导航原理惯性器件
惯性导航系统的基本惯性元件之一-加速度计

加速度计在机器人技术中也有广泛应用,如机器人运动控制、姿态 监测和导航定位等。
虚拟现实和增强现实
加速度计在虚拟现实和增强现实技术中也有重要作用,如运动捕捉、 体感交互和场景模拟等。
THANKS
感谢观看
汽车领域
自动驾驶
在自动驾驶汽车中,加速度计用于测 量汽车的加速度和减速度,结合其他 传感器实现汽车的自主导航和避障功 能。
车辆稳定性控制
通过测量汽车的纵向和横向加速度, 加速度计用于车辆稳定性控制,提高 汽车的行驶安全性和稳定性。
机器人领域
运动控制
在机器人领域,加速度计用于测量机器人的加速度和速度,实现机器人的运动控制和轨 迹规划。
压电式加速度计
总结词
高灵敏度、宽动态范围、结构简单
详细描述
压电式加速度计利用压电材料的压电效应来检测加速度,具有高灵敏度和宽动态 范围的特点,同时结构简单,易于实现小型化和集成化。
电容式加速度计
总结词
低成本、低功耗、高可靠性
详细描述
电容式加速度计利用电容原理来检测加速度,具有低成本和低功耗的特点,同时可靠性较高,适用于对成本和功 耗要求较高的应用场景。
计算出物体的姿态和方向。
抗干扰能力强
相对于卫星导航系统,惯性导航 系统不易受到外界干扰,特别是 在复杂环境和电磁噪声较大的环 境中,加速度计表现出了较高的
稳定性和可靠性。
02
加速度计的种类与特性
压阻式加速度计
总结词
高精度、低噪声、稳定性好
详细描述
压阻式加速度计利用应变片或压阻元件来检测加速度,具有高精度和低噪声的 特点,同时稳定性较好,适用于长时间和复杂环境下的测量。
加速度计在惯性导航系统 中的应用
惯性导航的原理及应用

惯性导航的原理及应用1. 什么是惯性导航惯性导航是指利用惯性传感器如加速度计、陀螺仪等,通过测量物体的加速度和角速度,进行导航和定位的一种技术。
与传统的基于卫星定位的导航系统(如GPS)相比,惯性导航具有更高的精度和即时性,能够在无GPS信号或GPS信号弱的环境下进行导航。
2. 惯性导航的原理惯性导航的原理基于牛顿第一定律和旋转参考系的概念。
根据牛顿第一定律,一个物体在没有受到外力作用时,将保持匀速直线运动或静止状态。
而旋转参考系则是指相对于某个旋转物体来描述运动的参考系。
惯性导航系统使用加速度计来测量物体的加速度,陀螺仪来测量物体的角速度。
通过对加速度和角速度的积分,可以得到物体的速度和位置信息。
然而,由于积分的误差会随时间累积,导致惯性导航系统的定位误差越来越大。
因此,惯性导航系统通常需要与其他导航系统(如GPS)进行融合,以获得更高的定位精度。
3. 惯性导航的应用惯性导航在许多领域中有着广泛的应用,下面列举了几个常见的应用场景:3.1. 航空航天领域在航空航天领域,惯性导航被广泛应用于飞机、导弹、卫星等飞行器。
由于惯性导航系统具有快速、精确的特点,可以实时测量飞行器的运动状态,对飞行器进行导航和姿态控制。
3.2. 无人驾驶汽车惯性导航也是无人驾驶汽车中的重要技术之一。
汽车上搭载的惯性导航系统可以实时测量汽车的加速度和角速度,通过积分获得汽车的速度和位置信息,从而进行定位、导航和路径规划。
3.3. 室内导航在室内环境中,由于GPS信号的弱化或无法使用,惯性导航成为一种重要的定位解决方案。
可以通过在手机、手表等设备上搭载惯性导航系统,实现室内导航、定位和路径规划。
3.4. 船舶导航在船舶领域,惯性导航系统在海上定位和导航中扮演重要的角色。
船舶可以通过惯性导航系统测量其加速度和角速度,获得相对于初始位置的位移信息,并根据位移信息进行导航和航线规划。
3.5. 运动追踪惯性导航在体育领域中也有广泛的应用。
惯性导航仪的工作原理

