四川省成都外国语学校2016-2017学年高二数学上学期期末考试试题 文
2016-2017年四川省成都市树德中学高二(上)期末数学试卷(文科)及答案

2016-2017学年四川省成都市树德中学高二(上)期末数学试卷(文科)一、选择题(每小题5分,共60分)1.(5分)设a∈R,则“a=1”是“直线l1:ax+2y﹣1=0与直线l2:x+(a+1)y+4=0平行”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线方程为y=±2x,则其离心率为()A.5B.C.D.3.(5分)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x﹣85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg4.(5分)下列说法正确的是()A.命题“若x2>1,则x>1”的否命题为“若x2>1,则x≤1”B.命题“若”的否定是“∀x∈R,x2<1”C.命题“若x=y,则cosx=cosy”的逆否命题为假命题D.命题“若x=y,则cosx=cosy”的逆命题为假命题5.(5分)阅读如图的程序框图,运行相应的程序,输出的结果为()A.B.C.D.6.(5分)设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6]D.7.(5分)在长为10cm的线段AB上任取一点C,现作一矩形,邻边长分别等于AC,CB的长,则该矩形面积不小于9cm2的概率为()A.B.C.D.8.(5分)直线y=kx+3与圆(x﹣2)2+(y﹣3)2=4相交于M、N两点,若|MN|≥2,则直线倾斜角的取值范围是()A.B.C.D.9.(5分)已知集合表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P的坐标满足不等式x2+y2≤2的概率为()A.B.C.D.10.(5分)点M是抛物线y2=x上的点,点N是圆C:(x﹣3)2+y2=1上的点,则|MN|的最小值是()A.﹣1B.﹣1C.2D.﹣1 11.(5分)已知椭圆C1:+=1的左焦点为F,点P为椭圆上一动点,过点P向以F为圆心,1为半径的圆作切线PM、PN,其中切点为M、N,则四边形PMFN面积的最大值为()A.2B.C.D.512.(5分)某算法的程序框图如图所示,则执行该程序后输出的S等于()A.24B.26C.30D.32二、填空题(每小题5分,共20分)13.(5分)某赛季甲、乙两名篮球运动员每场比赛得分记录用茎叶图表示,从茎叶图的分布情况看,运动员的发挥更稳定.(填“甲”或“乙”)14.(5分)已知圆O1:x2+y2=1与圆O2:(x+4)2+(y﹣a)2=25内切,则常数a=.15.(5分)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且,椭圆和双曲线的离心率分别为e1、e2,则=.16.(5分)已知y=a x(a>0且a≠1)是定义在R上的单调递减函数,记a的所有可能取值构成集合A;P(x,y)是椭圆+=1上一动点,点P1(x1,y1)与点P关于直线y=x+1对称,记的所有可能取值构成集合B.若随机地从集合A,B中分别抽出一个元素λ1,λ2,则λ1>λ2的概率是.三、解答题17.(10分)设命题p:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣4=0的内部;命题q:直线mx﹣y+1+2m=0(k∈R)不经过第四象限,如果p∨q为真命题,p ∧q为假命题,求m的取值范围.18.(12分)某校从参加考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图如图.观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率;(2)估计本次考试的中位数;(精确到0.1)(3)用分层抽样(按[60,70)、[70,80)分数段人数比例)的方法在分数段为[60,80)的学生中抽取一个容量为 6 的样本,将该样本看成一个总体,从中任取2人,求恰有1人在分数段[70,80)的概率.19.(12分)已知抛物线C:y2=4x的焦点为F,P(1,m)是抛物线C上的一点.(1)若椭圆与抛物线C有共同的焦点,求椭圆C'的方程;(2)设抛物线C与(1)中所求椭圆C'的交点为A、B,求以OA和OB所在的直线为渐近线,且经过点P的双曲线方程.20.(12分)已知圆C:x2+y2﹣4x+3=0,(1)求过M(3,2)点的圆的切线方程;(2)直线l过点且被圆C截得的弦长最短时,求直线l的方程;(3)过点(1,0)的直线m与圆C交于不同的两点A、B,线段AB的中点P的轨迹为C1,直线与曲线C1只有一个交点,求k的值.21.(12分)已知抛物线x2=2py (p>0),其焦点F到准线的距离为1.过F作抛物线的两条弦AB和CD,且M,N分别是AB,CD的中点.设直线AB、CD 的斜率分别为k1、k2.(1)若AB⊥CD,且k1=1,求△FMN的面积;(2)若,求证:直线MN过定点,并求此定点.22.(12分)在平面直角坐标系中,点O为坐标原点,动点P(x,y)与定点F (﹣1,0)的距离和它到定直线x=﹣2的距离之比是.(1)求动点P的轨迹C的方程;(2)过F作曲线C的不垂直于y轴的弦AB,M为AB的中点,直线OM与曲线C交于P,Q两点,求四边形APBQ面积的最小值.2016-2017学年四川省成都市树德中学高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,共60分)1.(5分)设a∈R,则“a=1”是“直线l1:ax+2y﹣1=0与直线l2:x+(a+1)y+4=0平行”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】运用两直线平行的充要条件得出l1与l2平行时a的值,而后运用充分必要条件的知识来解决即可.【解答】解:∵当a=1时,直线l1:x+2y﹣1=0与直线l2:x+2y+4=0,两条直线的斜率都是﹣,截距不相等,得到两条直线平行,故前者是后者的充分条件,∵当两条直线平行时,得到,解得a=﹣2,a=1,∴后者不能推出前者,∴前者是后者的充分不必要条件.故选:A.2.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线方程为y=±2x,则其离心率为()A.5B.C.D.【分析】根据双曲线渐近线的方程,确定a,b的关系,进而利用离心率公式求解.【解答】解:∵双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x,∴,即b=2a,∴,∴离心率e=.故选:D.3.(5分)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x﹣85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg【分析】根据回归方程为=0.85x﹣85.71,0.85>0,可知A,B,C均正确,对于D回归方程只能进行预测,但不可断定.【解答】解:对于A,0.85>0,所以y与x具有正的线性相关关系,故正确;对于B,回归直线过样本点的中心(,),故正确;对于C,∵回归方程为=0.85x﹣85.71,∴该大学某女生身高增加1cm,则其体重约增加0.85kg,故正确;对于D,x=170cm时,=0.85×170﹣85.71=58.79,但这是预测值,不可断定其体重为58.79kg,故不正确故选:D.4.(5分)下列说法正确的是()A.命题“若x2>1,则x>1”的否命题为“若x2>1,则x≤1”B.命题“若”的否定是“∀x∈R,x2<1”C.命题“若x=y,则cosx=cosy”的逆否命题为假命题D.命题“若x=y,则cosx=cosy”的逆命题为假命题【分析】写出原命题的否命题,可判断A;写出原命题的否定命题,可判断B;判断原命题的真假,进而可判断其逆否命题的真假;写出原命题的逆命题,可判断D.【解答】解:命题“若x2>1,则x>1”的否命题为“若x2≤1,则x≤1”,故A错误;命题“若”的否定是“∀x∈R,x2≤1”,故B错误;命题“若x=y,则cosx=cosy”是真命题,故其逆否命题为真命题,故C错误;命题“若x=y,则cosx=cosy”的逆命题为命题“若cosx=cosy,则x=y”为假命题,故D正确;故选:D.5.(5分)阅读如图的程序框图,运行相应的程序,输出的结果为()A.B.C.D.【分析】由上程序框图,当运行程序后,写出每次循环x,y,z的值,当z<20不成立,输出所求结果即可.【解答】解:由上程序框图,当运行程序后,x=1,y=1,z=2<20,满足条件,执行循环;则x=1,y=2,z=3<20,满足条件,执行循环;则x=2,y=3,z=5<20,满足条件,执行循环;则x=3,y=5,z=8<20,满足条件,执行循环;则x=5,y=8,z=13<20,满足条件,执行循环;则x=8,y=13,z=21>20,不满足条件,退出循环,则输出,故选:B.6.(5分)设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6]D.【分析】作出不等式组表示的平面区域;作出目标函数对应的直线;由目标函数中z的几何意义可求z的最大值与最小值,进而可求z的范围【解答】解:作出不等式组表示的平面区域,如图所示由z=3x﹣y可得y=3x﹣z,则﹣z为直线y=3x﹣z在y轴上的截距,截距越大,z 越小结合图形可知,当直线y=3x﹣z平移到B时,z最小,平移到C时z最大由可得B(,3),由可得C(2,0),z max=6∴故选:A.7.(5分)在长为10cm的线段AB上任取一点C,现作一矩形,邻边长分别等于AC,CB的长,则该矩形面积不小于9cm2的概率为()A.B.C.D.【分析】根据几何概型的概率公式,设AC=x,则BC=10﹣x,由矩形的面积S=x (10﹣x)≥9可求x的范围,利用几何概率的求解公式可求.【解答】解:设AC=x,则BC=10﹣x,矩形的面积S=x(10﹣x)≥9,∴x2﹣10x+9≤0解得1≤x≤9,由几何概率的求解公式可得,矩形面积不小于9cm2的概率为P==.故选:A.8.(5分)直线y=kx+3与圆(x﹣2)2+(y﹣3)2=4相交于M、N两点,若|MN|≥2,则直线倾斜角的取值范围是()A.B.C.D.【分析】圆心(2,3)到直线y=kx+3的距离d=.利用|MN|=2,可得k的取值范围,由于k=tanθ,解出即可.【解答】解:圆心(2,3)到直线y=kx+3的距离d==.∴|MN|=2==,解得,∴,设直线的倾斜角为θ,则≤tanθ≤.∴θ∈∪.故选:C.9.(5分)已知集合表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P的坐标满足不等式x2+y2≤2的概率为()A.B.C.D.【分析】作出不等式组对应的平面区域,求出对应的面积,结合几何概型的概率公式进行求解即可.【解答】解:作出不等式组对应的平面区域如图,则对应的区域为△AOB,由,解得,即B(4,﹣4),由,解得,即A(,),直线2x+y﹣4=0与x轴的交点坐标为(2,0),则△OAB的面积S==,点P的坐标满足不等式x2+y2≤2区域面积S=,则由几何概型的概率公式得点P的坐标满足不等式x2+y2≤2的概率为=,故选:D.10.(5分)点M是抛物线y2=x上的点,点N是圆C:(x﹣3)2+y2=1上的点,则|MN|的最小值是()A.﹣1B.﹣1C.2D.﹣1【分析】设圆心为C,则|MN|=|CM|﹣|CN|=|CM|﹣1,将|MN|的最小问题,转化为|CM|的最小问题即可.【解答】解:设圆心为C,则|MN|=|CM|﹣|CN|=|CM|﹣1,C点坐标(3,0),由于M在y2=x上,设M的坐标为(y2,y),∴|CM|==≥,∵圆半径为1,所以|MN|最小值为﹣1.故选:A.11.(5分)已知椭圆C1:+=1的左焦点为F,点P为椭圆上一动点,过点P向以F为圆心,1为半径的圆作切线PM、PN,其中切点为M、N,则四边形PMFN面积的最大值为()A.2B.C.D.5==|PM|.