数形结合_思想在中学数学教学中的应用
专题七 “数形结合”在初中数学中的运用

专题七“数形结合”在初中数学中的运用一、以数助形“数(代数)”与“形(几何)”是中学数学的两个主要研究对象,而这两个方面是紧密联系的.体现在数学解题中,包括“以数助形”和“以形助数”两个方面.“数”与“形”好比数学的“左右腿”.全面理解数与形的关系,就要从“以数助形”和“以形助数”这两个方面来体会.此外还应该注意体会“数”与“形”各自的优势与局限性,相互补充.“数缺形时少直觉,形少数时难入微;数形结合百般好,隔离分家万事非.”华罗庚的这四句诗很好地总结了“数形结合、优势互补”的精要,“数形结合”是一种非常重要的数学方法,也是一种重要的数学思想,在以后的数学学习中有重要的地位.要在解题中有效地实现“数形结合”,最好能够明确“数”与“形”常见的结合点,,从“以数助形”角度来看,主要有以下两个结合点:(1)利用数轴、坐标系把几何问题代数化(在高中我们还将学到用“向量”把几何问题代数化);(2)利用面积、距离、角度等几何量来解决几何问题,例如:利用勾股定理证明直角、利用三角函数研究角的大小、利用线段比例证明相似等.例1.已知平面直角坐标系中任意两点11()A x y ,和22()B x y ,之间的距离可以用公式AB =210y x =+的距离.解:设( 210)P x x +,是直线210y x =+上的任意一点,它到原点的距离是当4x =-时,OP =最小所以原点到直线210y x =+的距离为【说明】建立坐标系,利用坐标及相关公式处理一些几何问题,有时可以避免添加辅助线(这是平面几何的一大难点).在高中“解析几何”里,我们将专门学习利用坐标将几何问题代数化.例2.已知ABC ∆的三边长分别为22m n -、2mn 和22m n +(m 、n 为正整数,且m n >).求ABC ∆的面积(用含m 、n 的代数式表示).【分析】已知三角形三边求面积一般称为“三斜求积”问题,可用“海伦公式”计算,但运用“海伦公式”一般计算比较繁,能避免最好不用.本题能不能避免用“海伦公式”,这要看所给的三角形有没有特殊之处.代数运算比较过硬的人可能利用平方差公式就可以心算出来:222222222()()(2)(2)(2)m n m n m n mn +--==,也就是说,ABC ∆的三边满足勾股定理,即ABC∆是一个直角三角形.“海伦公式”:三角形三边长为a 、b 、c ,p 为周长的一半,则三角形的面积S 为:S =.解:由三边的关系:2222222()(2)()m n mn m n -+=+. 所以ABC ∆是直角三角形. 所以ABC ∆的面积22221()(2)()2m n mn mn m n =⋅-=-. 【说明】利用勾股定理证明垂直关系是比较常用的“以数助形”的手法.另外,熟练的代数运算在这道题中起到了比较重要的作用.代数运算是学好数学的一个基本功,就像武侠小说中所说的“内功”,没有一定的内功,单单依靠所谓的“武林秘笈”是起不了多少作用的.例3.直线y bx c =+与抛物线2y ax =相交,两交点的横坐标分别为1x 、2x ,直线y bx c =+与x 轴的交点的横坐标为3x .求证:312111x x x =+. 【分析】本题是研究抛物线和直线相交的相关问题,只是由于a 、b 、c 的符号不确定,导致抛物线和直线在坐标系中位置不确定,考虑问题需要进行分类讨论,比较麻烦.如果将问题代数化,看成有关方程的问题,进行相关的计算,就省去了分类的麻烦.解:∵直线y bx c =+与x 轴的交点的横坐标为3x ,∴30bx c +=. ∴3c x b=-.31b x c=-. ∵直线y bx c =+与抛物线2y ax =两交点的横坐标分别为1x 、2x , ∴1x 、2x 为关于x 的一元二次方程20ax bx c --=的两个不等实根.∴12b x x a +=,12cx x a=-. ∴12121211bx x b a c x x x x c a++===--.∴312111x x x =+. 例4.将如图的五个边长为1的正方形组成的十字形剪拼成一个正方形. 【分析】这是一类很常见的问题.如果单单从“形”的角度来思考,恐怕除了试验,没有其它更好的办法了.