2014年中考数学复习专题讲座(WORD)6:数学思想方法(二)
2014年中考数学分析预测讲座(压轴题分类讲座)

2.
难度分布:
① 一、二两大题各有至少一题为压轴题。 ② 三大题中,基础题、中档题、压轴题个占两题。 ③ 基础题一般为:统计概率一题;解直角三角形应 用一题。中档题:文字应用题一题;几何题一题。 压轴题:几何动点+函数一题;函数+动点存在性 一题。
二.2014中考预测
1.
2.
3.
近三年中考题分类练习讲座(按照选择;填 空;基础;中档;压轴分类分析讲解)。 2014年考题预测:前面的两道大题和解答题 中的前两题基本不变。中档题略有调整,重 点是第二道中档题变化较大。 最后两道压轴题变化较大,一般不会和往年 重复。
【例5】
六.因动点产生的面积问题
【例6】
七.因动点产生的相切问题
【例7】
八.因动点产生的线段和差问题
【例8】
第二部分 图形运动中的函数关系问题
一.由比例线段产生的函数关系问题
【例9】
二.由面积公式产生的函数关系问题
【例10】
下课了!
结束寄语
•悟性 •取决于有无悟心
Hale Waihona Puke 内蒙古包头瑞星教育原创精品课件——版权所有
• 根据当年发布的考试说明,知识点认真梳 理一遍,按照:“说、举、做”的步骤找 出漏点,查漏补缺,形成知识网络。 • 总结各知识体系中的基本模型(具有普遍 意义的基本图形;基本题型;基本规律)。 遇到相关题目能从模型出发找到突破点。 • 基本的数学思想要掌握。数形结合的思想; 方程的思想;函数的思想等。 • 基本的数学方法要会用。消元法;待定系 数法等。
中考数学复习讲座
第一讲:考纲(考试说明)是基础
瑞星教育数学培训课件
茂李 印树
中考数学复习讲座
2014年中考数学复习专题讲座(WORD)4:探究型问题

2014年中考数学复习专题讲座四:探究型问题一、中考专题诠释探究型问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的一类问题.根据其特征大致可分为:条件探究型、结论探究型、规律探究型和存在性探究型等四类.二、解题策略与解法精讲由于探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法.当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.三、中考考点精讲考点一:动态探索型:此类问题结论明确,而需探究发现使结论成立的条件.例1 (2012•自贡)如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.考点:菱形的性质;二次函数的最值;全等三角形的判定与性质;等边三角形的性质。
中考数学专题复习专题六数学思想方法(二)

2014中考数学专题复习专题三数学思想方法(二)(方程思想、函数思想、数形结合思想)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。
数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在•因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等. 在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲考点四:方程思想从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。
用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。
这种思想在代数、几何及生活实际中有着广泛的应用。
例4 (2013?温州)如图,AB为O O的直径,点C在O O上,延长BC至点D,使DC=CB , 延长DA 与O O的另一个交点为E,连接AC , CE •(1 )求证:/ B= / D ;(2 )若AB=4 , BC-AC=2,求CE 的长.思路分析:(1 )由AB为O O的直径,易证得AC丄BD,又由DC=CB,根据线段垂直平分线的性质,可证得AD=AB,即可得:/ B= / D;(2)首先设BC=x,则AC=x-2 ,由在Rt △ ABC 中,AC2+BC 2=AB2,可得方程:(x-2 )2+x2=42, 解此方程即可求得CB的长,继而求得CE的长.解答:(1)证明:T AB为O O的直径,•••/ ACB=90 ,••• AC 丄BC ,•/ DC=CB ,• AD=AB ,•••/ B= / D ;(2)解:设BC=x,则AC=x-2 ,在Rt △ ABC 中,AC 2+BC 2=AB2,■'■( x-2)2+X2=42,解得:x i=1+、7 , x2=1- 7 (舍去),•••/ B= / E,/ B= / D,•••/ D= / E ,••• CD=CE ,•/ CD=CB ,• CE=CB=1+ 7 .点评:此题考查了圆周角定理、线段垂直平分线的性质、等腰三角形的判定与性质以及勾股定理等知识•此题难度适中,注意掌握方程思想与数形结合思想的应用.对应训练4. (2013?娄底)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1考点五:函数思想函数思想是用运动和变化的观点,集合与对应的思想,去分析和研究数学问题中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决。
中考数学专题复习课件:数学思想方法

6.(2013·雅安中考)在平面直角坐标系中,已知点 A ( 5 , 0 ) , B ( 5 , 0 ) , 点C在坐标轴上,且AC+BC=6, 写出满足条件的所有点C的坐标_________.