因此要使四边形【分析】由切线的性质可得S四边形PMFNPMFN面积取得最大值,|PM|必须取得最大值,因此|PF|必须取得最大值,当P点为椭圆的右顶点时,|PF|取得最大值a+c.【解答】解:如图所示,由椭圆C1:+=1可得a=4,c==1,∴F(﹣1,0).由切线PM、PN,可得PM⊥MF,PN⊥FN.S四边形PMFN==|PM|.因此要使四边形PMFN面积取得最大值,则|PM|必须取得最大值,因此|PF|必须取得最大值,当P点为椭圆的右顶点时,|PF|取得最大值a+c=4+1=5.∴|PM|=2,∴四边形PMFN面积最大值为=2××|PM|×|MF|=2.故选:A.12.(5分)某算法的程序框图如图所示,则执行该程序后输出的S等于()A.24B.26C.30D.32【分析】首先分析程序框图,循环体为“直到“循环结构,按照循环结构进行运算,求出满足题意时的S.【解答】解:根据题意,本程序框图为求S的值循环体为“直到“循环结构,其功能是计算椭圆上横坐标分别为:﹣3,﹣2,﹣1,0,1,2,3的点到焦点的距离,如图所示.根据椭圆的定义及对称性,得即S=2a+2a+2a+(a﹣c)=7a﹣c,又椭圆的a=5,b=4,c=3,则执行该程序后输出的S等于S=32.故选:D.二、填空题(每小题5分,共20分)13.(5分)某赛季甲、乙两名篮球运动员每场比赛得分记录用茎叶图表示,从茎叶图的分布情况看,乙运动员的发挥更稳定.(填“甲”或“乙”)【分析】由茎叶图知甲的得分相对分散,乙的得分相对集中,由此能求出结果.【解答】解:由某赛季甲、乙两名篮球运动员每场比赛得分记录的茎叶图表知:甲的得分相对分散,乙的得分相对集中,∴从茎叶图的分布情况看,乙运动员的发挥更稳定.故答案为:乙.14.(5分)已知圆O1:x2+y2=1与圆O2:(x+4)2+(y﹣a)2=25内切,则常数a=0.【分析】求出两个圆的圆心坐标与半径,利用圆O1:x2+y2=1与圆O2:(x+4)2+(y﹣a)2=25内切,求出圆心距等于半径差,即可得出结论.【解答】解:∵圆O1:x2+y2=1的圆心(0,0),半径为1;圆O2:(x+4)2+(y﹣a)2=25,圆心坐标(﹣4,a),半径为:5,∵圆O1:x2+y2=1与圆O2:(x+4)2+(y﹣a)2=25内切,∴两个圆的圆心距d==4,∴a=0.故答案为0.15.(5分)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且,椭圆和双曲线的离心率分别为e1、e2,则=2.【分析】先设椭圆的长半轴长为a1,双曲线的半实轴长a2,焦距2c.因为涉及椭圆及双曲线离心率的问题,所以需要找a1,a2,c之间的关系,而根据椭圆及双曲线的定义可以用a1,a2表示出|PF1|,|PF2|并且,,在△F1PF2中根据勾股定理可得到:,该式可变成:=2.【解答】解:如图,设椭圆的长半轴长为a1,双曲线的半实轴长为a2,则根据椭圆及双曲线的定义:得|PF1|+|PF2|=2a1+a2,∴|PF1|﹣||PF2|=2a2∴|PF1|=a1+a2,|PF2|=a1﹣a2,设|F1F2|=2c,∠F1PF2=,在△PF1F2中由勾股定理得,4c2=(a1+a2)2+(a1﹣a2)2∴化简得:该式可变成:=2.故答案为:216.(5分)已知y=a x(a>0且a≠1)是定义在R上的单调递减函数,记a的所有可能取值构成集合A;P(x,y)是椭圆+=1上一动点,点P1(x1,y1)与点P关于直线y=x+1对称,记的所有可能取值构成集合B.若随机地从集合A,B中分别抽出一个元素λ1,λ2,则λ1>λ2的概率是.【分析】根据指数函数的性质以及直线和圆锥曲线的位置关系求出集合A,B,然后根据几何概型的概率公式即可得到结论.【解答】解:∵y=a x(a>0且a≠1)是定义在R上的单调递减函数,∴0<a<1,∴A={a|0<a<1}.P1(x1,y1)关于直线y=x+1的对称点为P(y1﹣1,x1+1),P是椭圆+=l上一动点,∴﹣4≤y1﹣1≤4,即﹣1≤≤1,设b=,则﹣1≤b≤1,∴B={b|﹣1≤b≤1}.∴随机的从集合A,B中分别抽取一个元素λ1,λ2,则λ1>λ2等价为,则对应的图象如图:则λ1>λ2的概率是,故答案为:三、解答题17.(10分)设命题p:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣4=0的内部;命题q:直线mx﹣y+1+2m=0(k∈R)不经过第四象限,如果p∨q为真命题,p ∧q为假命题,求m的取值范围.【分析】分别求出p,q为真时的m的范围,通过讨论p,q的真假,得到关于m的不等式,取并集即可.【解答】解:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣4=0的内部,故1+1﹣2m+2m+2m2﹣4<0,解得:﹣1<m<1,故命题p⇔﹣1<m<1,直线mx﹣y+1+2m=0(k∈R)不经过第四象限,故,解得:m≥0,故命题q⇔m≥0;如果p∨q为真命题,p∧q为假命题,则p,q一真一假,①p真q假时,﹣1<m<0;②p假q真时,m≥1.故m的取值范围为﹣1<m<0或m≥1.18.(12分)某校从参加考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图如图.观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率;(2)估计本次考试的中位数;(精确到0.1)(3)用分层抽样(按[60,70)、[70,80)分数段人数比例)的方法在分数段为[60,80)的学生中抽取一个容量为 6 的样本,将该样本看成一个总体,从中任取2人,求恰有1人在分数段[70,80)的概率.【分析】(1)利用频率分布直方图中小矩形的面积之和为1,能求出分数在[70,80)内的频率.(2)利用频率分布直方图能求出中位数.(3)[60,70)分数段的人数为9人,[70,80)分数段的人数为18人.需在[60,70)分数段内抽取2人,分别记为a,b;在[70,80)分数段内抽取4人,分别记为c,d,e,f.由此利用列举法能求出从中任取2人,恰有1人在分数段[70,80)的概率.【解答】解:(1)分数在[70,80)内的频率为:1﹣(0.010+0.015+0.015+0.025+0.005)×10=1﹣0.7=0.3…(3分)(2)∵数学成绩在[40,70)内的频率为(0.010+0.015+0.015)×10=0.4,数学成绩在[70,80)内的频率为0.3,∴中位数为70+=.…(6分)(3)由题意,[60,70)分数段的人数为:0.15×60=9(人),[70,80)分数段的人数为:0.3×60=18(人).∴需在[60,70)分数段内抽取2人,分别记为a,b;在[70,80)分数段内抽取4人,分别记为c,d,e,f.设“从样本中任取2人,恰有1人在分数段[70,80)内”为事件A,所有基本事件有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f),共15个…(8分)其中事件A包含(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),共8个.…(10分)∴P(A)=.…(12分)19.(12分)已知抛物线C:y2=4x的焦点为F,P(1,m)是抛物线C上的一点.(1)若椭圆与抛物线C有共同的焦点,求椭圆C'的方程;(2)设抛物线C与(1)中所求椭圆C'的交点为A、B,求以OA和OB所在的直线为渐近线,且经过点P的双曲线方程.【分析】(1)根据题意,由抛物线的方程可得其焦点坐标,即可得椭圆C的焦点坐标,结合椭圆的几何性质可得4﹣n=1,解可得n的值,代入椭圆的方程,即可得答案;(2)联立抛物线与椭圆的方程,消去y得到3x2+16x﹣12=0,解可得x的值,即可得A、B的坐标,进而可得双曲线的渐近线方程,由此设双曲线方程为6x2﹣y2=λ(λ≠0),结合抛物线的几何性质可得λ的值,即可得答案.【解答】解:(1)根据题意,抛物线C:y2=4x,其焦点坐标为(1,0),椭圆的焦点为(1,0),则有c=1,对于椭圆,可知4﹣n=1,∴n=3,故所求椭圆的方程为;(2)由,消去y得到3x2+16x﹣12=0,解得(舍去).所以,则双曲线的渐近线方程为,由渐近线,可设双曲线方程为6x2﹣y2=λ(λ≠0).由点P(1,m)在抛物线C:y2=4x上,解得m2=4,P(1,±2),因为点P在双曲线上,∴6﹣4=λ=2,故所求双曲线方程为:.20.(12分)已知圆C:x2+y2﹣4x+3=0,(1)求过M(3,2)点的圆的切线方程;(2)直线l过点且被圆C截得的弦长最短时,求直线l的方程;(3)过点(1,0)的直线m与圆C交于不同的两点A、B,线段AB的中点P的轨迹为C1,直线与曲线C1只有一个交点,求k的值.【分析】(1)由圆的方程求出圆心和半径,易得点A在圆外,当切线的斜率不存在时,切线方程为x=3.当切线的斜率存在时,设切线的斜率为k,写出切线方程,利用圆心到直线的距离等于半径,解出k,可得切线方程;(2)当直线l⊥CN时,弦长最短,可求直线l的方程;(3)求出轨迹C1,直利用线与曲线C1只有一个交点,求k的值.【解答】解:(1)圆C:x2+y2﹣4x+3=0,即(x﹣2)2+y2=1,表示以(2,0)为圆心,半径等于1的圆.当切线的斜率不存在时,切线方程为x=3符合题意.当切线的斜率存在时,设切线斜率为k,则切线方程为y﹣2=k(x﹣3),即kx﹣y﹣3k+2=0,所以,圆心到切线的距离等于半径,即=1,解得k=,此时,切线为3x﹣4y﹣1=0.综上可得,圆的切线方程为x=3或3x﹣4y﹣1=0…(3分)(2)当直线l⊥CN时,弦长最短,此时直线的方程为x﹣y﹣1=0…(6分)(3)设点P(x,y),∵点P为线段AB的中点,曲线C是圆心为C(2,0),半径r=1的圆,∴CP⊥AP,,∴化简得…(9分)由于点P在圆内,去除点(1,0),所以C1:(x≠1)…(10分)因为直线与曲线C1只有一个交点,所以圆心到直线的距离d==或k=0,所以…(12分)21.(12分)已知抛物线x2=2py (p>0),其焦点F到准线的距离为1.过F作抛物线的两条弦AB和CD,且M,N分别是AB,CD的中点.设直线AB、CD 的斜率分别为k1、k2.(1)若AB⊥CD,且k1=1,求△FMN的面积;(2)若,求证:直线MN过定点,并求此定点.【分析】(1)设AB的方程为,联立,求出M,N的坐标,即可求△FMN的面积;(2)求出直线MN的方程,即可证明直线MN过定点,并求此定点.【解答】解:(1)抛物线的方程为x2=2y,设AB的方程为联立,得x2﹣2x﹣1=0,,同理∴S=|FM|•|FN|==1△FMN△FMN的面积为1.…(5分)(2)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),设AB的方程为联立,得x2﹣2k1x﹣1=0,,同理…(7分)k MN=∴MN的方程为,即,…(10分)又因为,所以k1+k2=k1k2,∴MN的方程为即∴直线MN恒过定点.…(12分)22.(12分)在平面直角坐标系中,点O为坐标原点,动点P(x,y)与定点F (﹣1,0)的距离和它到定直线x=﹣2的距离之比是.(1)求动点P的轨迹C的方程;(2)过F作曲线C的不垂直于y轴的弦AB,M为AB的中点,直线OM与曲线C交于P,Q两点,求四边形APBQ面积的最小值.【分析】(1)由题意列关于P的坐标的函数关系式,整理可得动点P的轨迹C 的方程;(2)设直线AB的方程为x=my﹣1,A(x1,y1),B(x2,y2),联立直线系方程和椭圆方程,得到关于y的一元二次方程,利用根与系数的关系求得A、B中点的坐标,得到直线PQ的方程,求出|PQ|.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,可得2d=.结合题意化简可得2d=.代入得2d=.代入四边形面积公式,换元后利用配方法求得四边形APBQ面积的最大值.【解答】解:(1)由已知,得.两边平方,化简得.故轨迹C的方程是;(2)∵AB不垂直于y轴,设直线AB的方程为x=my﹣1,A(x1,y1),B(x2,y2),由,得(m2+2)y2﹣2my﹣1=0.y1+y2=,y1y2=.x1+x2=m(y1+y2)﹣2=,于是AB的中点为M(),故直线PQ的斜率为﹣,PQ的方程为y=﹣x,即mx+2y=0,联立,整理得:x2=,|PQ|=.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,∴2d=.∵点A,B在直线mx+2y=0的异侧,∴(mx1+2y1)(mx2+2y2)<0,于是|mx1+2y1|+|mx2+2y2|=|mx1+2y1﹣mx2﹣2y2|,从而2d=.∵|y1﹣y2|==,∴2d=.故四边形APBQ的面积S=|PQ|•2d==2≥2.即m=0时,S min=2.。