但是如果我们先不忙考虑怎样剪裁,而是先从“数”的角度来算一下,我们不难利用面积算出剪拼出来的正方形边长应该是线段,以此为一边作一个正方形(如图),我们就不难设计出各种剪裁方法了.【说明】有人把这种方法叫做“面积法”,其实“面积法”这个名字并没有揭示这类方法的所有本质.“面积”是剪拼问题中的一个“不变量”,几乎所有的剪拼问题,都可以先抓住“面积”这个不变量来进行“数”的计算.另一方面,“面积”本身就是从“数”的角度来刻画“图形”的大小特征的一个概念.因此,所谓“面积法”,实际上就是“数形结合”这种数学思想的一种具体体现.二、以形助数几何图形具有直观易懂的特点,所以在谈到“数形结合”时,更多的老师和学生更偏好于“以形助数”,利用几何图形解决代数问题,常常会产生“出奇制胜”的效果,使人愉悦.几何直观运用于代数主要有以下几个方面:(1)利用几何图形帮助记忆代数公式,例如: 正方形的分割图可以用来记忆完全平方公式;将两个全等的梯形拼成一个平行四边形可以用来记忆梯形面积公式;等等.(2)利用数轴或坐标系将一些代数表达式赋予几何意义,通过构造几何图形,依靠直观帮助解决代数问题,或者简化代数运算.比如:绝对值的几何意义就是数轴上两点之间的距离;数的大小关系就是数轴上点的左右关系,可以用数轴上的线段表示实数的取值范围; 互为相反数在数轴上关于原点对称(更一般地:实数a 与b 在数轴上关于2a b+对称,换句话说,数轴上实数a 关于b 的对称点为2b a -);利用函数图像的特点把握函数的性质:一次函数的斜率(倾斜程度)、截距,二次函数的对称轴、开口、判别式、两根之间的距离,等等;一元二次方程的根的几何意义是二次函数图像与x 轴的交点; 函数解析式中常数项的几何意义是函数图像与y 轴的交点(函数在0x =时有意义);锐角三角函数的意义就是直角三角形中的线段比例.例5.已知正实数x,求y =分析整理为即看作是坐标系中一动点( 0)x ,到两点(0,2)和(2,1)的距离之和,于是本问题转化为求最短距离问题.解:y =令( 0)P x ,、A (0,2)和B (2,1),则y PA PB =+. 作B 点关于x 轴的对称点'(21)B -,,则y 的最小值为'AB例6.已知1tan 2α=,1tan 3β=,求证:45αβ+=︒. 【分析】根据正切函数的意义不难构造出满足条件的角α、β(如图),怎样构造这两个角的和是解决这个问题的关键.将图(1)中下面的图翻转到上图的下面,就形成了如图(2)的图形,角αβ+也就构成了.证明:如图(2),连接BC ,易证:ABD ∆≌CBE ∆,从而ABC ∆是等腰直角三角形,于是:45αβ+=︒.图(1)图(2)例7.求函数123y x x x =++-+-的最小值.【分析】如图,设数轴上表示数-1、2、3、x 的点分别为A 、B 、C 、P (P 为动点),则表示P 到A 、B 、C 三点之间的距离之和,即y PA PB PC =++.容易看出:当且仅当点P 和点B 重合时,PA PB PC ++最小,所以4y AB BC =+=最小.例8.若关于x 的方程2230x kx k ++=的两根都在-1和3之间,求k 的取值范围.【分析】令2()23f x x kx k =++,其图象与x 轴的横坐标就是方程()0f x =的解.由()y f x =的图象可知,要使两根都在-1和3之间,只须:(1)0f ->,(3)0f >,()()02bf f k a-=-≤同时成立,由此即可解得10k-<≤或3k ≥.其中,(1)f -表示1x =-时的函数值.解:令2()23f x x kx k =++,由题意及二次函数的图象可知:(1)0(3)0()0f f f k ->⎧⎪>⎨⎪-≤⎩即222(1)2(1)3032330()2()30k k k k k k k k ⎧-+-+>⎪+⋅+>⎨⎪-+-+≤⎩ 解得:10k -<≤或3k ≥.【说明】一元二次方程,一元二次不等式均与二次函数有密切的关系,有关二次方程、二次不等式中较繁难的问题运用二次函数的图象来解决常常会起到意想不到的效果.例9.若0a >,且b a c >+,求证:方程20ax bx c ++=有两个相异实数根.【分析】首先可以想到的思路当然是证明240b ac ∆=->,但这并不容易.