【解析】如图,①当点C位于y轴上时,设C(0,b).
则
52b2 52b26,
解得b=2或b=-2,
过点A作AD⊥BC,垂足为D, ∵∠ACB=75°-∠B=45°, sinACDAD,
AC
∴AD=AC×sin 45°,
在Rt△ABD中,∠B=30°,
∴AB=2AD=2AC×sin 45°=750 2m.
答案:750 2 m
【知识归纳】解直角三角形实际应用的两点技巧 1.转化:利用直角三角形或构造直角三角形解决实际问题,一 般先把实际问题转化为数学问题,若题目中无直角三角形,需 要添加辅助线(如作三角形的高等)构造直角三角形,再利用解 直角三角形的知识求解. 2.前提:解直角三角形时结合图形分清图形中哪个三角形是直 角三角形,哪条边是角的对边、斜边、邻边,此外正确理解俯 角、仰角、坡度、坡角等名词术语是解答此类题目的前提条件.
2
2
【特别提醒】 (1)注意由数思形,由形想数,搞清数形关系,做好数形转化. (2)弄清反比例函数与一次函数的交点和△ABC的底与高.
【对点训练】 1.(2014·呼和浩特中考)实数a,b,c在数轴上对应的点如图所示, 则下列式子中正确的是 ( )
A.ac>bc C.-a<-b<c
B.|a-b|=a-b D.-a-c>-b-c
值是 ( )
A.27
B.36
C.27或36
D.18
【解析】选B.若3是等腰三角形的底边,则关于x的一元二次方
2014年数学中考二轮专题复习讲义:数学思想方法

2014年数学中考二轮专题复习讲义:数学思想方法【考纲要求】数学思想方法在中考中的常考点有:分类讨论思想方法,数形结合思想方法,化归思想方法以及代入法、消元法、待定系数法等;【命题趋势】数与几何的综合题所涉及到的思想方法很多,以数形结合思想为主线,综合考查其他思想方法的灵活运用,难度较大,一般为中考中的压轴题.题型分类、深度剖析:考点一、分类讨论思想:例1、(2013 ·凉山州)如图,在平面直角坐标系中,矩形OABC 的顶点A,C 的坐标分别为(10,0),(0,4),点D是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为 5 的等腰三角形时,点P 的坐标_____________________________.解:由题意,当△ODP 是腰长为5 的等腰三角形时,有三种情况.(1)如图,PD=OD=5,点P 在点D 的左侧.过点P 作PE⊥x 轴于点E,则PE=4.在Rt△PDE中,DE=PD2-PE2=52-42=3.∴OE=OD-DE=5-3=2.∴此时点P坐标为(2,4).(2)如图,OP=OD=5.过点P 作PE⊥x 轴于点E,则PE=4.在Rt△POE中,OE=OP2-PE2=52-42=3.∴此时点P 坐标为(3,4).(3)如图,PD =OD =5,点P 在点D 的右侧.过点P 作PE ⊥x 轴于点E ,则PE =4.在Rt △PDE 中,DE =PD 2-PE 2=52-42∴OE =OD +DE =5+3=8. ∴此时点P 坐标为(8,4). 答案:(2,4)或(3,4)或(8,4)归纳:分类讨论思想是研究与解决数学问题的重要思想之一,在中学数学的应用中十分广泛.由于数学研究对象的属性不同,影响了研究问题的结果,从而对不同属性的对象进行研究的思想,或者由于在研究问题过程中出现了不同情况,从而对不同情况进行分类研究的思想,我们称之为分类讨论思想,正确的分类,必须遵循一定的原则,以保证分类科学、统一,不重复、不遗漏,并力求最简考点二、数型结合思想例2、(2013·杭州)如图给出下列命题及函数y =x ,y =x 2和y =1x.①如果1a>a >a 2,那么0<a <1;②如果a 2>a >1a,那么a >1;③如果1a>a 2>a ,那么-1<a <0;④如果a 2>1a>a 时,那么a <-1.则( )A .正确的命题是①④B .错误的命题是②③④C .正确的命题是①②D .错误的命题只有③ 解:易求x =1时,三个函数的函数值都是1, 所以,交点坐标为(1,1).