2016-2017年四川省成都七中高二(上)期末数学试卷(文科)及答案

2016-2017学年四川省成都七中高二(上)期末数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)命题p:“a=﹣2”是命题q:“直线ax+3y﹣1=0与直线6x+4y﹣3=0垂直”成立的()A.充要条件B.充分非必要条件C.必要非充分条件D.既不充分也不必要条件2.(5分)成都七中为了全面落实素质教育,切实有效减轻学生课业负担,拟从林荫、高新两个校区的初高中学生中抽取部分学生进行调查,事先已了解到初中三个年级、高中三个年级学生的课业负担情况有较大差异,而男女生课业负担差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按年级分层抽样D.系统抽样3.(5分)圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切B.相交C.外切D.相离4.(5分)已知方程表示焦点在y轴上的椭圆,则实数k的取值范围是()A.B.(2,+∞)C.(,2)D.5.(5分)已知双曲线的离心率为2,那么双曲线的渐近线方程为()A.B.x±y=0C.2x±y=0D.6.(5分)函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f (x0)≤0的概率是()A.B.C.D.7.(5分)与直线3x﹣4y+5=0关于x轴对称的直线的方程是()A.3x﹣4y+5=0B.3x﹣4y﹣5=0C.3x+4y﹣5=0D.3x+4y+5=08.(5分)已知实数x,y满足不等式组,则z=x+3y+7的最大值为()A.﹣5B.11C.15D.199.(5分)执行如图所示的程序框图,若输出的结果为43,则判断框内应填入的条件是()A.z≤42?B.z≤20?C.z≤50?D.z≤52?10.(5分)已知圆C:(x+1)2+(y﹣1)2=1与x轴切于A点,与y轴切于B点,设劣弧的中点为M,则过点M的圆C的切线方程是()A.y=x+2﹣B.y=x C.y=x﹣2D.y=x+111.(5分)某学校随机抽查了本校20个同学,调查他们平均每天在课外从事体育锻炼的时间(分钟),根据所得数据的茎叶图,以5为组距将数据分为八组,分别是[0,5),[5,10),…[35,40],作出的频率分布直方图如图所示,则原始的茎叶图可能是()A.B.C.D.12.(5分)如图,在等腰梯形ABCD中,AB∥CD,且AB=2AD,设∠DAB=θ,θ∈(0,),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,则()A.随着角度θ的增大,e1增大,e1e2为定值B.随着角度θ的增大,e1减小,e1e2为定值C.随着角度θ的增大,e1增大,e1e2也增大D.随着角度θ的增大,e1减小,e1e2也减小二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)命题∀x∈R,|x|<0的否定是.14.(5分)已知双曲线x2﹣my2=1的虚轴长是实轴长的两倍,则实数m的值是.15.(5分)已知在平面直角坐标系xOy中,抛物线x2=2y的焦点为F,M(3,5),点Q在抛物线上,则|MQ|+|QF|的最小值为.16.(5分)在平面直角坐标系xOy中,曲线x2+y2=2|x|+2|y|围成的图形的面积为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图,每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500).(1)求居民收入在[3000,3500)的频率;(2)根据频率分布直方图算出样本数据的中位数、平均数及其众数;(3)为了分析居民的收入与年龄、职业等方面的关系,按收入从这10000人中用分层抽样方法抽出100人作进一步分析,则应在月收入为[2500,3000)的人中抽取多少人?18.(12分)口袋中装有4个形状大小完全相同的小球,小球的编号分别为1,2,3,4,甲、乙、丙依次有放回地随机抽取1个小球,取到小球的编号分别为a,b,c.(1)在一次抽取中,若有两人抽取的编号相同,则称这两人为“好朋友”,求甲、乙两人成为“好朋友”的概率;(2)求抽取的编号能使方程a+b+2c=6成立的概率.19.(12分)某科研所对新研发的一种产品进行合理定价,该产品按事先拟定的价格试销得统计数据.(1)①求线性回归方程y=x+;②谈谈商品定价对市场的影响;(2)估计在以后的销售中,销量与单价服从回归直线,若该产品的成本为 4.5元/件,为使科研所获利最大,该产品定价应为多少?(附:=,=﹣,=8.5,=80)20.(12分)已知⊙C:x2+y2﹣2x﹣4y﹣20=0,直线l:(2m+1)x+(m+1)y﹣7m ﹣4=0.(1)求证:直线l与⊙C恒有两个交点;(2)若直线l与⊙C的两个不同交点分别为A,B.求线段AB中点P的轨迹方程,并求弦AB的最小值.21.(12分)已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.(1)求曲线C的方程;(2)过点M(m,0)(m>0)任作一条直线与曲线C交于A,B两点,点N(n,0),连接AN,BN,且m+n=0.求证:∠ANM=∠BNM.22.(12分)已知椭圆C:+=1(a>b>0)的上顶点M与左、右焦点F1,F2构成三角形MF1F2面积为,又椭圆C的离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)直线l与椭圆C交于A(x1,y1),B(x2,y2)两点,且x1+x2=2,又直线l1:y=k1x+m是线段AB的垂直平分线,求实数m的取值范围;(Ⅲ)椭圆C的下顶点为N,过点T(t,2)(t≠0)的直线TM,TN分别与椭圆C交于E,F两点.若△TMN的面积是△TEF的面积的k倍,求k的最大值.2016-2017学年四川省成都七中高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)命题p:“a=﹣2”是命题q:“直线ax+3y﹣1=0与直线6x+4y﹣3=0垂直”成立的()A.充要条件B.充分非必要条件C.必要非充分条件D.既不充分也不必要条件【分析】根据直线垂直的等价条件,结合充分条件和必要条件的定义进行判断即可.【解答】解:若“直线ax+3y﹣1=0与直线6x+4y﹣3=0垂直”,则6a+3×4=0,解得a=﹣2,故p是q成立的充要条件,故选:A.2.(5分)成都七中为了全面落实素质教育,切实有效减轻学生课业负担,拟从林荫、高新两个校区的初高中学生中抽取部分学生进行调查,事先已了解到初中三个年级、高中三个年级学生的课业负担情况有较大差异,而男女生课业负担差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按年级分层抽样D.系统抽样【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:事先已了解到初中三个年级、高中三个年级学生的课业负担情况有较大差异,而男女生课业负担差异不大,按年级分层抽样,这种方式具有代表性,比较合理.故选:C.3.(5分)圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切B.相交C.外切D.相离【分析】求出两圆的圆心和半径,计算两圆的圆心距,将圆心距和两圆的半径之和或半径之差作对比,判断两圆的位置关系.【解答】解:圆(x+2)2+y2=4的圆心C1(﹣2,0),半径r=2.圆(x﹣2)2+(y﹣1)2=9的圆心C2(2,1),半径R=3,两圆的圆心距d==,R+r=5,R﹣r=1,R+r>d>R﹣r,所以两圆相交,故选:B.4.(5分)已知方程表示焦点在y轴上的椭圆,则实数k的取值范围是()A.B.(2,+∞)C.(,2)D.【分析】利用椭圆的性质,列出不等式求解即可.【解答】解:方程表示焦点在y轴上的椭圆,可得:2k+1>2﹣k>0,解得k∈(,2).故选:C.5.(5分)已知双曲线的离心率为2,那么双曲线的渐近线方程为()A.B.x±y=0C.2x±y=0D.【分析】利用双曲线的离心率,转化求出a,b关系,即可求解双曲线的渐近线方程.【解答】解:双曲线的离心率为2,可得,即,可得,双曲线的渐近线方程为:y=±,即.故选:D.6.(5分)函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f (x0)≤0的概率是()A.B.C.D.【分析】先解不等式f(x0)≤0,得能使事件f(x0)≤0发生的x0的取值长度为3,再由x0总的可能取值,长度为定义域长度10,得事件f(x0)≤0发生的概率是0.3【解答】解:∵f(x)≤0⇔x2﹣x﹣2≤0⇔﹣1≤x≤2,∴f(x0)≤0⇔﹣1≤x0≤2,即x0∈[﹣1,2],∵在定义域内任取一点x0,∴x0∈[﹣5,5],∴使f(x0)≤0的概率P==故选:C.7.(5分)与直线3x﹣4y+5=0关于x轴对称的直线的方程是()A.3x﹣4y+5=0B.3x﹣4y﹣5=0C.3x+4y﹣5=0D.3x+4y+5=0【分析】设出所求对称直线上的点的坐标,求出关于x轴的对称点坐标,代入已知直线方程,即可.【解答】解:设所求对称直线的点的坐标(x,y),关于x轴的对称点的坐标(x,﹣y)在已知的直线上,所以所求对称直线方程为:3x+4y+5=0.故选:D.8.(5分)已知实数x,y满足不等式组,则z=x+3y+7的最大值为()A.﹣5B.11C.15D.19【分析】先画出约束条件的可行域,利用目标函数Z=x+3y+7的几何意义求解最大值.【解答】解:约束条件的可行域如下图示:由图易得目标函数z=x+3y+7在A处取得最大值,由,解得A(﹣3,5)z的最大值为:19.故选:D.9.(5分)执行如图所示的程序框图,若输出的结果为43,则判断框内应填入的条件是()A.z≤42?B.z≤20?C.z≤50?D.z≤52?【分析】根据已知中的程序框图可得,该程序的功能是计算并输出变量z的值,模拟程序的运行过程,可得答案.【解答】解:第一次执行z=2x+y后,z=1,不满足输出条件,应满足进行循环的条件,则x=1,y=1,第二次执行z=2x+y后,z=3,不满足输出条件,应满足进行循环的条件,则x=1,y=3,第三次执行z=2x+y后,z=5,不满足输出条件,应满足进行循环的条件,则x=3,y=5,第四次执行z=2x+y后,z=11,不满足输出条件,应满足进行循环的条件,则x=5,y=11,第五次执行z=2x+y后,z=21,不满足输出条件,应满足进行循环的条件,则x=11,y=21,第六次执行z=2x+y后,z=43,满足输出条件,故进行循环的条件可以为z≤42?,故选:A.10.(5分)已知圆C:(x+1)2+(y﹣1)2=1与x轴切于A点,与y轴切于B点,设劣弧的中点为M,则过点M的圆C的切线方程是()A.y=x+2﹣B.y=x C.y=x﹣2D.y=x+1【分析】先求出M的坐标,再求过点M的圆C的切线方程.【解答】解:由题意,M为直线y=﹣x与圆的一个交点,代入圆的方程可得:(x+1)2+(﹣x﹣1)2=1.∵劣弧的中点为M,∴x=,∴,∵过点M的圆C的切线的斜率为1,∴过点M的圆C的切线方程是y﹣1+=x﹣+1,即y=x+2﹣.故选:A.11.(5分)某学校随机抽查了本校20个同学,调查他们平均每天在课外从事体育锻炼的时间(分钟),根据所得数据的茎叶图,以5为组距将数据分为八组,分别是[0,5),[5,10),…[35,40],作出的频率分布直方图如图所示,则原始的茎叶图可能是()A.B.C.D.