注意到二次方程与二次函数的关系,把“二次方程有两个相异的实根”这个代数命题“翻译”成几何命题就是“二次函数的图象与x 轴有两个交点”.考虑到此时0a >,抛物线开口向上,这个几何命题可以进一步等价转化成“二次函数的图象有一部分位于x 轴的下方,再把它翻译成代数命题就是“二次函数至少在某一点上的函数值小于0”.证明:考查函数2y ax bx c =++, ∵0a >,∴此抛物线开口向上.又∵b a c >+,即0a b c -+<,x∴当1x =-时,二次函数的值(1)0f -<.故抛物线与x 轴有两个交点,从而方程有两个不等实根.例10.已知:对于满足04p ≤≤的所有实数p ,不等式243x px x p +>+-恒成立,求x 的取值范围.【分析】不等式243x px x p +>+-可以变形为243(1)x x p x -+>--. 考查二次函数22143(2)1y x x x =-+=--和一次函数2(1)y p x =--.原不等式的几何意义是“二次函数1y 的图象在一次函数2y 的图象的上方”.原题条件的几何意义是“无论实数p 取04p ≤≤之内的什么实数,二次函数1y 的图象总是在一次函数2y 的图象的上方”.把原题所求的问题重新表述一下,就是:当x 取那些实数时,可以保证“无论实数p 取04p ≤≤之内的什么实数,二次函数1y 的图象总是在一次函数2y 的图象的上方”这个命题正确.现在我们研究这两个函数的图象(如图):二次函数1y 的图象是一条固定不变的抛物线.但是一次函数2y 的图象随之p 的变化绕(1,0)旋转,当0p =,20y =时,是与x 轴重合的一条直线;当4p =,244y x =-+是一条截距为4的直线,它与抛物线1y 的交点坐标为(-1,8).当实数q 取遍04p ≤≤之内的所有实数时,直线2y 所过了图中的阴影区域.结合图形,我们再一次把原问题重新表述一下:当x 取哪些实数时,可以保证“二次函数1y 的图象总是在图中的阴影区域的上方”.观察图象,我们不难得到1x <-或3x >,所以原问题的结论就是:x 的取值范围是1x <-或3x >.【说明】本题一开始为什么要对不等式作这样的变形?希望大家在完全理解这道题的解题思路后认真思考一下这个问题,习惯对这类问题的反思在高中数学学习中非常重要.利用函数图象解决不等式问题是一种比较常见的数形结合的方法,这种方法的要点是把不等式变形成两个可以画出图象的函数(值)比较.初三数学“数形结合”习题(1)1.已知平面直角坐标系中任意两点11()A x y ,和22()B x y ,之间的距离可以用公式AB =210y x =+的距离.2.已知ABC ∆的三边长分别为22m n -、2mn 和22m n +(m 、n 为正整数,且m n >).求ABC ∆的x面积(用含m 、n 的代数式表示).3.直线y bx c =+与抛物线2y ax =相交,两交点的横坐标分别为1x 、2x ,直线y bx c =+与x 轴的交点的横坐标为3x .求证:312111x x x =+. 4.将如图的五个边长为1的正方形组成的十字形剪拼成一个正方形. 5.已知正实数x,求y =6.已知1tan 2α=,1tan 3β=,求证:45αβ+=︒. 7.求函数123y x x x =++-+-的最小值.8.若关于x 的方程2230x kx k ++=的两根都在-1和3之间,求k 的取值范围. 9.若0a >,且b a c >+,求证:方程20ax bx c ++=有两个相异实数根.初三数学“数形结合”习题(2)1.设0k b +=,则直线y kx b =+与抛物线2y kx bx =+的位置关系是().A .有两个不重合的交点B .有且只有一个公共点C .没有公共点D .无法确定2.在下列长度的四组线段中,不能组成直角三角形的是().A .3、3、11、C .8、15、17D .3.5、4.5、5.53.文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在().A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米4.已知实数a 、b 在数轴上的对应点依次在原点的右边和左边,那么().A .ab b <B .ab b >C .0a b +>D .0a b -> 5.