.下面各组线段中,能组成三角形的是( )A .5,11,6B .8,8,16C .10,5,4D .6,9,14 2、下列图形中是轴对称图形的是3、如图,一扇窗户打开后,用窗钩AB 可将其固定, 这里所运用的几何原理是( )A.三角形的稳定性 B.两点之间线段最短 C.两点确定一条直线 D.垂线段最短4、一个多边形的内角和比它的外角和的3倍少1800,这个多边形的边数是 ( )A. 5条B. 6条C. 7条D. 8条 5.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为 ( )A.16B. 18C.20D.16或20 6.用尺规作的平分线的方法如下:以为圆心,任意长为半径画弧交、于、,再分别以点、为圆心,以大于长为半径画弧,两弧交于点,作射线,则为的平分线.由作法得△OCD ≌△OCE 的根据是( ) A .SSS B .SAS C .ASA D .AAS 7. 如图,已知MB=ND,∠MBA=∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是( ) A.∠M=∠N B. AM=CN C. AM ∥CN D.AC=BD8、将一副直角三角尺所示放置,已知,则的度数是 ( ) A.B. C.D.AOB ∠O OA OB D E D E DE 21C OC OC AOB ∠AE BC ∥AFD ∠45506075A OB第7题图第6题图第8题图E 321GH F DCBA9.如图,三角形ABC 中,AD 平分∠BAC ,EG ⊥AD ,且分别交AB 、AD 、AC 及BC 的延长线于点E 、H 、F 、G ,下列四个式子中正确的是( )10.如图所示,△ABC 是等边三角形,AQ =PQ , PR ⊥AB 于R 点,PS ⊥AC 于S 点,PR =PS ,•则四个结论:①点P 在∠BAC 的平分线上;②AS =AR ;③QP ∥AR ; ④△BRP ≌△QSP .正确的结论是( ) A .①②③④ B .只有①② C .只有②③ D .只有①③二、填空题(每小题3分,共18分)11、若等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形的底角是12、点M (a ,-5)与点N (-2,b )关于x 轴对称,则a +b = 。
八年级上册数学期中测试题及答案

八年级上册数学期中测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x + 3 = 7的解?A. x = 1B. x = 2C. x = 3D. x = 4答案:B2. 如果一个数的平方等于9,那么这个数可能是:A. 3B. -3C. 3或-3D. 以上都不对答案:C3. 一个数的绝对值是其本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或零D. 以上都不对答案:C4. 一个数的立方等于-8,那么这个数是:A. 2C. 8D. -8答案:B5. 下列哪个选项是不等式3x - 5 > 7的解集?A. x > 4B. x < 4C. x > 2D. x < 2答案:A6. 计算 (-2)^3 的结果是:A. -8B. 8C. -6D. 6答案:A7. 一个角是90°,那么它的补角是:A. 90°B. 180°C. 270°D. 360°答案:B8. 一个数的倒数是1/2,那么这个数是:B. 1/2C. 1D. 0答案:A9. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 4D. -4答案:A10. 一个数的立方根是2,那么这个数是:A. 8B. -8C. 2D. -2答案:A二、填空题(每题4分,共20分)1. 一个数的平方等于16,这个数是______。
答案:±42. 如果一个角的补角是120°,那么这个角是______。
答案:60°3. 一个数的绝对值是5,这个数可以是______。
答案:±54. 一个数的立方等于27,这个数是______。
答案:35. 一个数的倒数是1/3,那么这个数是______。
答案:3三、解答题(每题10分,共50分)1. 解方程:3x - 7 = 8。
答案:x = 52. 已知一个角是45°,求它的补角。
浙教版八年级数学上册期中测试卷(附答案)

浙教版八年级数学期中测试卷班级: _________ 姓名: _________ 得分: _________一、仔细选一选(本题有10小题,每小题3分,共30分)1.下列命题是真命题的是()A.如果两个角不相等,那么这两个角不是对顶角B.两个互补的角一定是邻补角C.如果a2=b2.那么a = bD.如果两个角是同位角,那么这两个角一定相等2.已知等腰三角形一腰上的中线将它的周长分成6 cm和12 cm脚部分,则等腰三角形的底边长为()A.2 cmB. 10 cmC.6 cm或4 cmD.2 cm或10 cm3.下列语句不是命题的是()A.x与y的和等于0吗B.不平行的两条直线有一个交点C.两点之间线段最短D.对顶角不相等4.如图,∠ABC = ∠ACB,∠A = ∠ADB,则不可能是∠A的度数的是()A.55°B.65°C.75°D.85°5.如图,在△ABC中,D为AB上一点,E为BC上一点,且AC= CD= BD= BE,∠A= 50°.则∠CDE的度数为()A.50°B.51°C.51.5D.52.5°6.如图所示的正方形网格中,网格线的交点称为格点.