【分析】由频率分布直方图可得,[25,30),[30,35)的频率相同,频数为3,即可得出结论.【解答】解:由频率分布直方图可得,[25,30),[30,35)的频率相同,频数为3,故选:B.12.(5分)如图,在等腰梯形ABCD中,AB∥CD,且AB=2AD,设∠DAB=θ,θ∈(0,),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,则()A.随着角度θ的增大,e1增大,e1e2为定值B.随着角度θ的增大,e1减小,e1e2为定值C.随着角度θ的增大,e1增大,e1e2也增大D.随着角度θ的增大,e1减小,e1e2也减小【分析】连接BD、AC,假设AD=t,根据余弦定理表示出BD,进而根据双曲线的性质可得到a的值,再由AB=2c,e=可表示出e1=,最后根据余弦函数的单调性可判断e1的单调性;同样表示出椭圆中的c'和a'表示出e2的关系式,最后令e1、e2相乘即可得到e1e2的关系.【解答】解:连接BD,AC设AD=t,则BD==∴双曲线中a=e1=∵y=cosθ在(0,)上单调减,进而可知当θ增大时,y==减小,即e1减小∵AC=BD∴椭圆中CD=2t(1﹣cosθ)=2c∴c'=t(1﹣cosθ)AC+AD=+t,∴a'=(+t)e2==∴e1e2=×=1故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)命题∀x∈R,|x|<0的否定是∃x0∈R,|x0|≥0.【分析】利用全称命题的否定是特称命题,去判断.【解答】解:因为命题是全称命题,根据全称命题的否定是特称命题,所以命题的否定:∃x0∈R,|x0|≥0.故答案为:∃x0∈R,|x0|≥0.14.(5分)已知双曲线x2﹣my2=1的虚轴长是实轴长的两倍,则实数m的值是.【分析】求出双曲线的实轴与虚轴的长,利用已知条件求解即可.【解答】解:双曲线x2﹣my2=1的虚轴长是实轴长的两倍,可得2=,解得m=.故答案为:.15.(5分)已知在平面直角坐标系xOy中,抛物线x2=2y的焦点为F,M(3,5),点Q在抛物线上,则|MQ|+|QF|的最小值为.【分析】求出抛物线的焦点坐标,判断A的位置,利用抛物线的定义转化求解|MQ|+|QF|的最小值.【解答】解:抛物线x2=2y的焦点为F(0,),M(3,5)在抛物线内部,抛物线的准线方程为:y=﹣,如图:MN垂直抛物线的准线,交点为N,则MN与抛物线的交点为Q时,|MQ|+|QF|的最小,最小值为:5+=.故答案为:.16.(5分)在平面直角坐标系xOy中,曲线x2+y2=2|x|+2|y|围成的图形的面积为6π+8.【分析】x>0,y>0时,方程化为(x﹣1)2+(y﹣1)2=2,其面积为=+2,根据图象的对称性,可得曲线x2+y2=2|x|+2|y|围成的图形的面积.【解答】解:x>0,y>0时,方程化为(x﹣1)2+(y﹣1)2=2,其面积为=+2根据图象的对称性,可得曲线x2+y2=2|x|+2|y|围成的图形的面积为6π+8,故答案为6π+8.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图,每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500).(1)求居民收入在[3000,3500)的频率;(2)根据频率分布直方图算出样本数据的中位数、平均数及其众数;(3)为了分析居民的收入与年龄、职业等方面的关系,按收入从这10000人中用分层抽样方法抽出100人作进一步分析,则应在月收入为[2500,3000)的人中抽取多少人?【分析】(1)根据频率=小矩形的高×组距来求;(2)根据中位数的左右两边的矩形的面积和相等,所以只需求出从左开始面积和等于0.5的底边横坐标的值即可,运用取中间数乘频率,再求之和,计算可得平均数,求出众数即可;(3)求出月收入在[2500,3000)的人数,用分层抽样的抽取比例乘以人数,可得答案.【解答】解:(1)月收入在[3000,3500)的频率为0.0003×500=0.15;(2)从左数第一组的频率为0.0002×500=0.1;第二组的频率为0.0004×500=0.2;第三组的频率为0.0005×500=0.25;∴中位数位于第三组,设中位数为2000+x,则x×0.0005=0.5﹣0.1﹣0.2=0.2⇒x=400.∴中位数为2400(元)由1250×0.1+1750×0.2+2250×0.25+2750×0.25+3250×0.15+3750×0.05=2400,样本数据的平均数为2400(元);众数是:=2250,和=2750;(3)月收入在[2500,3000)的频数为0.25×10000=2500(人),∵抽取的样本容量为100.∴抽取比例为=,∴月收入在[2500,3000)的这段应抽取2500×=25(人).18.(12分)口袋中装有4个形状大小完全相同的小球,小球的编号分别为1,2,3,4,甲、乙、丙依次有放回地随机抽取1个小球,取到小球的编号分别为a,b,c.(1)在一次抽取中,若有两人抽取的编号相同,则称这两人为“好朋友”,求甲、乙两人成为“好朋友”的概率;(2)求抽取的编号能使方程a+b+2c=6成立的概率.【分析】(1)将甲、乙依次取到小球的编号记为(a,b),利用列出法求出基本事件个数和甲、乙两人成为好朋友包含的情况种数,由此能求出甲、乙两人成为“好朋友”的概率.(2)将甲、乙、丙依次取到小球的编号记为(a,b,c),求出基本事件个数,利用列举法求出丙抽取的编号能使方程a+b+2c=6成立包含的基本事件个数,由此能求出抽取的编号能使方程a+b+2c=6成立的概率.【解答】解:(1)将甲、乙依次取到小球的编号记为(a,b),则基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.记“甲、乙两人成为好朋友”为事件M,则M包含的情况有:(1,1),(2,2),(3,3),(4,4),共4个人,故甲、乙两人成为“好朋友”的概率为P(M)==.(2)将甲、乙、丙依次取到小球的编号记为(a,b,c),则基本事件有n=4×4×4=64个,记“丙抽取的编号能使方程a+b+2c=6成立”为事件N,当丙抽取的编号c=1时,a+b=4,∴(a,b)分别为(1,3),(2,2),(3,1),当丙抽取的编号c=2时,a+b=2,∴(a,b)为(1,1),当丙抽取的编号c=3或c=4时,方程a+b+2c=6不成立.综上,事件N包含的基本事件有4个,∴.19.(12分)某科研所对新研发的一种产品进行合理定价,该产品按事先拟定的价格试销得统计数据.(1)①求线性回归方程y=x+;②谈谈商品定价对市场的影响;(2)估计在以后的销售中,销量与单价服从回归直线,若该产品的成本为 4.5元/件,为使科研所获利最大,该产品定价应为多少?(附:=,=﹣,=8.5,=80)【分析】(1)①根据公式求出和的值,求出回归方程即可;②根据b的值判断即可;(2)求出关于w的表达式,结合二次函数的性质求出w的最大值即可.【解答】解:(1)①依题意:==﹣20,=﹣=80+20×8.5=250,∴回归直线的方程为y=﹣20x+250;②由于=﹣20<0,则x,y负相关,故随定价的增加,销量不断降低.(2)设科研所所得利润为w,设定价为x,∴w=(x﹣4.5)(﹣20x+250)=﹣20x2+340x﹣1125,∴当时,w max=320,故当定价为8.5元时,w取得最大值.20.(12分)已知⊙C:x2+y2﹣2x﹣4y﹣20=0,直线l:(2m+1)x+(m+1)y﹣7m ﹣4=0.(1)求证:直线l与⊙C恒有两个交点;(2)若直线l与⊙C的两个不同交点分别为A,B.求线段AB中点P的轨迹方程,并求弦AB的最小值.【分析】(1)求出圆C的圆心和半径,整理直线方程为m(2x+y﹣7)+(x+y﹣4)=0,求出直线2x+y﹣7=0,x+y﹣4=0的交点,判断它在圆内,即可得证;(2)由题意知,设点P(x,y)为弦AB的中点,连接CP,则CP⊥PQ,由平面几何知识可得点P的轨迹方程是以CQ为直径的圆,求得圆心和半径,注意运用中点坐标公式,再由当Q(3,1)是弦AB的中点时,|AB|最小,运用勾股定理即可得到所求值.【解答】解:(1)证明:⊙C:x2+y2﹣2x﹣4y﹣20=0,即(x﹣1)2+(y﹣2)2=25,圆心C(1,2),半径r=5,又直线l:(2m+1)x+(m+1)y﹣7m﹣4=0,化为m(2x+y﹣7)+(x+y﹣4)=0,由解得,则直线l恒过定点Q(3,1),由|CQ|==<5,可得Q在圆C内,则直线l与⊙C恒有两个交点;(2)由题意知,设点P(x,y)为弦AB的中点,由(1)可知CP⊥PQ,点P的轨迹方程是以CQ为直径的圆,线段CQ的中点为(2,),|CQ|=,则线段AB中点P的轨迹方程为;由圆的几何性质可知,当Q(3,1)是弦AB的中点时,|AB|最小.弦心距,⊙C的半径为5,可得|AB|min=2=4.21.(12分)已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.(1)求曲线C的方程;(2)过点M(m,0)(m>0)任作一条直线与曲线C交于A,B两点,点N(n,0),连接AN,BN,且m+n=0.求证:∠ANM=∠BNM.【分析】(1)设P(x,y)是曲线C上任意一点,由题意可得C上每一点到点F (1,0)的距离等于它到x=﹣1的距离,得到x,y的方程,化简即可;(2)设过点M(m,0)(m>0)的直线l与曲线C的交点为A(x1,y1),B(x2,y2),设l的方程为x=λy+m,代入曲线方程,运用判别式大于0和韦达定理,运用两点的斜率公式计算k AN+k BN,化简整理即可得到所求值.【解答】解:(1)设P(x,y)是曲线C上任意一点,由题意可得C上每一点到点F(1,0)的距离等于它到x=﹣1的距离,那么点P(x,y)满足:,化简得y2=4x;(2)证明:设过点M(m,0)(m>0)的直线l与曲线C的交点为A(x1,y1),B(x2,y2).设l的方程为x=λy+m,由得y2﹣4λy﹣4m=0,△=16(λ2+m)>0,于是①,∴k AN+k BN=+===,∵m+n=0,∴k AN+k BN=0,即k AN=﹣k BN,则∠ANM=∠BNM.22.(12分)已知椭圆C:+=1(a>b>0)的上顶点M与左、右焦点F1,F2构成三角形MF1F2面积为,又椭圆C的离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)直线l与椭圆C交于A(x1,y1),B(x2,y2)两点,且x1+x2=2,又直线l1:y=k1x+m是线段AB的垂直平分线,求实数m的取值范围;(Ⅲ)椭圆C的下顶点为N,过点T(t,2)(t≠0)的直线TM,TN分别与椭圆C交于E,F两点.若△TMN的面积是△TEF的面积的k倍,求k的最大值.【分析】(Ⅰ)利用椭圆离心率,,a2=b2+c2,解得a=2,b=1,即可求出椭圆方程.(Ⅱ)设AB的中点D(x0,y0),A(x1,y1),B(x2,y2),求出x0,y1+y2=2y0.(y0≠0)又A(x1,y1)、B(x2,y2)在椭圆C上,利用平方差法,推出.通过D在椭圆C内部,得到,求出m的范围.==|t|,S△TEF=,利用,通过(Ⅲ)推出S△TMN二次函数的最值求解k的最大值.【解答】解:(Ⅰ)椭圆离心率,又,a2=b2+c2解得a=2,b=1,∴椭圆方程:..…(4分)(Ⅱ)设AB的中点D(x0,y0),A(x1,y1),B(x2,y2),则x1+x2=2x0=2,所以x0=1,y1+y2=2y0.(y0≠0)又A(x1,y1)、B(x2,y2)在椭圆C上,所以由②﹣①得,即.…(6分)即,l1:y=4y0x+m.当x0=1时,y0=4y0+m,所以.所以D点的坐标为.又D在椭圆C内部,所以,解得且m≠0.…(9分)==|t|,(Ⅲ)因为S△TMN直线方程为:y=,联立,得x E=,所以E(,)到直线3x﹣ty﹣t=0的距离d==,直线方程为:y=,联立,得x F=,所以F(,),∴|TF|==,==••=,∴S△TEF所以=,令t2+12=n>12,则=,当且仅当n=24,即等号成立,所以k的最大值为.…(14分)。