根据对称性,y =x 和y =1x在第三象限的交点坐标为(-1,-1),如果1a>a >a 2,那么0<a <1,①正确;如果a 2>a >1a,那么a >1或-1<a <0,②错误;如果1a>a 2>a ,那么a 值不存在,③错误;如果a 2>1a>a 时,那么a <-1,④正确.综上所述,正确的命题是①④. 答案:A归纳:数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系,又揭示其几何意义,使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.考点三、化归转化思想:例3、(2013·重庆)如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆与对角线AC 交于点E ,则图中阴影部分的面积为 .(结果保留π)解:设AB 的中点是O , 连结OE .S △ADC =12AD ·CD =12×4×4=8,S 扇形OAE =14π×22=π, S △AOE =12×2×2=2,则S 弓形AE =π-2,∴阴影部分的面积为8-(π-2)=10-π.归纳:将一个陌生的、未知的问题转化为一个熟悉的、已知的问题的思想叫做化归思想,也叫转化思想.化归思想就是化未知为已知、化繁为简、化难为易.化归思想是数学的核心思想,又是未知通往已知的桥梁.跟踪练习:1、(聊城)如图,在矩形ABCD 中,AB =12 cm ,BC =8 cm ,点E,F,G 分别从点A,B,C 三点同时出发,沿矩形的边按逆时针方向移动,点E,G 的速度均为2 cm/s ,点F 的速度为4 cm/s ,当点F 追上点G(即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t 秒时,△EFG 的面积为S(cm 2).(1)当t =1秒时,S 的值是多少?(2)写出S 和t 之间的函数解析式,并指出自变量t 的取值范围.(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点E,B,F 为顶点的三角形与以点F,C,G 为顶点的三角形相似?请说明理由.2、(2013·漳州)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论正确的是( )A .a <0B .b 2-4ac <0 C .当-1<x <3时,y >0 D .-b2a=13、(2013 ·烟台)如图 ,正方形 ABCD 的边长为 4,点 E 在 BC 上,四边形 EFGB 也是正方形,以 B 为圆心,BA 的长为半径画弧 ,连接 AF ,CF ,则图中阴影部分的面积为________.。
中考专题复习 数学思想方法

(1)根据上面的规律,写出(a+b)5的展开式. (2)利用上面的规律计算:25-5×24+10×23-10×22+5×2-1.
【解析】(1)(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5 (2)原式=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3 +5×2×(-1)4+(-1)5=(2-1)5=1.
∵M点在第三象限,∴M(-1,-2).
综上①、②所述,存在点M使△AOM与△ABC相似,且这样
的点
3 , 9 44
有两个,其坐标分别为( ),(-1,-2).
2.(2010·十堰中考)如图,点C、D是以
线段AB为公共弦的两条圆弧的中点,AB=4,
点E、F分别是线段CD、AB上的动点,设AF=x, AE2-FE2=y,则能表示y与x的函数关系的图象是(
【自主解答】(1)∵y=x2的顶点坐标为(0,0), ∴y=(x-h)2+k的顶点坐标为D(-1,-4), ∴h=-1,k=-4. (2)由(1)得y=(x+1)2-4. 当y=0时,(x+1)2-4=0,x1=-3,x2=1, ∴A(-3,0),B(1,0). 当x=0时,y=(x+1)2-4=(0+1)2-4=-3, ∴C点坐标为(0,-3). 又因为顶点坐标D(-1,-4),
另三边用长为40米的铁栏杆围成,设该花圃的腰AB的长为x米.