已知A.B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是 ( )A.6B.7C.8D.9第4题第5题第6题第7题7.如图,已知直线l交直线a,b于A,B两点,且a∥b,E是a上的点,F是b上的点,满足∠DAE = 13∠BAE,∠DBF =13∠ABF,则∠ADB的度数是 ( )A.45°B.50°C.60°D.无法确定8.在△ABC中,AB = 3,AC = 4,延长BC至点D,使CD = BC,连结AD,则AD的长的取值范围( )A.1 < AD < 7B.2 < AD < 14C.2.5 < AD < 5.5D.5 < AD < 119.如图,已知AB = AC = BD,那么∠1与∠2之间的关系是 ( )A.∠1 = 2∠2B.2∠1 + ∠2 = 180°C.∠1+3∠2=180°D.3∠1 -∠2 = 180°第9题第10题第13题10.如图,△ABC和△ADE都是等腰直角三角形,∠EAD= ∠BAC= 90°,∠DAB= 45°.连结BE.DC.EC.则下列说法正确的有()①BE = DC ②AD∥BC ③EC = DC ④BE = ECA.①③B.②①C.①③④D.①②③④二、认真填一填(本题有6小题,每小题4分,共24分)11.如果一个三角形的三边之比是1:3:2.则这个三角形的形状是 _________ .12.下刚命题:①钝角的补角是锐角:②两个无理数的商仍为无理数:③相等的角是对顶角:④若x是实数,则x2+ 1 > 0;⑤一个锐角与一个钝角的和等于一个平角.是真命题的有 _________ .(用序号表示)13.如图,在△ABC中,点D是BC的中点,作射线AD.在线段AD及其延长线上分别取点E,F,连结CE.BF.添加一个条件,使得△BDF≌△CDE.你添加的条件是 _________ .(不添加辅助线)第14题第16题14.三个等边三角形的位置如图所示,若∠3 = 40°,则∠1 + ∠2 = _________ °.15.在一张长为8 cm,宽为6 cm的矩形纸片上,现要剪下一个腰长为5 cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为 _________ cm2.16.如图,D,E分别是△ABC边AB,BC上的点,AD= 2BD.BE= CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC = 6,则S1-S2的值为 _________ .三、全面答一答(本题有7小题,共66分)17.(6分)如图,在△ABC中,∠C= 90°,边AB的垂直平分线交AB,AC边分别为点D,点E,连结BE.(1)若∠A = 40°,求∠CBE的度数;(2)若AB = 10,BC = 6.求△BCE的周长.18.(8分)如图,∠BAD = ∠CAE.AB = AD,AC = AE.(1)试说明△ABC ≌△ADE:(2)若∠B = 20°,DE = 6,求∠D的度数及BC的长.19.(8分)如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC= 60°.∠BCE= 40°.求∠ADB的度数.20.(10分)某同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B = 90°,∠A= 30°;图②中,∠D= 90°,∠F= 45°.图③是该同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D,E两点始终在AC边上(移动开始时点D与点A重合).(1)在△DEF沿AC方向移动的过程中,该同学发现:F,C两点间的距离逐渐 _________ ;连结FC,∠FCE的度数逐渐 _________ ;(填“不变”、“变大”或“变小”)(2)△DEF在移动的过程中,∠FCE与∠CFE的度数之和是否为定值,请加以说明;(3)能否将△DEF移动至某位置,使F,C的连线与AB平行?若存在,请求出∠CFE的度数.21.(10分)如图,△ACB和△ECD都是等腰直角三角形,∠ACB = ∠ECD = 90°,点D为AB边上一点,求证:(1)△ACE ≌△BCD;(2)AD2 + DB2 = DE2.22.(12分)已知在△ABC中,∠C= 90°,沿过B的一条直线BE折叠这个三角形,使点C与AB 边上的一点D重合,如图所示.(1)要使D恰为AB的中点,还应添加一个什么条件?(请写出一个你认为正确的添加条件)(2)将(1)中的添加条件作为题目的补充条件,试说明其能使D为AB中点的理由.解:(1)添加条件: _________ ;(2)说明:23.(12分)如图,在△ABC中,∠C= Rt∠,AB= 5 cm,BC= 3 cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1 cm,设出发的时间为ts.(1)出发2s后,求△ABP的周长;(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2 cm,若P,Q两点同时出发,当P,Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC 的周长分成相等的两部分?。
八年级第一学期学期中考试数学试卷(附带答案)