四川省成都市外国语学校2023-2024学年高二下学期期末考试数学试题(含解析)

成都外国语学校2023-2024学年度下期期末考试高二数学试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.本堂考试120分钟,满分150分.3.答题前,考生务必先将自己姓名、学号填写在答题卡上,并使用2B 铅笔填涂.4.考试结束后,将答题卡交回.第Ⅰ卷(选择题)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足(1i)3i z +=-,则z =( )A .BCD 2.函数()(3)e xf x x =-的单调增区间是( )A .(,2)-∞B .(0,3)C .(1,4)D .(2,)+∞3.关于线性回归的描述,有下列命题:①回归直线一定经过样本点的中心;②相关系数r 越大,线性相关程度越强;③决定系数2R 越接近1拟合效果越好;④随机误差平方和越小,拟合效果越好.其中正确的命题个数为( )A .1B .2C .3D .44.设1cos 662a =︒︒,2sin13cos13b =︒︒,c =)A .a b c>>B .a b c<<C .a c b<<D .b c a<<5.在空间直角坐标系中,(0,0,0)P ,(1,0,0)A ,(0,2,0)B ,(0,0,3)C ,三角形ABC 重心为G ,则点P 到直线AG 的距离为( )A .67B C D6.已知点(A ,抛物线2:4C y x =上有一点()00,P x y ,则202||2y PA +的最小值是( )A .10B .8C .5D .47.有5名大学生到成都市的三所学校去应聘,若每名大学生至多被一个学校录用,每个学校至少录用其中一人,则不同的录用情况种数是( )A .390B .150C .90D .4208.双曲线222:1(0)5x y C a a -=>的左、右焦点分别为1F ,2F ,,右支上一点P 满足12PF PF ⊥,直线l 平分12F PF ∠,过点1F ,2F 作直线l 的垂线,垂足分别为A ,B .设O 为坐标原点,则OAB △的面积为( )A.B.C.D .10二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有错选的得0分.9.若“[4,6]x ∃∈,210x ax -->”为假命题,则实数a 的取值可以为( )A .8B .7C .6D .510.我国5G 技术研发试验在2016~2018年进行,分为5G 关键技术试验、5G 技术方案验证和5G 系统验证三个阶段.2020年初以来,5G 技术在我国已经进入高速发展的阶段,5G 手机的销量也逐渐上升.某手机商城统计了2022年5个月5G 手机的实际销量,如下表所示:月份2022年1月2022年2月2022年3月2022年4月2022年5月月份编号x 12345销量y (部)5096a185227若y 与x 线性相关,且求得回归直线方程为ˆ455yx =+,则下列说法正确的是( )A .142a =B .y 与x 的相关系数为负数C .y 与x 正相关D .2022年7月该手机商城的5G 手机销量约为365部11.已知定义在R 上的函数()y f x =满足132f x ⎛⎫-⎪⎝⎭为偶函数,(21)f x +为奇函数,当10,2x ⎡⎤∈⎢⎥⎣⎦时,()0f x '>,则下列说法正确的是( )A .(0)0f =B .4133f f ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭C .函数()y f x =为R 上的偶函数D .函数()y f x =为周期函数三、填空题:本题共3小题,每小题5分,共15分.12.若“12x <<”是“|2|1x m -<”的充分不必要条件,则实数m 的取值范围为__________.13.若7270127(2)(1)(1)(1)x a a x a x a x -=+++++++ ,则0127a a a a ++++ 的值为__________.14.若数列{}n a 满足111n n d a a +-=,(*n ∈N ,d 为常数),则称数列{}n a 为调和数列.已知数列21n x ⎧⎫⎨⎬⎩⎭为调和数列,且222212320222022x x x x ++++= ,则92014x x +的最大值为__________.四、解答题:共77分,解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c,设向量4sin ,m A ⎛= ⎝ ,1cos ,2cos 22n A A ⎛⎫= ⎪⎝⎭ ,()f A m n =⋅ ,π5π,46A ⎡⎤∈⎢⎥⎣⎦.(1)求函数()f A 的最小值;(2)若()0f A =,a =b c +=,求ABC △的面积.16.(本小题满分15分)如图,在四棱锥P ABCD -中,//AD BC ,224PA BC AD AB ====,AD ⊥平面PAB ,PA AB ⊥,E 、F 分别是棱PB 、PC 的中点.(1)证明://DF 平面ACE ;(2)求平面ACE 与平面PAD 的夹角的正弦值.17.(本小题满分15分)某校为了解本校学生课间进行体育活动的情况,随机抽取了50名男生和50名女生,通过调查得到如下数据:50名女生中有10人课间经常进行体育活动,50名男生中有20人课间经常进行体育活动.(1)请补全22⨯列联表,试根据小概率值0.05α=的独立性检验,判断性别与课间经常进行体育活动是否有关联;体育活动合计性别课间不经常进行体育活动课间经常进行体育活动男女合计(2)以样本的频率作为概率的值,在全校的男生中任取4人,记其中课间经常进行体育活动的人数为X ﹐求X 的分布列、数学期望和方差.附表:α0.10.050.010.0050.001x α2.7063.8416.6357.87910.828附:22()()()()()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.18.(本小题满分17分)已知椭圆2222:1(0)x y E a b a b +=>>的左、右焦点别为1F ,2F ,过点1F 的动直线l 交E 于A ,B 两点,点A 在x 轴上方,且l 不与x 轴垂直,2ABF △的周长为2AF 与E 交于另一点C ,直线2BF 与E 交于另一点D ,点P 为椭圆E 的下顶点,如图.(1)求E 的方程;(2)证明:直线CD 过定点.19.(本小题满分17分)定义运算:m n mq np p q =-,已知函数ln 1()1x x f x a -=,1()1g x x=-.(1)若函数()f x 的最大值为0,求实数a 的值;(2)若函数()()()h x f x g x =+存在两个极值点1x ,2x ,证明:()()121220h x h x a x x --+<-;(3)证明:222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+++⋯+< ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.成都外国语学校2023-2024学年度下期期末考试高二数学试卷 参考答案:1.A【分析】利用复数的运算性质求出共辄复数,再求模即可.【详解】因为(1i)3i z +=-,所以23i (3i)(1i)34i i 34i 112i,1i (1i)(1i)22z ----+--=====-++-,所以12i z =+,z ==,故C 正确.故选:A .2.D【分析】对函数求导,根据导函数的正负,确定函数的单调递增递减区间即得.【详解】由()(3)e xf x x =-求导得,()(2)e xf x x '=-,则当2x >时,()0f x '>,即函数()(3)e xf x x =-在(2,)+∞上单调递增;当2x <时,()0f x '<,即函数()(3)e x f x x =-在(,2)-∞上单调递减,故函数()(3)e xf x x =-的单调递增区间为(2,)+∞.故选:D .3.C【分析】根据回归直线方程的性质,相关系数、决定系数及随机误差平方和的意义判断各项的正误即可.【详解】对于①,回归直线一定经过样本点的中心,故①正确;对于②,相关系数r 的绝对值越接近于1,线性相关性越强,故②错误;对于③,决定系数R 越接近1拟合效果越好,故③正确;对于④,随机误差平方和越小,拟合效果越好,故④正确.故选:C .4.C【分析】利用二倍角公式及两角差的正弦公式化简,再根据正弦函数的性质判断即可.【详解】()1cos 66sin 30cos 6cos30sin 6sin 306sin 242a =︒︒=︒︒-︒︒=︒-︒=︒,sin26b =︒,sin 25c ====︒,因为sin y x =在π0,2⎛⎫⎪⎝⎭上单调递增,所以sin 26sin 25sin 24︒>︒>︒,故a c b <<.故选:C .5.B【详解】在空间直角坐标系中,(0,0,0)P ,(1,0,0)A ,(0,2,0)B ,(0,0,3)C ,三角形ABC 重心为G ,所以12,,133G ⎛⎫ ⎪⎝⎭,(1,0,0)PA =,22,,133AG ⎛⎫=- ⎪⎝⎭,所以PA 在AG上的投影为:PA AG AG⋅== 所以点P 到直线AG=.故选:B .6.B【分析】结合坐标运算和焦半径公式,转化22||2(||||)22y PA PF PA +=+-,再利用数形结合求最值.【详解】已知抛物线2:4C y x =上有一点()00,P x y ,则2004y x =,即2004y x =.又243>⨯,故(A 在抛物线2:4C y x =的外部,则()()220002||2||2||21|224y y PA PA x PA x PA ⎛⎫+=+=+=++- ⎪⎝⎭∣,因为抛物线2:4C y x =的焦点为(1,0)F ,准线方程为1x =-,则0||1PF x =+,故()2002||21||22(||||)22y PA x PA PF PA +=++-=+-.由于||||||PF PA AF +≥,当A ,P ,F 三点共线(P 在A ,F 之间)时,||||PF PA +取到最小值||5AF ==,则202||2(||||)22y PA PF PA +=+-的最小值为2528⨯-=.故选:B .【分析】根据录用的人数,结合组合和排列的定义分类讨论进行求解即可.【详解】若5人中有且仅有3人被录用,满足条件的录用情况有35A 60=种,若5人中有且仅有4人被录用,满足条件的录用情况有1143435322C C C A 180A =种,若5人都被录用,满足条件的录用情况有1122335453332222C C C C A A 150A A +=种,由分类加法计数原理可得符合要求的不同的录用情况种数是390.故选:A .8.D【分析】根据给定条件,求出2a ,结合几何图形及双曲线定义可得OAB △的面积212S a =得解.【详解】由双曲线222:1(0)5x y C a a -=>=,解得220a =,令直线1F A 交2PF 的延长线交2PF 于Q ,直线2F B 交1PF 于N ,则1PA FQ ⊥,2PB F N ⊥,由PA 平分12F PF ∠,且1290F PF ∠=︒,得112245PFQ PQF PF N PNF ∠=∠=∠=∠=︒,则1||PA PF =,2||PB PF =,||||||2AB PA PB a =-==,显然A ,B 分别为线段1FQ ,2F N 的中点,而O 是12F F 的中点,于是//OA PQ ,1//OB PF ,145OAB APQ APF OBA ∠=∠=︒=∠=∠,即90AOB ∠=︒,||||||OA OB AB a ===,所以OAB △的面积2211||1022S OA a ===.故选:D .【点睛】关键点点睛:本题求出OAB △面积的关键是作出点Q ,借助几何图形的特征,结合双曲线定义求得||AB =.【分析】根据条件,将问题转化成即1x a x -≤在[]4,6恒成立,令1()f x x x=-,利用其单调性,求出()f x 的最大值,即可求解.