(1)请求出底边BC的长(用含x的代数式表示);
E
F
(2)若∠BAD=60°,该花圃的面积为S米2.
①求S与x之间的函数关系式(要指出自变
九年级数学中考数学思想方法专题讲座二

九年级数学中考数学思想方法专题讲座二解题思想方法概论:化归学号______班级________姓名__________典型问题展示 问题1. .______23311的值为,则若bab a b ab a b a +++-=+问题2.已知484212=++xx ,求x 的值.问题3.已知,2=+y x 求222121y xy x ++的值.练习:计算(1) )()(526110132301-+-÷-(2)20092008331)()(-⨯-;(3)20072008)2(3)2(-⨯+- (4)若522781+-=x x ,求x 的值. 问题4.(1)小学问题:两数之和为10,那么哪两个数之积最大?此时这两个数有何数量关系?(2)点P 是线段AB 上一点,则点P 在哪个位置时,使得P A ·PB 之积最大?为什么?(3)一根长为4的铁丝围成一个矩形,请问它的面积最大是多少?(4)有一个长为2的围栏,利用互相垂直的两堵墙, 围成一个矩形羊圈ABCD ,请问它最大面积是多少?(5)如图,利用原有的一面墙(图中虚线表示的部分), 用长为4的围栏围成一个矩形羊圈ABCD ,求它的最大面积.l D CBA l 2l 1D C BADCBA(6)如图,从一张矩形纸片较短的边上找一点,过这个点剪下两个正方形,它们的边长分别为AE ,BE .要剪下的两个正方形的面积和最小,点E 应选在何处?为什么?(7)有一块直角三角形铁皮,两条直角边长分别为3dm 和4dm ,需在其内部裁出一块面积尽量大的矩形铁皮ABCD ,在分割时,小明和小亮的意见出现了分歧. 小明:利用图①的分割方法,设矩形铁皮的一边AB =x dm .①AD 边的长度如何表示? ②当x 取何值时,矩形铁皮的面积最大?最大值是多少?小亮:利用图②的分割方法,他认为能裁出面积更大的矩形铁皮,你认为他的想法能否实现?为什么?(8)已知△ABC 的面积为4,则其内接矩形的最大面积为多少?问题5. 对于n (n 是大于2的自然数)个任意的正方形,能否通过若干次拼接,将其拼接成为一个正方形?请简要说明你的理由.图②。
初中数学常用思想方法专题讲解

初中数学常用思想方法专题讲解引入语数学思想方法是数学基础知识、基本技能的本质体现,是形成数学能力、数学意识的桥梁,是灵活应用数学知识和技能的灵魂.正确运用数学思想方法是在中考数学中取得好成绩的关键. 解中考题时常用的数学思想方法有:整体思想、分类讨论思想、方程思想、转化的思想、数形结合思想、归纳与猜想的思想等.中考解读数学思想是解决数学问题的灵魂,它在学习和运用数学知识的过程中起着关键性的指导作用.数学思想方法是中考考查的重点内容之一,还因为它是解决数学问题的根本策略,也是学生数学素养的重要组成部分.数学思想总是在解决问题的过程中体现出来,在中考中不会出现单纯的数学思想题目,这就增加了数学思想的掌握和训练的难度,但它也是有规律的,只要勤于思考和总结,经过适当的训练,相信你一定能够掌握初中数学常用的思想方法.回顾近年全国各地的中考题,不难发现数学思想方法的考查频率越来越高,涉及的知识点也越来越多.预计2009年中考,对数学思想方法的考查可能呈现以下趋势:需要利用数学思想求解的题目稳中有增,涉及的知识点更加分散.其中,函数与方程思想的考查,很可能集中体现在应用题中;数形结合思想的考查以选择和填空为主;分类讨论思想的考查主要在求解函数、不等式、空间与图形、概率等问题中出现;……,总之,数学思想的掌握和训练应引起同学们的重视.复习策略由于数学思想总是渗透在问题中,所以复习中要抓关键类型,突出重点知识和方法,比如方程思想与函数思想的联合复习等;要注意挖掘课本例、习题的潜在功能,以题思法,推敲其中的思想方法,多角度多侧面探讨条件的加强与弱化、结论的开放与变换、蕴含的思想方法、及与其他试题的联系和区别等,提高复习的效率.题型归类一、整体的思想整体思想是将问题看成一个完整的整体,把注意力和着眼点放在问题的整体结构和结构改造上,从整体上把握问题的内容和解题的方向与策略.运用整体思想解题,往往能为许多中考题找到简便的解法.例1 (某市)若220x x --=) ABD分析:已知条件是一个一元二次方程,通过求出方程的解再代入计算,当然可以得到结果,但是显然很繁.