八年级第一学期学期中考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm 黑色签字笔在答题卡上题号所提示的答题区域作答.答案写在试卷上无效.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只 有一项是符合题目要求的.) 1.4的算术平方根是( )A.±2B.2C.﹣2D.±16 2.下列各数中,是无理数的是( )A.3.1415926B.√4C.√﹣83D.π 3.下列各点在第二象限的是( )A.(﹣√3,0)B.(﹣2,1)C.(0,﹣1)D.(2,﹣1) 4.下列运算正确的是( )A.√2+√3=√5B.3√3-√3=3C.√3×√5=√15D.√24+√6=45.已知点(-1,y 1),(3,y 2)在一次函数y=2x+1的图象上,则y 1,y 2的大小关系是( ) A.y 1<y 2 B.y 1=y 2 C.y 1>y 2 D.不能确定6.已知(k ,b )为第四象限内的点,则一次函数y =kx -b 的图象大致( )A. B. C. D.7.已知{x =1y =﹣1是方程x -my=3的解,那么m 的值( )A.2B.﹣2C.4D.﹣48.我国古代《算法统宗》里有这样一首诗:"我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空."诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住:如果每一间客房住9人,那么就空出一间客房,设该店有客房x 间、房客y 人,下列方程组中正确的是( ) A.{7x +7=y9(x -1)=y B.{7x +7=y 9(x +1)=y C.{7x -7=y 9(x -1)=y D.{7x -7=y9(x +1)=y9.如图,△ABC 是直角三角形,点C 在数轴上对应的数为﹣2,且AC=3,AB=1,若以点C 为圆心,CB 为半径画弧交数轴于点M ,则A 和M 两点间的距离为( )A.0.4B.√10-2C.√10-3D.√5-1(第9题图) (第10题图)10.甲、乙两车从A 城出发匀速行驶至B 城,在整个行驶过程中,甲、乙两车离开A 城的距 离y (千米)与甲车行驶的时间1(小时)之间的函数关系如图所示,则下列结论:①A 、B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t =54或154.其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个第II 卷(非选择题共110分)二.填空题:(本大题共6个小题,每小题4分,共24分) 11.电影票上"8排5号"记作(8,5),则"6排7号"记作 . 12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学上册期中测试卷附答案
没有人会因学问而成为智者。
学问或许能由勤奋得来,而机智与智慧却有懒于天赋。
以下是为大家搜索的初二数学上册期中测试卷附答案,希望能给大家带来帮助! 更多精彩内容请及时关注我们!
一、选择题(共10小题,每小题3分,共30分)
1. 下列图形不是轴对称图形的是( )
2. 已知三角形两边的长分别是4 和10,则此三角形第三边的长可能是( )
A.5
B.6
C.11
D.16
3. 已知am=5 an=6,则am+n的值为()
A.11
B.30
C.
D.
4. 下列计算错误的是( )
A.( - 2x)3二-2x3
B. - a2?a二—a3
C.( - x)9+( - x)9= - 2x9
D.(-2a3)2=4a6
5. 如图,将两根钢条AA、BB的中点0连在一起,使AA、BB'能绕着点0自由转动,就做成了一个测量工具,由三角形全等可知A B'的长等于内槽宽AB那么判定厶OAB^A OA B'的理由是( )
A.SAS
B.ASA
C.SSS
D.AAS
6. 计算(x+3y)2 - (3x+y)2 的结果是()
A.8x2 - 8y2
B.8y2- 8x2
C.8(x+y)2
D.8(x - y)2
7. 如图:DE是△ ABC中AC边的垂直平分线,若BC=8厘米,AB=10
厘米,则△ EBC的周长为()厘米.
A.16
B.18
C.26
D.28
8. 计算(-2x+1)( - 3x2)的结果为()
A.6x3+1
B.6x3 —3
C.6x3 —3x2
D.6x3+3x2
9. 分解因式:x2 —4y2的结果是()
A.(x+4y)(x —4y)
B.(x+2y)(x —2y)
C.(x —4y)2
D.(x —2y)2
10. 如图,AD是角平分线,E是AB上一点,AE=AC EF// BC交AC于F.下列结论①△ ADC^A ADE②CE平分/ DEF;③AD垂直平分CE. 其中正确的是()
A ①②③B①C、②D③
二、填空题( 共 6 小题,每小题 3 分,共18 分)
11. 计算:xx0—2 —1 = ______
12. 化简(1-)(m+1)的结果是.
13. 如图,这是由边长为1 的等边三角形摆出的一系列图形,按这种方式摆下去,则第n 个图形的周长是.
14. 如图,点D在厶ABC边BC的延长线上,CE平分/ ACD /
A=80°,Z B=40°,则/ ACE的大小是度.
15. 如图,已知△ ABC是等边三角形,点B、C、D E在同一直线上,且CG=C,DDF=DE,
则/E=度.
16. 已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.