【详解】因为“[4,6]x ∃∈,210x ax -->”为假命题,所以[4,6]x ∀∈,210x ax --≤恒成立,即1x a x -≤在[]4,6恒成立,所以max 1a x x ⎛⎫≥- ⎪⎝⎭且[4,6]x ∈.令1()f x x x =-,易知1()f x x x=-在[]4,6上是增函数,所以max 135()(6)666f x f ==-=,所以356a ≥.故选:ABC .10.AC【分析】对A ,根据样本中心在回归直线上即可求解;对B ,从表格数据看,y 随x 的增大而增大,即可判断;对C ,因为y 与x 正相关,所以y 与x 的相关系数为正数,故可判断;对D ,将月份编号7x =代入到回归直线即可求解判断.【详解】对A ,1234535x ++++==,509618522755855a ay +++++==,因为点(),x y 在回归直线上,所以55845355a+=⨯+,解得142a =,所以选项A 正确;对C ,从表格数据看,y 随x 的增大而增大,所以y 与x 正相关,所以选项C 正确;对B ,因为y 与x 正相关,所以y 与x 的相关系数为正数,所以选项B 错误;对D ,2022年7月对应的月份编号7x =,当7x =时,ˆ4575320y=⨯+=,所以2022年7月该手机商城的5G 手机销量约为320部,所以选项D 错误.故选:AC .11.AD【分析】首先利用函数的奇偶性得到函数的对称轴和对称中心,结合关系式的变换得到函数周期判断B ,利用特殊值代入判断A ,根据导函数判断函数单调性结合关系式和偶函数定义判断C ,根据函数的关系式和单调性判断D .【详解】因为132f x ⎛⎫-⎪⎝⎭为偶函数,111133()(1)2222f x f x f x f x f x f x ⎛⎫⎛⎫⎛⎫⎛⎫-=+⇔-=+⇔=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故函数图象关于直线12x =对称,(21)f x +为奇函数,(21)(21)(1)(1)f x f x f x f x -+=-+⇔-+=-+,函数图象关于(1,0)对称,对于D ,()(1)(1)f x f x f x =-=-+,(2)(1)()f x f x f x +=-+=,故2是函数的周期,函数为周期函数,故D 正确;对于A ,(21)(21)f x f x -+=-+,令0x =,(1)(1)f f =-,故(1)0f =,又(0)(11)(1)0f f f =-==,故A 正确;对于C ,131222f f f ⎛⎫⎛⎫⎛⎫-==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当10,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,即函数在10,2⎛⎫⎪⎝⎭上递增,函数图象关于(1,0)对称,故函数在13,22⎛⎫ ⎪⎝⎭上递减,故函数在11,22⎡⎤-⎢⎥⎣⎦上递增,所以1122f f ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,故函数不是偶函数,故C 错误;对于B ,124333f f f ⎛⎫⎛⎫⎛⎫=> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,故选:AD .【点睛】抽象函数的判断一般会从函数奇偶性、周期性和对称性的定义推得相关的函数性质;12.【详解】由|2|1x m -<,得2121m x m -<<+,因为“12x <<”是“|2|1x m -<”的充分不必要条件,所以集合{12}x x <<∣是集合{2121}x m x m -<<+∣的真子集,所以211212m m -≤⎧⎨+≥⎩(不同时取等号),解得112m ≤≤,所以实数m 的取值范围为112m ≤≤.故答案为:112m ≤≤.13.128【详解】令0x =,得701272128a a a a ++++== .14.2【分析】根据调和数列,可得{}2n x 为等差数列,即可根据等差数列求和公式得22920142x x +=,进而利用不等式即可求解.【详解】数列21n x ⎧⎫⎨⎬⎩⎭为调和数列,故221n n x x d +-=,所以{}2n x 为等差数列,由222212320222022x x x x++++= ,所以()2212022202220222xx +⨯=,故22120222x x +=,所以22920142x x +=,故22920149201422x x x x +=≥,故920141x x ≤,由于()222920149201492014920142224x x x x x x x x +=++=+≤.当且仅当92014x x =时等号成立,故92014x x +的最大值为2.故答案为:2.15.【详解】(1)ππ()4sin cos cos sin 2cos 233f A m n A A A ⎛⎫⎛⎫=⋅=⋅-+-⋅ ⎪ ⎪⎝⎭⎝⎭πsin 222sin 23A A A ⎛⎫==- ⎪⎝⎭.因为π5π,46A ⎡⎤∈⎢⎥⎣⎦,所以ππ4π2,363A ⎡⎤-∈⎢⎥⎣⎦,所以当π4π233A -=,即5π6A =时,()f A有最小值(2)因为()0f A =,所以π2sin 203A ⎛⎫-= ⎪⎝⎭,所以π2π3A k -=,k ∈Z ,因为π5π,46A ⎡⎤∈⎢⎥⎣⎦,所以2π3A =.由正弦定理,2sin sin sin b c a B C A====,所以sin 2b B =,sin 2c C =.又因为sin sin B C +=,所以22b c +=,得b c +=,由余弦定理有:2222cos a b c bc A =+-,所以3bc =.所以11sin 322ABC S bc A ==⨯=△.16.【详解】(1)如图所示,连接EF .因为E ,F 分别是棱PB ,PC 的中点,所以//EF BC ,2BC EF =.因为//AD BC ,2BC AD =,所以//EF AD ,EF AD =,所以四边形ADFE 是平行四边形,则//AE DF .因为AE ⊂平面ACE ,DF ⊂/平面ACE ,所以//DF 平面ACE .(2)因为AD ⊥平面PAB ,PA 、AB ⊂平面PAB ,所以AD PA ⊥,AD AB ⊥,又因为PA AB ⊥,所以AB ,AP ,AD 两两垂直,以A 为坐标原点,AB ,AP ,AD的方向分别为x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系.由题中数据可得(0,0,0)A ,(2,0,4)C ,(1,2,0)E ,(2,0,4)AC = ,(1,2,0)AE =.设平面ACE 的法向量为(,,)n x y z = ,则240,20,n AC x z n AE x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩令2x =,得(2,1,1)n =--.因为PA AB ⊥,AB AD ⊥,PA AD A = ,所以AB ⊥平面PAD .平面PAD 的一个法向量为(1,0,0)AB m ==.设平面ACE 与平面PAD 的夹角为θ,则cos cos ,n m n m n m θ⋅====.故sin θ==,即平面ACE 与平面PAD17.【详解】(1)依题意,列出22⨯列联表如下:课间不经常进行体育活动课间经常进行体育活动合计男302050女401050合计7030100零假设为0H :性别与课间经常进行体育活动相互独立,即性别与课间是否经常进行体育活动无关,因为220.05100(30102040)1004.762 3.8415050703021x χ⨯⨯-⨯==≈>=⨯⨯⨯,根据小概率值0.05α=的独立性检验,我们推断0H 不成立,即认为性别与课间是否经常进行体育活动有关联,此推断犯错误的概率不大于0.05.(2)由题意得,经常进行体育活动者的频率为202505=,所以在本校中随机抽取1人为经常进行体育活动者的概率为25,由题意得2~4,5X B ⎛⎫⎪⎝⎭,则4422()C 155kkk P X k -⎛⎫⎛⎫==- ⎪⎪⎝⎭⎝⎭,0,1,2,3,4k =,可得04042281(0)C 155625P X ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,131422216(1)C 155625P X ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,222422216(2)C 155625P X ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,31342296(3)C 155625P X ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,40442216(4)C 155625P X ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭,X 的分布列为:X 01234P816252166252166259662516625X 的数学期望为28()455E X np ==⨯=,X 的方差为2224()(1)415525D X np p ⎛⎫=-=⨯⨯-= ⎪⎝⎭.18.【分析】(1)利用椭圆的第一定义和离心率,求解椭圆方程;(2)设点()11,A x y ,()22,B x y ,()33,C x y ,()44,D x y ,2AF 的方程为11(1)1y y x x =--,联立直线与椭圆的方程,根据韦达定理求出点的坐标,同理得到点的坐标,进而得到直线的方程,根据对称性,如果直线CD 过定点,则该定点在x 轴上,即可得到定点坐标7,05⎛⎫⎪⎝⎭;【详解】(1)由椭圆定义可知122AF AF a +=,122BF BF a +=,所以2ABF △的周长为4a =,所以a =,所以c a =,所以1c =,又2221b a c =-=,所以椭圆的方程:2212x y +=.(2)(ⅰ)设点()11,A x y ,()22,B x y ,()33,C x y ,()44,D x y ,则直线2AF 的方程为11(1)1y y x x =--,则1111x x y y -=+,由11221112x x y y x y -⎧=+⎪⎪⎨⎪+=⎪⎩得,221111112210x x y y y y ⎡⎤⎛⎫⎛⎫--⎢⎥++-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以211322211111121212y y y x x y x y --==-++⎛⎫-+ ⎪⎝⎭,因为221112x y +=,所以221122x y +=,所以2113123y y y x =-,故13123y y x =-,又111133311111134112323x x y x x y y y y x x ---=+==+=--,同理,24223y y x =-,2423423x x x -=-,由A ,1F ,B 三点共线,得121211y yx x =++,所以211221x y x y y y -=-,直线CD 的方程为43111431342323y y y x y x x x x x ⎛⎫---=- ⎪---⎝⎭,由对称性可知,如果直线CD 过定点,则该定点在x 轴上,令0y =得,()()()()()1431431433423y x x x y y x x y y --+--=--()()21211121212112134343423232323232323x x y y y x x x x x y y x x x ⎛⎫⎛⎫----+-- ⎪ ⎪----⎝⎭⎝⎭=⎛⎫-- ⎪--⎝⎭()()()()()()()()1221121221211212122134344372323325y x y x y y x y x y y x y x y y x y x y --+--+-===----+-,故直线CD 过定点7,05⎛⎫ ⎪⎝⎭.19.