惯性导航仪的工作原理惯性导航仪(Inertial Navigation System,简称INS)是一种利用物体惯性原理进行导航的装置。
它通过测量物体的加速度和角速度,利用运动学和动力学原理计算出物体的位置、速度和姿态信息,从而实现导航定位。
工作原理:1. 加速度计测量:惯性导航仪内部装有三个加速度计,分别测量物体在三个坐标轴上的加速度。
加速度计通过测量物体在加速度作用下产生的惯性力,来推算物体的加速度。
这些加速度信息用于计算物体的速度和位置变化。
2. 陀螺仪测量:惯性导航仪内部还装有三个陀螺仪,分别测量物体绕三个坐标轴旋转的角速度。
陀螺仪通过测量物体在旋转时产生的角动量,来推算物体的角速度。
这些角速度信息用于计算物体的姿态变化。
3. 运动学和动力学计算:惯性导航仪通过运动学和动力学方程,结合加速度计和陀螺仪所测量的数据,计算出物体的位置、速度和姿态信息。
运动学方程用于计算位置和速度的变化,而动力学方程则考虑了物体受到的外力和外力矩的影响。
4. 初始校准和误差补偿:为了保证导航的准确性,惯性导航仪需要进行初始校准和误差补偿。
初始校准通常包括对加速度计和陀螺仪的零偏误差进行校准,以及确定初始位置和姿态信息。
误差补偿则是通过使用滤波算法和误差模型,对测量数据进行修正,减小误差对导航结果的影响。
优势和应用:1. 独立性:惯性导航仪不依赖于外部信号源,如卫星导航系统或者地面基站,因此在无法接收到这些信号的环境中仍然可以正常工作,如在海洋、空中或者地下等环境中。
2. 高精度:惯性导航仪的测量精度高,可以提供准确的位置、速度和姿态信息,特别在短期内可以达到较高的精度。
3. 实时性:惯性导航仪的测量和计算速度快,可以实时更新位置和姿态信息,满足实时导航的需求。
4. 可靠性:惯性导航仪具有较高的可靠性,不容易受到外部干扰或者故障的影响,适合于各种复杂环境和恶劣条件下的导航应用。
惯性导航仪的工作原理和优势使其在航空航天、船舶、导弹、无人机、车辆和机器人等领域得到广泛应用。
惯性导航的基本原理及应用

惯性导航的基本原理及应用惯性导航是一种基于惯性传感器技术的导航系统,它能够通过测量车辆、航空器或船只的加速度和角速度来推导出其位置、速度和姿态信息。
惯性导航系统利用了牛顿力学中的惯性原理,即物体在没有外界力作用下会保持匀速直线运动或保持不变的角速度。
基于这一原理,惯性导航系统可以通过不断积分加速度和角速度的数据来推导出车辆或飞行器的运动状态,实现自主导航和定位。
惯性导航系统的核心组件包括加速度传感器和陀螺仪。
加速度传感器用于测量运动物体的加速度,而陀螺仪则可以测量物体的角速度。
通过不断地对这些传感器所得到的数据进行积分运算,可以推导出车辆或飞行器的位置、速度和姿态信息。
此外,惯性导航系统通常还会与全球卫星定位系统(GPS)等其他导航系统相结合,以提高其定位精度和可靠性。
惯性导航系统的基本原理是利用牛顿运动方程和刚体运动学原理,通过积分运算来推导出车辆或飞行器的位置、速度和姿态信息。
具体来说,惯性导航系统首先通过加速度传感器和陀螺仪来测量车辆或飞行器的加速度和角速度,然后利用这些数据进行姿态解算和定位计算。
由于积分运算会引入误差累积,因此惯性导航系统通常会通过组合滤波算法来对导航信息进行优化和校正,以提高其定位精度和稳定性。
惯性导航系统具有许多应用,特别是在需要高精度导航和定位的领域。
例如,在航空航天领域,惯性导航系统常被用于飞行器的姿态控制、自主导航和惯性测量单元(IMU)等方面。
在军事领域,惯性导航系统可以用于导弹、无人机和战车等武器装备的精确定位和导航。
此外,在汽车、船舶和铁路等交通运输领域,惯性导航系统也可以为车辆的自主导航和定位提供支持。
另外,惯性导航系统还在船舶、海洋科学研究和海洋勘测等领域有着重要的应用。