函数35y x x =-++的最小值为().A .8B .5C .3D .2 6.已知函数y x =和y =x >的解集为().A .22x -≤<B .22x -≤≤C .2x <D .2x >6题图7题图7.如图所示,在ABC ∆中,90C ∠=︒,点D 在BC 上,4BD =,AD BC =,3cos 5ADC ∠=,则DC =,sin B =.8.在数轴上数a 和3的对应点分别为点A 和点B ,点A 到原点的距离为1.5,则点A 关于点B 的对称点所对应的数是.9.有一座抛物线形拱桥,正常水位时桥下水面宽度为20米,拱顶距离水面4米,桥下的水深为2米.为保证过往船只顺利航行,桥下水面的宽度不得小于18米.问水深超过多少米时就会影响过往船只在桥下顺利航行?10.如图,已知ABC ∆内接于圆O ,AD 是圆O 直径交BC 于E .求证:tan tan AEB CDE⋅=. 11.如图所示,已知矩形AOBC 中,以O 为坐标原点,OB 、OA 分别在x 轴、y 轴上,A (0,4),60OAB ∠=︒,以AB 为轴对称后,使C 点落在D 点处,求D 点坐标.12.已知两点A (x 1,y 1)和B (x 2,y 2),线段AB 中点坐标可用公式(122x x +,122y y +)计算.现已知M (-1,2),N (5,14).(1)计算MN 中点的坐标;(2)试研究:怎样不画图计算出线段MN 的两个三等分点的坐标?初三数学“数形结合”习题(2)【参考答案】1.B2.D3.B4.D5.A6.A7.6,418.4.5或7.59.2.76米 10.提示:可以作AG BC ⊥于F ,交圆O 于G ,利用正切函数定义及相似三角形比例线段代换可得.(或连结BD 、CD ,利用正切函数定义及相似三角形比例线段代换可证得)11.(2)12.(1)(2,8);(2)(1,6)和(3,10). 提示:可推得两个三等分点的坐标公式(1223x x +,1223y y +)、(1223x x +,1223y y +)。
数形结合思想在中学数学中的解题应用

数形结合思想在中学数学中的解题应用数与形是数学的两大支柱,它们是对立的,也是统一的。
数形结合,其实质是将抽象的数学语言与直观图形结合起来,使抽象思维和形象思维结合起来,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观。
教师要尽量发掘数与形的本质联系,促使学生善于运用数形结合的思想方法去分析问题、解决问题,从而提高学生的数学能力。
下面结合具体实例谈谈数形结合思想在解题中的应用:1.函数中的数形结合思想例1:已知:点(-1,y1)(-3,y2)(2,y3)在y=3x2+6x+2的图象上,则: y1、y2、y3 的大小关系为()a.y1>y2>y3b.y2>y1>y3c.y2> >y1d.y3>y2>y1分析:由y=3x2+6x+2=3(x+1)2-1画出图象1,由图象可以看出:抛物线的对称轴为直线x=-1即:x=-1时,y有最小值,故排除a、b,由图象可以看出:x=2时y3的值,比x=-3时y2的值大,故选c.例2:二次函数 y=ax2+bx+c的图象的顶点在第三象限,且不经过第四象限,则此抛物线开口向,c的取值范围,b的取值范围,b2-4ac的取值范围。
解:由题意画出图象,如图:从而判断:a>0,c≥0∴对称轴:x=- 0图象与x轴有两个交点:∴△>0即b2-4ac>0例3:如图3,已知二次函数y=ax2+bx+c(a≠0)的图象过点c (0,),与x轴交于两点a(x1,0)、b(x2,0)(x2>x1),且x1+x2=4,x1x2=-5.求(1)a、b两点的坐标;(2)求二次函数的解析式和顶点p的坐标;(3)若一次函数y=kx+m的图象的顶点p,把△pab分成两个部分,其中一部分的面积不大于△pab面积的,求m的取值范围。