【分析】(1)求导后,分类讨论单调性,进而得到最值,求出a 的值即可;(2)条件等价于()0h x '=有两个不等的正根,结合判别式非负,以及韦达定理求出a 的范围,要证()()121220h x h x a x x --+<-,即证22212ln 0x x x -+<,令1()2ln (1)x x x x x ϕ=-+>求导确定函数()x ϕ的单调性,证明结论.(3)利用(1)结论可得则当1n >时,22211111ln 1111n n n n n⎛⎫⎛⎫+<+-=<- ⎪ ⎪-⎝⎭⎝⎭,进而利用裂项相消求和证明结论.【详解】(1)由题意知:()ln 1f x a x x =-+,()1(0)af x x x∴'=->,①当0a ≤时,()0f x '<,()f x 在(0,)+∞单调递减,不存在最大值.②当0a >时,由()0f x '=得x a =,当(0,)x a ∈,()0f x '>;(,)x a ∈+∞,()0f x '<,∴函数()y f x =的增区间为(0,)a ,减区间为(,)a +∞.max ()()ln 10f x f a a a a ∴==-+=,1a ∴=.(2)1()()()ln h x f x g x a x x x=+=-+ ,22211()1a x ax h x x x x -+-'∴=--=,“函数()h x 存在两个极值点1x ,2x ”等价于“方程22211()10a x ax h x x x x -+-'=--==有两个不相等的正实数根”;故212124010a x x x x a ⎧∆=->⎪=⎨⎪+=>⎩,解得2a >.()()11221212121211ln ln a x x a x x h x h x x x x x x x -+-+--=--()()()21122112121212ln ln ln ln 2x x a x x x x a x x x x x x x x --+-+-==---,要证()()121220h x h x a x x --+<-,即证1212ln ln 1x x x x -<-,121x x = ,不妨令1201x x <<<,故1211x x =<,由1212ln ln 1x x x x -<-得22212ln 0x x x -+<,令1()2ln (1)x x x x xϕ=-+>,222222121(1)()10x x x x x x x x ϕ-+---'=--==<在(1,)+∞恒成立,所以函数()x ϕ在(1,)+∞上单调递减,故()(1)0x ϕϕ<=.()()121220h x h x a x x -∴-+<-成立.(3)由(1)知,ln 10x x -+≤,即ln 1x x ≤-,∴当1n >时,22211111ln 1111n n n n n ⎛⎫⎛⎫+<+-=<- ⎪ ⎪-⎝⎭⎝⎭,222111111111ln 1ln 1ln 1111232231n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴++++⋯++<-+-+⋯+-=-< ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫∴+++⋯+< ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.【点睛】知识点点睛:本题以新定义为载体,考查了利用导数研究函数单调性和最值,考查了不等式的放缩,裂项相消求和知识,属于难题.。
四川省成都外国语学校2016-2017年度高二上学期期中数学试卷

2016-2017学年四川省成都外国语学校高二(上)期中数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线x+y+1=0的倾斜角是()A.﹣B.C.D.2.椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,则m的值为()A.B.C.2 D.43.圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=()A.﹣B.﹣C.D.24.已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则下列命题中为真命题的是()A.(¬p)∨q B.p∧q C.(¬p)∧(¬q)D.(¬p)∨(¬q)5.某几何体正视图与侧视图相同,其正视图与俯视图如图所示,且图中的四边形都是边长为2的正方形,正视图中两条虚线互相垂直,则该几何体的表面积是()A.24 B.20+4C.24+4D.20+46.已知点P(a,b)(ab≠0)是圆x2+y2=r2内的一点,直线m是以P为中点的弦所在直线,直线l的方程为ax+by=r2,那么()A.m∥l,且l与圆相交B.m⊥l,且l与圆相切C.m∥l,且l与圆相离D.m⊥l,且l与圆相离7.以椭圆的两个焦点为直径的端点的圆与椭圆交于四个不同的点,顺次连接这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率为()A.﹣B.﹣1 C.D.8.如图,已知四棱柱ABCD﹣A1B1C1D1中,底面ABCD是边长为3的正方形,侧棱AA1长为4,且AA1与A1B1,A1D1的夹角都是60°,则AC1的长等于()A .10B .C .D .9.x 、y 满足约束条件,若z=y ﹣ax 取得最大值的最优解不唯一,则实数a 的值为( )A .或﹣1B .2或C .2或1D .2或﹣110.在圆x 2+y 2=5x 内,过点有n 条弦的长度成等差数列,最短弦长为数列的首项a 1,最长弦长为a n ,若公差,那么n 的取值集合为( )A .{4,5,6}B .{6,7,8,9}C .{3,4,5}D .{3,4,5,6}11.已知椭圆T : +=1(a >b >0)的离心率为,过右焦点F 且斜率为k (k >0)的直线与T 相交于A ,B 两点,若=3,则k=( )A .1B .C .D .212.关于下列命题,正确的个数是( )(1)若点(2,1)在圆x 2+y 2+kx+2y+k 2﹣15=0外,则k >2或k <﹣4(2)已知圆M :(x+cosθ)2+(y ﹣sinθ)2=1,直线y=kx ,则直线与圆恒相切(3)已知点P 是直线2x+y+4=0上一动点,PA 、PB 是圆C :x 2+y 2﹣2y=0的两条切线,A 、B 是切点,则四边形PACB 的最小面积是为2(4)设直线系M :xcosθ+ysinθ=2+2cosθ,M 中的直线所能围成的正三角形面积都等于12.A .1B .2C .3D .4二、填空题:本大概题共4小题,每小题5分.13.在正方体ABCD ﹣A 1B 1C 1D 1中,则异面直线AD 1与A 1C 1所成角的余弦值是 .14.命题P :将函数sin2x 的图象向右平移个单位得到函数y=sin (2x ﹣)的图象;命题Q :函数y=sin (x+)cos (﹣x )的最小正周期是π,则复合命题“P 或Q”“P 且Q”“非P”为真命题的个数是 个.15.设x ,y 满足约束条件,若目标函数z=ax+by (a >0,b >0)的值是最大值为12,则的最小值为 .16.已知以T=4为周期的函数f(x)=,其中m>0.若方程3f (x)=x恰有5个实数解,则m的取值范围为.四、解答题:解答应写出文字说明过程或演算步骤.17.已知命题p:方程x2+mx+1=0有两个不等的负实数根;命题q:方程4x2+4(m﹣2)x+1=0无实数根.(1)若“¬p”为假命题,求m范围;(2)若“p或q”为真命题,“p且q”为假命题,求m的取值范围.18.某人有楼房一幢,室内面积共计180m2,拟分割成两类房间作为旅游客房,大房间每间面积为18m2,可住游客5名,每名游客每天住宿费40元;小房间每间面积为15m2,可以住游客3名,每名游客每天住宿费50元;装修大房间每间需要1000元,装修小房间每间需要600元.如果他只能筹款8000元用于装修,且假定游客能住满客房,他应隔出大房间和小房间各多少间,才能获得最大收益?19.如图1,2,在Rt△ABC中,AB=BC=4,点E在线段AB上,过点E作交AC于点F,将△AEF沿EF折起到△PEF的位置(点A与P重合),使得∠PEB=60°.(1)求证:EF⊥PB;(2)试问:当点E在何处时,四棱锥P﹣EFCB的侧面的面积最大?并求此时四棱锥P﹣EFCB 的体积及直线PC与平面EFCB所成角的正切值.20.在平面直角坐标系xOy中,经过点且斜率为k的直线l与椭圆有两个不同的交点P和Q.(Ⅰ)求k的取值范围;(Ⅱ)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.21.平面上两点A(﹣1,0),B(1,0),在圆C:(x﹣3)2+(y﹣4)2=4上取一点P,(Ⅰ)x﹣y+c≥0恒成立,求c的范围(Ⅱ)从x+y+1=0上的点向圆引切线,求切线长的最小值(Ⅲ)求|PA|2+|PB|2的最值及此时点P的坐标.22.如图,椭圆M:+=1(a>b>0)的离心率为,直线x=±a和y=±b所围成的矩形ABCD的面积为8.(Ⅰ)求椭圆M的标准方程;(Ⅱ)设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T.求的最大值及取得最大值时m的值.2016-2017学年四川省成都外国语学校高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线x+y+1=0的倾斜角是()A.﹣B.C.D.【考点】直线的倾斜角.【分析】根据题意可得直线的斜率k=﹣1,由直线的斜率与倾斜角的关系及倾斜角的范围,可得直线的斜率角.【解答】解:∵直线方程为x+y+1=0,∴化简得y=﹣x﹣1,直线的斜率为k=﹣1,设直线的倾斜角为α,则tanα=﹣1,∵α∈(0,π),∴,即直线x+y+1=0的倾斜角是.故选:D2.椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,则m的值为()A.B.C.2 D.4【考点】椭圆的简单性质.【分析】根据题意,求出长半轴和短半轴的长度,利用长轴长是短轴长的两倍,解方程求出m 的值.【解答】解:椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,∴,故选A.3.圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=()A.﹣B.﹣C.D.2【考点】圆的一般方程;点到直线的距离公式.【分析】求出圆心坐标,代入点到直线距离方程,解得答案.【解答】解:圆x2+y2﹣2x﹣8y+13=0的圆心坐标为:(1,4),故圆心到直线ax+y﹣1=0的距离d==1,解得:a=,故选:A.4.已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则下列命题中为真命题的是()A.(¬p)∨q B.p∧q C.(¬p)∧(¬q)D.(¬p)∨(¬q)【考点】复合命题的真假.【分析】先判断命题p和命题q的真假,命题p为真命题,命题q为假命题,再由真值表对照答案逐一检验.【解答】解:不难判断命题p为真命题,命题q为假命题,从而¬p为假命题,¬q为真命题,所以A、B、C均为假命题,故选D.5.某几何体正视图与侧视图相同,其正视图与俯视图如图所示,且图中的四边形都是边长为2的正方形,正视图中两条虚线互相垂直,则该几何体的表面积是()A.24 B.20+4C.24+4D.20+4【考点】由三视图求面积、体积.【分析】由三视图知原几何体是一个棱长为2的正方体挖去一四棱锥得到的,根据所提供的数据可求出各个面的面积,可得答案.【解答】解:由三视图知原几何体是一个棱长为2的正方体挖去一四棱锥得到的,该四棱锥的底为正方体的上底,高为1,如图所示:∴四棱锥的侧高为:故该几何体的表面积为:5×22+4×(×2×)=20+4,故选:B6.已知点P(a,b)(ab≠0)是圆x2+y2=r2内的一点,直线m是以P为中点的弦所在直线,直线l的方程为ax+by=r2,那么()A.m∥l,且l与圆相交B.m⊥l,且l与圆相切C.m∥l,且l与圆相离D.m⊥l,且l与圆相离【考点】直线与圆的位置关系.