总而言之,惯性导航系统基于惯性传感器技术,利用加速度传感器和陀螺仪等传感器来测量车辆或飞行器的运动信息,通过积分和滤波运算来推导出其位置、速度和姿态信息。
惯性导航系统在航空航天、军事、交通运输和海洋领域等有着广泛的应用,对提高导航定位精度和自主导航能力具有重要意义。
惯性导航知识点

惯性导航知识点概述惯性导航是一种基于物理原理的导航技术,它利用惯性传感器测量物体的加速度和角速度来推测其位置和方向。
这种导航方式不受外部环境的影响,因此在无法使用地面、天空或卫星信号进行导航的环境中具有很高的适用性。
本文将介绍惯性导航的原理、应用和未来发展方向。
一、惯性导航原理惯性导航基于牛顿第一定律,即物体在没有外力作用时将保持静止或匀速直线运动。
根据这个原理,惯性导航系统利用加速度计和陀螺仪来测量物体的加速度和角速度,并通过积分计算出位置和方向。
加速度计测量物体的加速度,而陀螺仪测量物体的角速度。
结合这两个测量值,我们可以获得物体的运动状态。
二、惯性导航应用惯性导航在许多领域中都有广泛的应用。
一方面,在航空航天领域,惯性导航被广泛用于飞机、导弹和航天器等的导航系统中。
因为这些系统需要长时间在没有卫星信号的空间中运作,而惯性导航正好可以提供稳定准确的导航信息。
另一方面,在汽车和船舶领域,惯性导航也可以用于提供车辆和船只的位置和方向信息。
三、惯性导航的优势和限制与其他导航技术相比,惯性导航具有一些独特的优势。
首先,惯性导航不受外部环境的干扰,能够在恶劣天气条件下工作。
其次,惯性导航系统具有较高的精度和更新速率,可以提供准确的导航信息。
然而,惯性导航也存在一些限制。
由于惯性传感器存在漂移问题,导航的误差会随时间累积,因此需要通过其他导航系统进行校正,如全球卫星定位系统(GPS)。
四、惯性导航的未来发展方向随着技术的不断发展,惯性导航正朝着更加精确和可靠的方向发展。
首先,研究人员正在努力改进惯性传感器的性能,减小测量误差和漂移问题,提高导航的精度。
其次,结合其他导航系统,如GPS和地图数据,可以进一步提高惯性导航的可靠性和准确性。
此外,随着人工智能技术的发展,惯性导航系统可能会与其他智能设备和系统进行集成,实现更多应用场景和功能。
总结惯性导航是一种基于物理原理的导航技术,利用惯性传感器测量物体的加速度和角速度来推测其位置和方向。
惯性导航的原理和应用

惯性导航的原理和应用1. 惯性导航的概述惯性导航是一种基于惯性测量单元(Inertial Measurement Unit, IMU)的导航技术。
IMU通常由加速度计和陀螺仪组成,通过测量物体的线性加速度和角速度来估计和预测姿态、位置和速度等导航参数。
2. 惯性导航的原理惯性导航基于牛顿力学定律和旋转运动定律,通过积分测量的加速度和角速度来更新导航参数。
惯性导航系统是一个闭环控制系统,其主要原理如下:•加速度计测量物体的线性加速度,陀螺仪测量物体的角速度。
•加速度计和陀螺仪的测量值在一定时间间隔内采样并进行积分,得到速度和位置的估计值。
•估计值由卡尔曼滤波器或其他滤波算法进行融合和校正,得到更精确的导航参数。
3. 惯性导航的优势惯性导航具有以下几点优势:•实时性高:惯性导航系统不需要外部信号的输入,可以即时获取和更新导航信息。
•精度较高:惯性导航系统通过积分加速度和角速度,可以提供相对较高的姿态、位置和速度测量精度。
•可靠性强:惯性导航独立于外界环境和对地基站的依赖,可以在恶劣条件下正常工作。
•应用范围广:惯性导航可以应用于航空航天、无人驾驶、船舶导航、运动追踪等领域。
4. 惯性导航的应用惯性导航在多个领域有广泛的应用,以下列举几个常见的应用场景:•航空航天:惯性导航在飞机、导弹和卫星等航空航天器中被广泛使用。
它可以提供飞行姿态、速度和位置的实时估计,为导航和姿态控制提供支持。