三、解答题(共8题,共72分)
17.(本题8分)计算:
(1)(3a- 2b)(9a+6b);(2)(- 2m- 1)2;
18.(本题8 分) 分解因式:4m2- 9n2
19.(本题8 分) 解分式方程=
20.(
本题8 分) 已知:如
图,
AB二CDAB// CD DEL AC BF丄
AC
E、F是垂足,AF=5,求CE的长.
21. ( 本题10 分) 如图,在平面直角坐标系中,直线l 是第一、
三象限的角平分线.
实验与探究:
(1) 由图观察易知A(0,2)关于直线I的对称点A'的坐标为(2 , 0),请在图中分别标明B(5,3)、C( - 2,5)关于直线I的对称点B'、C的位置,并写出他们的坐标:B‘ 、C ;
归纳与发现:
(2) 结合图形观察以上三组点的坐标, 你会发现:坐标平面内任一点P(a ,b)关于第一、三象限的角平分线I的对称点P'的坐标为;
运用与拓广:
22. ( 本题8分)xx年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81 千米,运行时间减少了9 小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普
快平均时速的 2.5 倍.
(1) 求高铁列车的平均时速;
(2) 某日王老师要去距离烟台大约630 千米的某市参加14:00 召开的会议,如果他买到当日8:40 从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要 1.5 小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?
23. ( 本题10分)如图,点E是/ AOB勺平分线上一点,ECL OA
ED^ OB垂足分别为C、D.
求证:(1) / ECD h EDC;
(2) OC=OD;
(3) OE 是线段CD的垂直平分线.
24. ( 本题12 分)如图,已知△ ABC中, / B=Z C, AB=8厘米,
BC=6
厘米,点D为AB的中点.如果点P在线段BC上以每秒2厘米的速度
由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由
C点向A点运动,设运动时间为t(秒)(0 < t < 3).
(1) 用的代数式表示PC的长度;
(2) 若点P、Q的运动速度相等,经过1秒后,△ BPD<^CQP是否全等,请说明理由;
(3) 若点P、Q的运动速度不相等,当点Q的运动速度a为多少时,能够使厶BPD W^ CQP全等?
一、选择题
1.B.
2.C.
3.B.
4.A.
5.A.
6.B.
7.B.
8.C.
9.B.10.A
二、填空题
11.12.m.13.2+n.14.6015.1516. 十一.
三、解答题
17. 解:(1)原式=3(3a - 2b)(3a+2b)=3(9a2 - 4b2)=27a2 - 12b2;
(2) 原式=4m2+4m+1;
18. 解:4m2- 9n2=(2m+3n)(2m- 3n).
19. 解:去分母得:3x=2x+2,
解得:x=2,
经检验x=2 是分式方程的解.
故答案为:x=2.
20. 解:T DEL AC BF丄ACDEC h AFB=90 ,
v AB// CD
在厶DEC ffiA BFA中,
h DEC=h AFB,h C=h A,DC=BA
:,△ DEC^A BFA
••• CE=AF
••• CE=5.
21. 解:(1)如图:B (3, 5), C (5 , - 2);
(2)(b a);
22. 解:(1) 设普快的平均时速为x 千米/小时高铁列车的平均时速为
2.5x 千米/ 小时由题意得,,
解得:x=72,经检验,x=72是原分式方程的解,且符合题意,则
2.5x=180 ,
答:高铁列车的平均时速为180千米/ 小时;
(2)630 -180=3.5,则坐车共需要3.5+1.5=5(小时),
王老师到达会议地点的时间为 1 点40.
故他能在开会之前到达.
23. 解:(1) T OE 平分/ AOB ECL OA EDL OB
••• ED=EC即厶CDE为等腰三角形,二/ ECD M EDC;
(2) T•点E是/ AOB勺平分线上一点,EC丄OA ED L OB
:丄 DOE h COE / ODE h OCE=90 , OE=OE
•△OED^A OEC(AAS) • OC=OD;
(3) 在厶DO酥口△ COE中, OC=OP / EUC h BOE OE=OE
•△DOE^A COE 二DE=CE
•OE是线段CD的垂直平分线.
24. 解:(1)BP=2t,贝S PC=B G BP=6— 2t;
(2) △ BPD^ CQP全等
理由:T t=1 秒• BP=CQ=2 1=2 厘米,• CP=BGBP=6- 2=4 厘米,
T AB=8厘米,点D为AB的中点,二BD=4厘米,• PC=BD 在厶BPDm CQP中, BD=PC h B=h C, BP=CQ
• △BPD^A CQP(SAS);
⑶•••点P、Q的运动速度不相等,二BP^CQ
又BPD^A C,/ B=Z C,「. BP=PC=3cmCQ=BD=4qm •••点P,点Q运动的时间t==秒,二VQ二厘米/秒.。