解:(1)∵x1+x2=4x1·x2=-5且x1<x2∴x1=5,x2=-1.∴a、b两点的坐标是a(5,0),b(-1,0)(2)由a(5,0),b(-1,0),c(0,),求得y=- (x-2)2+3.∴顶点p的坐标为(2,3);(3)由图象可知,当直线过点p(2,3)且过点m(1,0)或n (3,0)时,就把△pab分成两部分,其中一个三角形的面积是△pab的面积的 .①过n(3,0),p(2,3)的一次函数解析式为y=-3x+9;过点a(5,0),p(2,3)的一次函数解析式为y=-x+5.又一次函数y=kx+m,当x=0时,y=m,此一次函数图象与y轴的交点的纵坐标为m,观察图形变化,可得m的取值范围是5<m≤9.②过b(-1,0),p(2,3)的一次函数解析式为y=x+1;过点m (1,0),p(2,3)一次函数解析式为y=3x-3,观察图形变化,得m的取值范围是-3≤m<1.∴m的取值范围是-3≤m<1或5<m≤9.2.求最值问题:例.已知正实数x,求y= + 的最小值.分析:可以把 + 整理为 + ,即看作是坐标系中一动点(x,0)到两点(0,2)和(2,1)的距离之和,于是本问题转化为求最短距离问题.解:y= + ,令p=(x,0)、a(0,2)和b(2,1),则y=pa+pb.作b点关于x轴的对称点b’(2,-1),则y的最小值为ab’= = .3.利用方程解决几何问题例:本市新建的滴水湖是圆形人工湖.为测量该湖的半径,小杰和小丽沿湖边选取a、b、c三根木柱,使得a、b之间的距离与a、c之间的距离相等,并测得bc长为240米,a到bc的距离为5米,如图1所示.请你帮他们求出滴水湖的半径.[解析]如图2,设圆心为点o,连结ob、oa,oa交线段bc于点d.因为ab=ac,所以ab= bc,∴oa⊥bc,且bd=dc= bc=120.由题意,知da=5.设ob=x米.在rt△bdo中,因为ob2=od2+bd2,所以x2=(x-5)2+120.得x=1442.5 .所以,滴水湖的半径为1442.5米.数形结合思想在对于培养和发展学生的空间观念和数感方面有很大的启发作用,利用数形结合思想进行解题可以使的有些复杂问题简单化,抽象问题具体化。
中学数学中的数形结合思想的应用

中学数学中的数形结合思想的应用摘要:我将从以下几个典型例题来探讨数形结合思想在中学数学中的应用(函数思想)从而在实际教学中要将数形结合思想融汇到课堂中,培养学生加强数形结合思想的意识。
关键词:中学数学;数形结合;应用;思想方法1 数形结合思想在中学数学中的应用1.1 数形结合思想在集合中的应用1.1.1 利用韦恩图法解决集合之间的关系问题一般情况我们用圆来表示集合,两个圆相交则表示两个集合有公共的元素,两个圆相离就表示两个集合没有公共的元素。
利用韦恩图法能直观地解答有关集合之间的关系的问题。
例1.某校先后举行数理化三科竞赛,学生中至少参加一科的:数学807人,物理739人,化学437人;至少参加两科的:数理593人,数化371人,理化267人;三科都参加的213人,试计算参加竞赛总人数。
(选自《王后雄高考标准诠释》)解:我们用圆A、B、C分别表示参加数理化竞赛的人数,那么三个圆的公共部分正好表示同时参加数理化小组的人数。
用表示集合的元素,则有:即:参加竞赛总人数为人。
1.1.2 利用数轴解决集合的有关运算例2.已知集合,⑴若,求的范围。
⑵若,求的范围。
分析:先在数轴上表示出集合A的范围,要使,由包含于的关系可知集合B应该覆盖集合A,从而有:,这时的值不可能存在.要使,当时集合A应该覆盖集合B,应有成立,即。
当时,,显然成立.故时的取值范围为:在集合问题中,有一些常用的方法如韦恩图法,数轴法取交并集,在例题一中通过画韦恩图表示出各集合,可以直观形象的表现出各部分数量间的关系,本题主要强化学生数形结合能力,解此类题目的技巧与方法是画出图形,形象的表示出各数量关系间的联系,从而求解。
在解例题二这一类题目时要先化简集合,确定各集合之间的包含关系,进一步在数轴上表示出来,通过数轴简便求解。
1.2 数形结合思想在解方程中的应用在很多情况下我们对于一些比较复杂的方程不能使用常规的方法去解,也不能使用求根公式,以至于无法求解,那么我们采用数形结合思想,将方程的跟转化为求函数的交点,通过作图可以很好的解答出来。
“数形结合”在初中数学教学中的应用

河的右侧有 A、 B两个村子 , 试在河 的左
。
地解一元二次方程和简单 的高次不等式 等. 【 l 试通 过二次 函数 . 例 】 ) , 一 的 图象特 点来
比较 下 列 各 数 的 大 小 : . 1, 一 2 ) , .9, 1 0 ( .1 4
(一 1 09) .0 .