注意到,条件可以转化为22x x -=,而且要求值的代数式中的未知部分都是2x x -,所以可以整体代入. 解:由条件得:22x x -=2213.故应选A. 评注:从结构上对题目的条件和问题进行全面、深刻的分析和改造是应用整体思想的基础和关键.二、分类讨论思想分类讨论就是按照一定的标准,把研究对象分成为数不多的几个部分或几种情况,然后逐个加以解决,最后予以总结作出结论的思想方法.其实质是化整为零,各个击破,化大难为小难的的策略.例2(某市)若等腰三角形的一个外角为70,则它的底角为度.分析:由于题目没有交代这个外角是顶角的外角还是底角的外角,所以要分两种情况分别计算并讨论是否符合题意.解:⑴当顶角的外角是70时,根据“三角形的一个外角等于与它不相邻的两个内角的和”知两个底角的和为70°,所以每个底角为35°;⑵当底角的外角为70°时,每个底角都是110°,这与三角形内角和定理相矛盾.故应填:35.评注:分类的原则是“不重不漏”,对每一种情况都要分析.三、方程思想方程是初中数学的重要内容,它内容丰富,涉及面广,综合性强,因而用方程思想解数学题有广泛的应用.利用方程思想的基本类型有:通过列方程或方程组求出待定系数,进而求出函数的解析式;研究函数图象的交点、解决二次函数图象与x轴交点的有关问题.方程思想在解决几何问题时也经常用到.所谓用方程思想解几何题,就是充分挖掘条件和结论中隐含的数量关系,借助图形的直观性质,寻求已知量与未知量之间的等量关系,从而列出方程(组),然后解出方程,进而使几何题得到解决.例3(某市)一个凸多边形的内角和与外角和相等,它是边形.分析:由于任意多边形的外角和都是360°,而n边形的内角和是()2180n-°,从而列出方程求解.解:设这个多边形是n边形,根据题意,得:()2180n-=360,解得n=4.评注:几何面积公式、多边形内角和公式、对角线条数公式等都是几何问题中常用的等量关系,根据几何中的等量关系列出方程是利用方程思想的核心.四、转化思想所谓的转化思想就是指在求解数学问题时,如果对当前的问题感到生疏困惑,可以把它进行变换,使之化生疏为熟悉,化繁为简,化难为易,,从而使问题得以解决的思想方法.这种思想是科学研究和数学学习中很常用的方法,它是解决新问题获得新知识的重要思想,在中考中我们可以通过它来突破并解决一些难题.例4(某市)已知三角形三个顶点坐标,求三角形面积通常有以下三种方法:方法1:直接法.计算三角形一边的长,并求出该边上的高.方法2:补形法.将三角形面积转化成若干个特殊的四边形或三角形的面积的和或差.方法3:分割法.选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形.现给出三点坐标:A(-1,4),B(2,2),C(4,-1),请你选择一种方法计算△ABC的面积,你的答案是S△ABC=.分析:平面直角坐标系中的图形的面积计算大多通过分割或补形转化为矩形和三角形解决.本题的关键是画出图形,找到相应的长度.解:如图,△ABC的三边中没有水平或竖直的,所以采用分割法.S△ABC=11121322⨯⨯+⨯⨯=2.5.(沿过点B的水平线分割)评注:本题的分割办法非常多,比如沿过B的竖直线分割、沿图中黑线补图等均可.五、数形结合思想所谓数形结合思想就是在研究问题时把数和形结合考虑或者把问题的数量关系转化为图形的性质,或者把图形的性质转化为数量关系,从而使复杂的问题简单化,抽象的问题形象化、具体化.例5 (某市))二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列说法不正确的是( )A .240b ac ->B .0a >C .0c >D .02b a-<分析:本题是把抽象的二次函数问题通过图象展现出来,也从图象中获取二次函数的性质,是数形结合思想的充分体现.解:由抛物线与x 轴有两个交点可知A 正确;由抛物线的开口向上知B 也正确;由抛物线与y 轴的交点在y 轴的正半轴上知C 也正确;由图中对称轴的位置知02b a->,所以D 是错误的,故选D. 评注:正如我国著名的数学家华罗庚所言——“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事非”, 将图形的数量关系,辅之以数,则更加具体直观,从而快速得到问题的答案.六、归纳与猜想的思想方法所谓归纳与猜想,就是在解决数学问题时,从特殊的、简单的、局部的例子出发,探寻一般的规律,或者从现有的已知条件出发,通过观察、类比、联想,进而猜想出结果的思想方法.