•无人驾驶:无人驾驶汽车、船舶和飞行器通常使用惯性导航系统进行实时定位和导航。
惯性导航可以为无人驾驶系统提供稳定的位置和姿态信息。
•运动追踪:惯性导航在运动追踪和运动分析领域也有广泛的应用。
例如,运动传感器可以用于定位和跟踪运动员或物体的姿态和运动轨迹。
•船舶导航:惯性导航在船舶导航中也是一种常见的技术。
它可以提供船舶的姿态、速度和位置信息,用于航行控制和航线规划。
5. 惯性导航的挑战和改进惯性导航也存在一些挑战和限制,例如测量误差的累积、漂移、传感器失准等。
惯性导航仪的工作原理

惯性导航仪的工作原理惯性导航仪(Inertial Navigation System,简称INS)是一种用于飞行器、船舶、导弹等运动物体导航的装置,它利用陀螺仪和加速度计等惯性传感器来测量物体的加速度和角速度,从而推算出物体的位置、速度和姿态信息。
惯性导航仪不依赖于外界的参考物体或信号源,因此具有独立性和高精度的特点。
一、陀螺仪原理陀螺仪是惯性导航仪的核心组件之一,用于测量物体的角速度。
陀螺仪基于角动量守恒定律,利用陀螺效应来测量物体的旋转。
当物体发生角速度时,陀螺仪内的转子会受到力矩的作用,从而产生预设方向上的转动。
通过测量转子的转动角度和时间,可以计算出物体的角速度。
二、加速度计原理加速度计用于测量物体的加速度。
加速度计基于牛顿第二定律,利用物体的质量和加速度之间的关系来测量加速度。
加速度计通常采用微机电系统(MEMS)技术,通过测量物体的惯性质量发生微小位移来计算加速度。
三、工作原理惯性导航仪的工作原理可以简单分为三个步骤:测量、积分和更新。
1. 测量:陀螺仪和加速度计通过连续测量物体的角速度和加速度来获取运动信息。
陀螺仪测量物体的角速度,加速度计测量物体的加速度。
这些测量值被称为姿态传感器数据。
2. 积分:通过对姿态传感器数据进行积分,可以得到物体的位置、速度和姿态信息。
对于位置和速度的计算,需要将加速度数据进行积分。
对于姿态信息的计算,需要将角速度数据进行积分。
3. 更新:为了保持精度,惯性导航仪需要进行定位误差的修正。
这通常通过与其他导航系统(如全球定位系统)进行数据融合来实现。
融合算法可以根据外部参考数据对惯性导航仪的测量结果进行修正,从而提高导航的精度和稳定性。
四、优点和应用惯性导航仪具有以下优点:1. 独立性:惯性导航仪不依赖于外界的参考物体或信号源,可以在无GPS信号或电磁干扰的环境下正常工作。
2. 高精度:惯性导航仪的测量精度高,可以达到亚米级或亚角度级别的精度要求。
3. 实时性:惯性导航仪的测量和计算过程非常快速,可以实时提供位置、速度和姿态等信息。
惯性导航系统

精度差; • 每次使用之前需要较长的初始对准时间; • 设备的价格较昂贵; • 不能给出时间信息。
应用
INS是一种自主的、不对外辐射信号、不受外界干扰的导航系统,它以适宜 的方式满足用户的导航需求。随着在军用和商业等领域导航需求的增长,惯性导 航技术不断拓展新的应用领域。其范围已由原来的舰艇、船舶、航空飞行器、陆 地车辆等,扩展到航天飞机、星际探测、制导武器、大地测量、资源勘测、地球 物理测量、海洋探测、铁路、隧道等方面,甚至在机器人、摄像机、儿童玩具中 也被广泛应用。
• 进动性
当转子高速旋转时,若外力矩作用于外环轴,陀螺仪将绕内 环轴转动;若外力矩作用于内环轴,陀螺仪将绕外环轴转动。 其转动角速度方向与外力矩作用方向互相垂直。这种特性,叫 做陀螺仪的进动性。进动角速度的方向取决于动量矩H的方向( 与转子自转角速度矢量的方向一致)和外力矩M的方向,而且是 自转角速度矢量以最短的路径追赶外力矩。
发展历程
基本原理
平面导航的工作原理如图。取oxy为定位坐标系,载体的瞬时位置为