侧建一个商店 c 使 A +B, c c最少?
ll :
分 析 : 图 1从 图形 上 易 发 现 这 样 规 律 : 给 两 如 , 任 个 自变量 n 、 . 果它 与 原 点 的距 离 越 长 , n 如 则它 对 应 的 函 数值 越 大 . 对 给定 的数 有 I 10 9l I. 1 < I . 一 . 0 】 O < l 一2 1 < l
9I I. . 4
>B, A.
.C 为 所 求 的 点, 此 时 - . 且
B
AC B 的最 少 距 离 为 B, + C A. 例 2 例 3若仅 关注代 数方 、
图 32 -
因 而 易得 ( 10 9 10 ( 2 1 4 9. 一 .0 )< . 1< 一 . )< .
/ l:
. .
用代数对 图形性质进行更为丰富 、 精确 、 深刻地探讨 ,
. . 、
- .
4 3 — n l 0 I 2 2 4 2 L Ⅱ 3
对 提 高学 生 发 现 问 题 、 析 问 题 、 决 问 题 的 能 力 大 分 解
有好 处 .
图 1
把代数式的精确刻 画与几何图形 的直观描述结 合起 来, 从而使几何问题代数化 , 代数问题几何化 , 并进而 使抽象思维 和形象思维结 合起来 , 能够使很多复杂 问
数形结合思想在初中数学教学中的作用

李金 芳1 马 维政2
( 会 宁 县 中川 中学 ;会 宁县 丁 沟 乡 荔峡 中学 , 肃 会 宁 1 2 甘
摘 要 : 形 结 合 思 想 是 解 决 数 学 问题 的 一 种 重 要 思 想 数 方 法 。 数 形 结合 ” 想 就是 使 抽 象思 维 和 形 象 思 维 相 互作 用 . “ 思 实现 数 量 关 系与 图形 性 质 的 相 互 转 化 .将 抽 象的 数 学 关 系和 直观 的 图形 结合 起 来 解 决数 学 问题 为提 高 学 生的 数 学 知识 . 真正 实现 素质 教 育 , 数 学教 学 中作 者 注 重 “ 形 结 合 ” 想 在 数 思 的渗 透 。 学生 的数 学 能力 得 到很 大 的提 升 。 面 直 角 坐标 系 使 平 是 数 形 结 合 的桥 梁 , 了 它 , 方 面 , 够 借 助 于 图形 可 以 将 有 一 能 许 多抽 象 的数 学概 念 和 数 量 关 系形 象化 、 单化 、 观 化 另 简 直 方 面. 能将 图形 问题 转 化 为 代数 问题 , 以获 得 精 确 的结 论 。 关 键词 : 形 结合 初 中数 学教 学 作 用 数
速 、 效 地解 决 问 题 奠 定 良好 的基 础 。 有 在 推 行 素 质 教育 的今 天 , 发 学生 的创 新 思 维 , 学 生 在 开 让 创 造 中学 会 学 习 , 挥 学 生 的 主观 能动 性 成 为 重 中之 重 . 以 发 所