例6 (襄樊市)如图,在锐角AOB ∠的内部,画1条射线,可得3个锐角;画2条不同的射线,可得6个锐角;画3条不同的射线,可得10个锐角;……;照此规律,画10条不同射线,可得锐角个.分析:观察图形可发现:第1个图有(1+2)个角;第2个图有(1+2+3)个角;第3个图有(1+2+3+4)个角;……;所以第10个图应有1+2+3+4+5+6+7+8+9+10+11=66个角;另一方面,第10个图中共有12条射线,每一条射线跟其它11条射线都能组成一个锐角,共有12×11=132个,但是每一个角都被它的两条边分别算了一次,所以,实际只有它的一半.解:12112⨯=66(个). 评注:解决这类问题的关键是找出其中的规律.主要有两种方法,1.看后面图形与前一个图形发生了怎样的变化,从变化中找规律;2.看每个图形中角的个数与图形序号之间的关系,从而写出通式.七、样本估计总体思想用样本估计总体是统计的基本思想,主要包括三类:用样本中某类个体所占的比例来估计总体中这类个体所占的比例,用样本的平均数、方差来估计总体的平均数、方差.例7 (某市)今年3月5日,花溪中学组织全体学生参加了“走出校门,服务社会”的活动.九年级一班高伟同学统计了该天本班学生打扫街道,去敬老院服务和到社区文艺演出的人数,并做了如下直方图和扇形统计图.请根据高伟同学所作的两个图形,解答:(1)九年级一班有多少名学生?(2)补全直方图的空缺部分.(3)若九年级有800名学生,估计该年级去敬老院的人数.析解:统计图表部分的主要问题类型是从图表中获取信息、用样本的特性估计总体的相应特性.从条形统计图可看出:去社区进行文艺演出的同学有15人;从扇形统计图可看出其所占比例为310,所以该班共有学生50人;有总人数和打扫街道、文艺演出的人数可算得去敬老院的有10人;去敬老院的学生占学生总数的20%,据此可估计九年级800名学生中约有160人去了敬老院.评注:用样本的特性估计总体相应的特性是统计的价值所在,但结果都是“估计”.八、函数思想函数思想一方面是指以函数概念为依托,运用运动和变化的观点,分析和研究具体问题中的数量关系,通过函数的形式,把这种数量关系表示出来,(即建立函数表达式)并加以研究,从而使问题获得解决.另一方面是对函数概念本质的认识,即利用函数的图象或函数的性质去分析、观察其它数学问题并加以解决.例8 (某市)抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B两仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨.从甲、乙两库到A、B两库的路程和运费如下表(表中“元/吨·千米”表示每吨粮食运送1千米所需人民币)甲库乙库甲库乙库A库20151212B库2520108路程(千米)运费(元/吨·千米)(1)若甲库运往A库粮食x吨,请写出将粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式.(2)当甲、乙两库各运往A 、B 两库多少吨粮食时,总运费最省,最省的总运费是多少?分析:总费用是四项运输费用的和,根据题意,得:)]100(110[208)70(1512)100(25102012x x x x y --⨯⨯+-⨯+-⨯+⨯=将此关系式化简,并利用函数的性质分析即可.解:(1)依题意有:)]100(110[208)70(1512)100(25102012x x x x y --⨯⨯+-⨯+-⨯+⨯==3920030+-x (其中700≤≤x )(2)上述一次函数中030<-=k∴y 随x 的增大而减小∴当x =70时,总运费最省,最省的总运费为:元)(37100392007030=+⨯-.评注:函数思想是解决实际问题中最佳方案、费用最低等类型问题的最主要方法. 初中几种常见的数学思想与数学基础知识一样,数学思想也是数学的重要内容之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年中考数学复习专题讲座六:数学思想方法(二)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。
数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲考点四:方程思想从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。