(x, y)坐标。如果在载体内用一个导航平台把2个加速度计的测量轴分别稳 定在x和y轴向则加速度计分别测量载体x和y轴的相对惯性空间的运动 加速度,经导航计算机的运算得到载体的航行速度Vx、Vy和瞬时位置x、 y。
t
惯性传感器的发展情况直接决定了惯性导航系统的开发和应用,惯性
传感器自身的成本、体积和功耗影响了惯性导航系统的相应参数指标。 因此,惯性测量传感器的发展须要权衡以下几个因素(如图):精确性 、连续性、可靠性、成本、体积/重量、功耗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双自由度陀螺仪的测量轴是内、外框架轴。
导航原理惯性器件
2.3.2单自由度陀螺仪的基本特性
单自由度陀螺仪的转子 支承在一个框架内,没 有外框架,因而转子自 转轴有一个转动自由度, 即少了垂直于内框架轴 和自转轴方向的转动自 由度。因此单自由度陀 螺仪与双自由度陀螺仪 的特性也有所不同。
导航原理惯性器件
2、惯性元件的输出量都是相对惯性空间的测量 值,如陀螺仪的输出是相对惯性空间的角速 度,加速度计的输出是相对惯性空间的非引 力加速度。 惯性坐标系是惯性敏感元件测量的基准。
导航原理惯性器件
2.3 陀螺仪
传统意义上的陀螺仪是指转子陀螺仪,转子 陀螺仪的运动特性区别于一般刚体的根本原 因在于转子旋转产生的角动量,这种陀螺仪 服从牛顿力学。随着激光技术和微机械技术 的发展,建立在全新测量原理上的陀螺仪已 发展起来,出现了光学陀螺仪和微机械陀螺 仪。双自由Βιβλιοθήκη 陀螺仪的表观运动根据哥氏定理:
dH
dt
i
ddHteieHM
其中,e为与地球固连的地球坐标系。
当M=0时
dH
dt
e
H
ie
式中, d H
dt e
是角动量的矢端E在地球上观察到
的速度V,大小为 VHiesin
导航原理惯性器件
所以矢端E绕轴 OO 的旋转角速度大小为
eGO V EH H isesin inie
第2章 惯性器件
2.1 概述
2.2 陀螺仪 2.2.1 机械转子陀螺仪 2.2.2 光学陀螺仪 2.2.3 微机械陀螺仪
2.3 加速度计
导航原理惯性器件
2.1 惯性器件概述
惯性器件也称惯性仪表,即陀螺仪和加 速度计。陀螺仪用来测量运动体的角运动, 加速度计用来测量运动体的加速度。
“惯性”具有双重含义: 1、陀螺和加速度计服从牛顿力学,基本工作 原理是动量矩定理和牛顿第二定理,即基本惯 性原理;
(2) 内、外框架(或称内、外环,它是使 陀螺自转轴获得所需角转动自由度的结构);
(3) 附件(是指力矩马达、信号传感器等)。 力矩马达(力矩器)用于控制转子绕框架 轴转动,信号器用于拾取陀螺输出角。
导航原理惯性器件
陀螺仪的基本类型 根据框架的数目和支承的形式以及附件的
性质决定陀螺仪的类型
在工程上,为了保证陀螺转子获得角转动 自由度,典型的办法是将陀螺转子支承在 由内、外平衡环构成的卡登万向环架中, 设计中确保转子质心与支承点重合,这样 转子可看作定点转动刚体。
导航原理惯性器件
双自由度陀螺仪 (具有内、外两个框架, 使转子自转轴具有两个 转动自由度)。
单自由度陀螺 仪(只有一个框 架,使转子自 转轴具有一个 转动自由度)。
导航原理惯性器件
转子陀螺的力学原理
陀螺绕主轴转动的角动量以H表 示,H=JΩ,式中J为陀螺转子的转 动惯量。H是矢量,方向与角速度 的方向一致。
单自由度陀螺仪的输入轴是转子缺少转动自由度的那个轴。 输出轴是内框架轴。(一般地,转子轴定义为Z轴,输入 轴定义为X轴,输出轴定义为Y轴,满足右手坐标系。原点 在万向支点上)
当M0时,根据动
量矩定理
dH M
E H
dH
dt i
V
MG
其中, dt i 是角动量H的
矢端(矢量的端点,即表
示矢量大小的长度)的速
O
?