过 学 习 数 学 知识 、 能 和方 法 , 渐 形成 自己 的数 学 思 想 和 方 技 逐 法 , 学 生 学 会用 数学 的 眼光 看 待 生 活 中 的 人 和 事物 , 让 会用 数 学 的 知 识解 决 生 活 中 的实 际问 题 。 么 , 为 最基 本 的 数学 思 那 作 想 之 一 的数 形 结 合 思 想在 新 课 程 中 又是 怎 样 体 现 的 呢? 下 面我 们 结 合 中学 数 学 教学 的现 状 .从 数 形 结合 思想 的 重 要 性 、 形 结合 相关 知识 点 的 体 现 、 何 实 现 数 形 结 合 三 方 数 如 面 阐 述 数形 结 合 思想 在初 中数 学教 学 中 的应 用 。 数 形 结合 思 想 的 重 要性 几何 本 身 缺 乏严 密性 , 而代 数 本 身 却又 缺 乏 直 观性 。 只有 将 二 者有 机 地 结 合 起 来 ,互 相 取 长 补 短 ,才 能 突 破思 维 的 限 制 . 快 数 学 的发 展 。 加 数 与形 是 数 学研 究 的 两大 基 本 对 象 。“ ”是 指 数 与 式 , 数 “ ” 指 图形 与 图像 。数 形 结 合 的思 想 可 以 变抽 象思 维 为 形 形 是 象 思 维 , 示数 学 本 质 的 东西 。 揭 直 角坐 标 系 的 建 立 可 以将 代 数 和 几 何 问 题 紧 密地 联 系 起 来 . 许 多 实 际 问 题 的解 决 提 供 新 的 思 路 和 策 略 . 问 题 的 为 对 解 决 产 生 事 半 功 倍 的 效 果 。 因而 数形 结 合 的 重 点 是 研 究 “ 以 形 助 数 ” 。 1 形 结 合 思 想在 有 理 数 中 的应 用 . 数 从 数 形 结 合 的 角 度 出发 。借 助 数 轴 处 理 好相 反数 和绝 对 值 的 意 义 , 理 数 大小 的 比 较 , 理 数 的分 类 , 理 数 的 加 法 有 有 有 运 算 , 等式 的解 集 在数 轴 上 的表 示 , 等 。 实数 轴 上 , 反 不 等 在 相 数 就 是 在 原 点 两 旁 到 原 点 距 离 相 等 的 两个 点 所 表 示 的数 , 而
数形结合思想在中学数学中的运用

AABC的内角 A满足 cosA)<0,则 A的取值范 围
是
.
—
—
解 :由于函数 厂( )是一个抽象 函数 ,因此可根
据 函数 有关性 质 ,由题 意构 造 出符合 条 件 的一个 特
殊 函数 图象 ,如右 图所示 ,由图象及 三角形 内角 范 围
· 52 .
《数学之友》
2013年第 20期
可知:0<c。 <丢或一1< J ,,
例4若不等式 > +吾的解集是(4,6),求
} / 一ห้องสมุดไป่ตู้ c。
1
< 一 , 故 答 案 为 : // 1 o
一
口,b的值. 解 :本 题 中含 有 参 数 口,
(}詈)u( , ).
例 2 函数 )=Msin(雠 + )( >0)在 区 间 [口,b]上是增函数 ,且 口)=一M',(b)=M,则函数
③ 构造 ,比如构 造 几何 图形 ,构 造 函数 ,构 造 图 表等. 2.2 运 用数 形 结合 思 想 解题 的 三 种 类 型及 思 维
方 法
① “由形 化数 ”:借 助所 给 的 图形 ,仔 细 观 察 研 究 ,揭示 图形 中蕴含 的数量关 系 ,反 映几何 图形 内在 的属性.