用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。
这种思想在代数、几何及生活实际中有着广泛的应用。
例1 (2012•广东)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?考点:一元二次方程的应用。
810360专题:增长率问题。
分析:(1)设年平均增长率为x.根据题意2010年公民出境旅游总人数为5000(1+x)万人次,2011年公民出境旅游总人数5000(1+x)2 万人次.根据题意得方程求解;(2)2012年我国公民出境旅游总人数约7200(1+x)万人次.解答:解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得5000(1+x)2 =7200.解得x1 =0.2=20%,x2 =﹣2.2 (不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为7200(1+x)=7200×120%=8640万人次.答:预测2012年我国公民出境旅游总人数约8640万人次.点评:方程是解决应用题、实际问题和许多方面的数学问题的重要基础知识,应用范围非常广泛。
很多数学问题,特别是有未知数的几何问题,就需要用方程或方程组的知识来解决。
具有方程思想就能够很好地求得问题中的未知元素或未知量,这对解决和计算有关的数学问题,特别是综合题,是非常需要的。
例2 (2012•桂林)李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即匀速步行回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度(单位:米/分)是多少?(2)李明能否在联欢会开始前赶到学校?考点:分式方程的应用。
810360专题:应用题。
分析:(1)设步行速度为x米/分,则自行车的速度为3x米/分,根据等量关系:骑自行车到学校比他从学校步行到家用时少20分钟可得出方程,解出即可;(2)计算出步行、骑车及在家拿道具的时间和,然后与42比较即可作出判断.解答:解:(1)设步行速度为x米/分,则自行车的速度为3x米/分,根据题意得:,解得:x=70,经检验x=70是原方程的解,即李明步行的速度是70米/分.(2)根据题意得,李明总共需要:.即李明能在联欢会开始前赶到.答:李明步行的速度为70米/分,能在联欢会开始前赶到学校.点评:此题考查了分式方程的应用,设出步行的速度,根据等量关系得出方程是解答本题的关键,注意分式方程一定要检验.考点五:函数思想函数思想是用运动和变化的观点,集合与对应的思想,去分析和研究数学问题中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决。
所谓函数思想的运用,就是对于一个实际问题或数学问题,构建一个相应的函数,从而更快更好地解决问题。
构造函数是函数思想的重要体现,运用函数思想要善于抓住事物在运动过程中那些保持不变的规律和性质。
例4 (2012•十堰)某工厂计划生产A、B两种产品共50件,需购买甲、乙两种材料.生产一件A产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B产品不少于28件,问符合条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费200元,生产一件B产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费)考点:一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用。
810360专题:应用题。