度,即V=M。由于有矢端
速度存在,所以H绕支点O M
旋转,转子绕O点作旋转
运角动速,度即的陀方螺向发是生H X进M动导航。原理惯性器件进动角速度为 ω
M H
进动性是双自由度陀螺仪的又一个基本特性,当 绕内框架轴作用外力矩时,将使高速旋转的转子 自转轴产生绕外框架轴的进动,而绕外框架轴作 用外力矩时,将使转子轴产生绕内框架轴的进动。
Z、H
架轴y的正向,使 转子轴趋向与x轴
F
重合。
β Y 导航原理惯性器件
单自由度陀螺仪定轴性总结
当基座绕陀螺仪缺少转动自由度的方向转动时,将强迫陀 螺仪跟随基座转动,同时陀螺仪转子轴绕内框架轴进动。 结果使转子轴趋向与基座转动角速度的方向重合。(绕其 他两轴旋转,保持定轴性)
单自由度陀螺仪具有敏感绕其缺少转动自由度方向旋转角 速度的特性。(两个旋转角速度存在函数关系)
导航原理惯性器件
单自由度陀螺仪的定轴性
对于单自由度陀螺仪,当基座绕陀螺仪自转轴 或内框架轴方向转动时,仍然不会带动转子一 起转动,即内框架仍然起隔离运动的作用。
但是,当基座绕陀螺仪缺少自由度的x轴正方 向以角速度ωx转动时,转子轴如何运动?
X、M
陀螺仪转子轴产
ωx
生绕内框架轴(Y
轴)的进动,进动 角速度β指向内框
方向自O 指向 O ,即 ωeGωi e
当自由陀螺的角动量与地
球自转角速度间的夹角时,0
地球上的观察者所看到的
陀螺自转轴以为角速度
作旋ω转ie ,旋转所形成的曲 面为一圆锥面,对称轴平
行于地轴,半锥角为 ,
陀螺的这种运动称为表观
运动。
导航原理惯性器件
ωie
O'
E
H Vθ
O
双自由度陀螺仪的基本特性-进动性
转子陀螺的力学原理就是动量矩定 理。
导航原理惯性器件
动量矩定理
dH M
dt i
式中,H为定点转动质点系对该定点的角动量 总和,M为作用在该质点系上对该定点的合外 力矩, d H 表示在惯性坐标系内观察到的时间 变化率。dt i
2.3.1.1双自由度陀螺仪的基本特性
由动量矩定理,当没有外力矩作用在陀螺仪 上时,dH 0,表明H相对惯性空间保持恒定 不变,dHt =iJΩ(H的方向和Ω的方向相同)即转 子自转轴相对惯性空间的指向不变。这就是陀
导航原理惯性器件
2.3.1 机械转子陀螺仪
一个绕对称轴高速旋转的飞轮转子叫陀 螺。将陀螺安装在框架装置上,使陀螺的自 转轴有角转动的自由度,这种装置的总体叫 做陀螺仪。
陀螺
导航原理惯性器件
陀螺仪的基本部件有: (1) 陀螺转子(常采用同步电机、磁滞电
机、三相交流电机等拖动方法来使陀螺转子 绕自转轴高速旋转,并且其转速近似为常值);
螺仪的定轴性。 导航原理惯性器件
定轴性是双自由度陀螺仪的 一个基本特性。无论基座绕 陀螺仪自转轴转动,还是绕 内框架轴或外框架轴方向转 动,都不会直接带动陀螺转 子一起转动(指转子自转之外 的转动)。由内、外框架所组 成的框架装置,将基座的转 动与陀螺转子隔离开来。这 样,如果陀螺仪自转轴稳定 在惯性空间的某个方位上, 当基座转动时,它仍然稳定 在原来的方位上。 导航原理惯性器件