b,为避免繁杂 的讨论 ,可借 助 函数 图 象 ,因 此 需 构 造 已 知 函数.设 Y。=47,它的图象
g(x)=Mcos( + )在 区 间 [口,b]上 的最 值 为 是经过原点的函数 Y= T的图象,设 Y2=似 +÷(
解 :利用 特殊 值 法 ,构 造 一 个特殊 函数,并 通过 画 出图 象 进行观察.取 M =1, =1, = 0, ̄lf( )=sinx,g(x)=c0舛,在
数形结合,并蒂花开——数形结合思想在初中数学几何教学中的运用

教法研究数形结合,并蒂花开——数形结合思想在初中数学几何教学中的运用刘亚会摘要:数学作为一门集抽象、复杂的特点于一体的学科,对学生思维方式的要求非常高。
但是小学教育对学生的抽象思维培养并不严格,造成学生进入初中学习几何问题是有一定的困难。
初中教师应该对学生进行正确引导,对学生的抽象思维进行培养,利用树形思维融入日常学习。
本文将数形结合思想渗透入初中教学中,让学生对几何图形有更深入的了解和认识。
关键词:思想;几何;数形结合数学几何的教学一直是初中教学的重难点,因为小学知识体系对抽象思维能力的培养并未重视,所以学生在初中的几何学习并不是很应用自如。
初中教师应该有意将数形结合的思想融入到日常学习中,运用正确的方法,用图形结合习题,帮助学生理解,并培养其抽象思维能力。
以下的一些解题方法可供老师在日常教学中加以运用。
一、“树形结合”在三角函数的应用作为初中知识的重难点之一,三角函数的相关知识点对于初中学生来说无疑是陌生而又有难度的。
理解三角函数的定义,厘清变量之间的关系对于接触函数时间不长的初中生来说是很有难度的。
教师应转变教学方法,以学生不抵触较为有难度的知识点为目标,尽量通过简单的、容易理解的方式为学生讲解。
“数形结合”是有利的方法之一。
例如:只有通过“数形结合”的思想,才能将三角函数问题形象化,体现在图中有助于学生定量分析,将抽象化为具象。
三角函数利用数形结合的思想的难点在于,正确引导学生分析各个变量,以及三角函数在三角形中表达的含义。
学生再解决三角函数相关问题时能够养成画出相应三角形解决问题的习惯,例如在刚开始接触三角函数概念时,需要记忆余切,正切等相关概念,利用三角形辅助,帮助学生理清概念,记忆深刻。
图形的介入会使抽象的函数问题较为具体地呈现出来,例如通过求反比例函数中图形的面积问题,教师可以引导学生从较为简单和方便的方式辅助学生,并且发现反比例函数的性质和变量之间的关系。
二、利用“数形结合”解决几何问题对于初中学生来说,强调抽象思维的几何知识一直是学习中的重难点,要求学生有能力完成“数”与“形”的相互转换。
数形结合思想在初中数学解题中的应用

22教育版内容摘要:本文介绍了初中数学解题中的一种重要的思想方法——数形结合. 数形结合思想主要是利用了数的结构特征,绘制出同其相对应的数学图形,同时通过对图形特点及规律的运用,使数学问题得到解决,或是将图形转化为代数,无需进行推理,便将要解答的问题转变为数量关系.在数学教学中合理结合数形结合思想能够有效调动学生的积极性,让学生通过直观的视觉观察来理解数学的概念和知识,为学生解题提供一定的帮助.关键词:数形结合 初中数学 应用一、数形结合的本质和内涵:数形结合思想就是通过对数与形间关系的运用,对数学习题中的知识点及问题进行研究,从而使问题得到解决的一种方法.分析及研究数与形间的关系,学生会清晰地看到数与形之间在一定的状况之下是能实现转换的.它们之间具有一定的等量关联,能让学生更加深入地对知识进行理解,并解决相关问题.在初中数学中,数指的是方程、函数、指数等,形指的是函数图形与几何图形.学生若能把它们结合起来运用,就能使问题的解答更加容易,从而提升学生解题的能力。
二、数与形之间的转化:中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合.作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”.“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等。
三、数形结合思想在初中数学解题中的应用:(一)数形结合思想在数与式问题中的应用。
数形结合的教学思想可以把有理数和数轴紧密联系起来.所有的有理数都可以在数轴.上找到相对应的唯一的点,如果想要对比两个有理数的大小,就可以通过比较分析在数轴上两个有理数的位置关系来得出结果.同时,依据数轴上原点与点的位a 、b .(图略)【分析】 由上a ,b 的位置可以得到a <b.∴a =−,ab b a −=−【解】 ()a b a +−除此以外,数形结合思想还运用于一些图形类的规律题中,比如下面这个题目.【例2】 如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼”需要火柴______根。