分析:(1)设甲材料每千克x元,乙材料每千克y元,根据购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元,可列出方程组,解方程组即可得到甲材料每千克15元,乙材料每千克25元;(2)设生产A产品m件,生产B产品(50﹣m)件,先表示出生产这50件产品的材料费为15×30m+25×10m+15×20(50﹣m)+25×20(50﹣m)=﹣100m+40000,根据购买甲、乙两种材料的资金不超过38000元得到﹣100m+40000≤38000,根据生产B产品不少于28件得到50﹣m≥28,然后解两个不等式求出其公共部分得到20≤m≤22,而m为整数,则m的值为20,21,22,易得符合条件的生产方案;(3)设总生产成本为W元,加工费为:200m+300(50﹣m),根据成本=材料费+加工费得到W=﹣100m+40000+200m+300(50﹣m)=﹣200m+55000,根据一次函数的性质得到W 随m 的增大而减小,然后把m=22代入计算,即可得到最低成本.解答:解:(1)设甲材料每千克x元,乙材料每千克y元,则,解得,所以甲材料每千克15元,乙材料每千克25元;(2)设生产A产品m件,生产B产品(50﹣m)件,则生产这50件产品的材料费为15×30m+25×10m+15×20(50﹣m)+25×20(50﹣m)=﹣100m+40000,由题意:﹣100m+40000≤38000,解得m≥20,又∵50﹣m≥28,解得m≤22,∴20≤m≤22,∴m的值为20,21,22,共有三种方案,如下表:A(件)20 21 22B(件)30 29 28(3)设总生产成本为W元,加工费为:200m+300(50﹣m),则W=﹣100m+40000+200m+300(50﹣m)=﹣200m+55000,∵W 随m的增大而减小,而m=20,21,22,∴当m=22时,总成本最低,此时W=﹣200×22+55000=50600元.点评:函数思想是函数概念、性质等知识更高层次的提炼和概括,是一种策略性的指导方法。
运用函数思想通常是这样进行的:将问题转化为函数问题,建立函数关系,研究这个函数,得出相应的结论。
22.(2012•广元)某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把1200m3的生活垃圾运走.(1)假如每天能运xm3,所需时间为y天,写出y与x之间的函数关系式;(2)若每辆拖拉机一天能运12m3,则5辆这样的拖拉机要用多少天才能运完?(3)在(2)的情况下,运了8天后,剩下的任务要在不超过6天的时间完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?y=y=考点六:数形结合思想数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。
例5 (2012•襄阳)如图,直线y=k1x+b与双曲线y=相交于A(1,2)、B(m,﹣1)两点.(1)求直线和双曲线的解析式;(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1,y2,y3的大小关系式;(3)观察图象,请直接写出不等式k1x+b>的解集.考点:反比例函数与一次函数的交点问题。
810360专题:计算题。
分析:(1)将点A(1,2)代入双曲线y=,求出k2的值,将B(m,﹣1)代入所得解析式求出m的值,再用待定系数法求出k1x和b的值,可得两函数解析式;(2)根据反比例函数的增减性在不同分支上进行研究;(3)求不等式k1x+b>的解集,就是求k1x+b>时自变量的x的范围,从图象上看:直线在双曲线上方,这是“以形助数”.根据A、B点的横坐标结合图象进行解答.解答:解:(1)∵双曲线y=经过点A(1,2),∴k2=2,∴双曲线的解析式为:y=.∵点B(m,﹣1)在双曲线y=上,∴m=﹣2,则B(﹣2,﹣1).由点A(1,2),B(﹣2,1)在直线y=k1x+b上,得,解得,∴直线的解析式为:y=x+1.(2)∵在第三象限内y随x的增大而减小,故y2<y1<0,又∵y3是正数,故y3>0,∴y2<y1<y3.(3)由图可知,x>1或﹣2<x<0.点评:数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关系的精确刻划与几何图形的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。
例7 (2012•济南)如图1,抛物线y=ax2+bx+3与x轴相交于点A(﹣3,0),B(﹣1,0),与y轴相交于点C,⊙O1为△ABC的外接圆,交抛物线于另一点D.(1)求抛物线的解析式;(2)求cos∠CAB的值和⊙O1的半径;(3)如图2,抛物线的顶点为P,连接BP,CP,BD,M为弦BD中点,若点N在坐标平面内,满足△BMN∽△BPC,请直接写出所有符合条件的点N的坐标.考点:二次函数综合题。