【分析】由P在圆内,得到P到圆心距离小于半径,利用两点间的距离公式列出不等式a2+b2<r2,由直线m是以P为中点的弦所在直线,利用垂径定理得到直线OP与直线m垂直,根据直线OP的斜率求出直线m的斜率,再表示出直线l的斜率,发现直线m与l斜率相同,可得出两直线平行,利用点到直线的距离公式表示出圆心到直线l的距离,利用得出的不等式变形判断出d大于r,即可确定出直线l与圆相离.【解答】解:∵点P(a,b)(ab≠0)在圆内,∴a2+b2<r2,∵k OP=,直线OP⊥直线m,∴k m=﹣,∵直线l的斜率k l=﹣=k m,∴m∥l,∵圆心O到直线l的距离d=>=r,∴l与圆相离.故选C.7.以椭圆的两个焦点为直径的端点的圆与椭圆交于四个不同的点,顺次连接这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率为()A.﹣B.﹣1 C.D.【考点】椭圆的简单性质.【分析】设椭圆的两个焦点为F1,F2,圆与椭圆交于A,B,C,D四个不同的点,设|F1F2|=2c,则|DF1|=c,|DF2|=c.由椭圆的定义知2a=||DF1|+|DF2|=c+c,根据离心率公式求得答案.【解答】解:设椭圆的两个焦点为F1,F2,圆与椭圆交于A,B,C,D四个不同的点,设|F1F2|=2c,则|DF1|=c,|DF2|=c.椭圆定义,得2a=||DF1|+|DF2|=c+c,所以e===﹣1,故选B.8.如图,已知四棱柱ABCD﹣A1B1C1D1中,底面ABCD是边长为3的正方形,侧棱AA1长为4,且AA1与A1B1,A1D1的夹角都是60°,则AC1的长等于()A.10 B. C. D.【考点】棱柱的结构特征.【分析】直接根据向量的加法把所求问题分解,再平方计算出模长的平方,进而求出结论.【解答】解:因为=++;∴()2=(++)2=()2+()2+()2+2 •+2 •+2 •=42+32+32+2×4×3cos120°+2×4×3cos120°+2×3×3cos90°=10.∴AC1=故选C.9.x、y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.2或C.2或1 D.2或﹣1【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线y=ax+z斜率的变化,从而求出a的取值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=y﹣ax得y=ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a>0,目标函数y=ax+z的斜率k=a>0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线2x﹣y+2=0平行,此时a=2,若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线x+y﹣2=0,平行,此时a=﹣1,综上a=﹣1或a=2,故选:D10.在圆x2+y2=5x内,过点有n条弦的长度成等差数列,最短弦长为数列的首项a1,最长弦长为a n,若公差,那么n的取值集合为()A.{4,5,6} B.{6,7,8,9} C.{3,4,5} D.{3,4,5,6}【考点】等差数列的性质;直线与圆相交的性质.【分析】先由圆的几何性质,最短时该点与圆心的连线与所在直线垂直,最长时则该直线过圆心,即圆的直径.从而求得首项和末尾项,再由公差的范围求解.【解答】解析:A;由题意得,,∴,∵,∴,∴3≤n﹣1<6,∴4≤n<7,∵n∈N*,∴n=4,5,6.故选A.11.已知椭圆T:+=1(a>b>0)的离心率为,过右焦点F且斜率为k(k>0)的直线与T相交于A,B两点,若=3,则k=()A.1 B.C.D.2【考点】直线与圆锥曲线的综合问题.【分析】设A(x1,y1),B(x2,y2),根据求得y1和y2关系根据离心率设,b=t,代入椭圆方程与直线方程联立,消去x,根据韦达定理表示出y1+y2和y1y2,进而根据y1和y2关系求得k.【解答】解:A(x1,y1),B(x2,y2),∵,∴y1=﹣3y2,∵,设,b=t,∴x2+4y2﹣4t2=0①,设直线AB方程为,代入①中消去x,可得,∴,,解得,故选B12.关于下列命题,正确的个数是()(1)若点(2,1)在圆x2+y2+kx+2y+k2﹣15=0外,则k>2或k<﹣4(2)已知圆M:(x+cosθ)2+(y﹣sinθ)2=1,直线y=kx,则直线与圆恒相切(3)已知点P是直线2x+y+4=0上一动点,PA、PB是圆C:x2+y2﹣2y=0的两条切线,A、B 是切点,则四边形PACB的最小面积是为2(4)设直线系M:xcosθ+ysinθ=2+2cosθ,M中的直线所能围成的正三角形面积都等于12.A.1 B.2 C.3 D.4【考点】命题的真假判断与应用.【分析】点(2,1)在圆外,则k2+2k﹣8>0,解得k<﹣4,或k>2,故(1)正确;利用点到直线的距离公式,得到d=,再利用辅助角公式化简得d=|sin(θ+φ)|,=2S Rt△PAC=PA,而从而d≤r,则直线与圆相交或相切,故(2)错误;因为S四边形PACBPA=,所以当PC取得最小值时,四边形PACB的面积最小.又因为PC的最小值就是圆心C到直线的距离d,利用点到直线的距离公式即可算出d=,所以四边形PACB的面积为2,故(3)正确;由直线系M的方程可知,所以直线都是定圆(x﹣2)2+y2=4的切线,利用圆的半径即可算出正三角形的面积,故(4)正确.【解答】解:对于(1):∵点(2,1)在圆外,∴k2+2k﹣8>0,解得k<﹣4,或k>2,故(1)正确;对于(2):圆心M到直线的距离d==|sin(θ+φ)|,其中sinφ=,cosφ=,∵|sin(θ+φ)|≤1,∴直线与圆相交或相切.故(2)错误;对于(3):圆C:x2+y2﹣2y=0,即x2+(y﹣1)2=1,故圆心C(0,1),半径r=1,圆心C到直线2x+y+4=0的距离d=,即PC min=,∵,∴PA min=2,∵,∴(S)min=2,故(3)正确;四边形PACB对于(4):直线系M:xcosθ+ysinθ=2+2cosθ,即(x﹣2)cosθ+ysinθ=2∵点(2,0)到直线的距离d=,∴直线系M都是圆C:(x﹣2)2+y2=4的切线.设△ABC是M中的直线所能围成的一个正三角形,则AC=2r=4,AB=2AD=2∴S=,故(4)正确.综上可知,正确的是(1),(3),(4),共有3个.故选:C二、填空题:本大概题共4小题,每小题5分.13.在正方体ABCD﹣A1B1C1D1中,则异面直线AD1与A1C1所成角的余弦值是.【考点】异面直线及其所成的角.【分析】由A1C1∥AC,知∠D1AC是异面直线AD1与A1C1所成角,由此能求出异面直线AD1与A1C1所成角的余弦值.【解答】解:在正方体ABCD﹣A1B1C1D1中,∵A1C1∥AC,∴∠D1AC是异面直线AD1与A1C1所成角,连结AC,CD1,∵AD1=AC=CD1,∴∠D1AC=60°,∴异面直线AD1与A1C1所成角的余弦值为cos60°=.故答案为:.14.命题P:将函数sin2x的图象向右平移个单位得到函数y=sin(2x﹣)的图象;命题Q:函数y=sin(x+)cos(﹣x)的最小正周期是π,则复合命题“P或Q”“P且Q”“非P”为真命题的个数是2个.【考点】命题的真假判断与应用.【分析】先分别判断命题P和Q的真假,将sin2x的图象向右平移个单位得到函数y=sin2(x﹣)=sin(2x﹣),故命题P为假命题,y=sin(x+)cos(=,周期T=π,故命题Q为真.再根据真值表分别判断“P或Q”“P且Q”“非P”的真假性即可.【解答】解:对于命题P:将sin2x的图象向右平移个单位得到函数y=sin2(x﹣)=sin(2x﹣),故命题P为假命题;对于命题Q:y=sin(x+)cos(﹣x)=sin[]cos()===,周期T=,故命题Q为真命题.根据真值表,“P或Q“为真命题,“P且Q“为假命题,“非P“为真命题.故答案为:2.15.设x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的值是最大值为12,则的最小值为.【考点】简单线性规划的应用;基本不等式在最值问题中的应用.【分析】先根据条件画出可行域,设z=ax+by,再利用几何意义求最值,将最大值转化为y轴上的截距,只需求出直线z=ax+by,过可行域内的点(4,6)时取得最大值,从而得到一个关于a,b的等式,最后利用基本不等式求最小值即可.【解答】解:不等式表示的平面区域如图所示阴影部分,当直线ax+by=z(a>0,b>0)过直线x﹣y+2=0与直线3x﹣y﹣6=0的交点(4,6)时,目标函数z=ax+by(a>0,b>0)取得最大12,即4a+6b=12,即2a+3b=6,而=.故答案为:.16.已知以T=4为周期的函数f(x)=,其中m>0.若方程3f(x)=x恰有5个实数解,则m的取值范围为.【考点】函数的周期性;分段函数的解析式求法及其图象的作法.【分析】根据对函数的解析式进行变形后发现当x∈(﹣1,1],[3,5],[7,9]上时,f(x)的图象为半个椭圆.根据图象推断要使方程恰有5个实数解,则需直线y=与第二个椭圆相交,而与第三个椭圆不公共点.把直线分别代入椭圆方程,根据△可求得m的范围.【解答】解:∵当x∈(﹣1,1]时,将函数化为方程x2+=1(y≥0),∴实质上为一个半椭圆,其图象如图所示,同时在坐标系中作出当x∈(1,3]得图象,再根据周期性作出函数其它部分的图象,由图易知直线y=与第二个椭圆(x﹣4)2+=1(y≥0)相交,而与第三个半椭圆(x﹣8)2+=1 (y≥0)无公共点时,方程恰有5个实数解,将y=代入(x﹣4)2+=1 (y≥0)得,(9m2+1)x2﹣72m2x+135m2=0,令t=9m2(t>0),则(t+1)x2﹣8tx+15t=0,由△=(8t)2﹣4×15t (t+1)>0,得t>15,由9m2>15,且m>0得m,同样由y=与第三个椭圆(x﹣8)2+=1 (y≥0)由△<0可计算得m<,综上可知m∈(,)故答案为:(,)四、解答题:解答应写出文字说明过程或演算步骤.17.已知命题p:方程x2+mx+1=0有两个不等的负实数根;命题q:方程4x2+4(m﹣2)x+1=0无实数根.(1)若“¬p”为假命题,求m范围;(2)若“p或q”为真命题,“p且q”为假命题,求m的取值范围.【考点】复合命题的真假;命题的否定.【分析】(1)根据四种命题之间的关系判断即可;(2)通过讨论p真q假,p假q真,从而得到m的范围.【解答】解:(1)由p得:△1=m2﹣4>0,﹣m<0,则m>2;(2)△2=16(m﹣2)2﹣16<0,则1<m<3,∵“p或q”为真命题,“p且q”为假命题,∴p,q一真一假,①p真q假时:,解得:m≥3,②p假q真时:,解得:1<m≤2,∴m的取值范围是:m≥3或1<m≤2.18.某人有楼房一幢,室内面积共计180m2,拟分割成两类房间作为旅游客房,大房间每间面积为18m2,可住游客5名,每名游客每天住宿费40元;小房间每间面积为15m2,可以住游客3名,每名游客每天住宿费50元;装修大房间每间需要1000元,装修小房间每间需要600元.如果他只能筹款8000元用于装修,且假定游客能住满客房,他应隔出大房间和小房间各多少间,才能获得最大收益?【考点】简单线性规划的应用.【分析】先设分割大房间为x间,小房间为y间,收益为z元,列出约束条件,再根据约束条件画出可行域,设z=200x+150y,再利用z的几何意义求最值,只需求出直线z=200x+150y过可行域内的整数点时,从而得到z值即可.【解答】解:设分割大房间为x间,小房间为y间,收益为z元根据题意得:求:z=200x+150y的最大值.作出约束条件表示的平面区域把目标函数z=200x+150y化为平移直线,直线越往上移,z越大,所以当直线经过M点时,z的值最大,解方程组得,因为最优解应该是整数解,通过调整得,当直线过M'(3,8)和M''(0,12)时z最大所以当大房间为3间,小房间为8间或大房间为0间,小房间为12间时,可获最大的收益为1800元.19.如图1,2,在Rt△ABC中,AB=BC=4,点E在线段AB上,过点E作交AC于点F,将△AEF沿EF折起到△PEF的位置(点A与P重合),使得∠PEB=60°.(1)求证:EF⊥PB;(2)试问:当点E在何处时,四棱锥P﹣EFCB的侧面的面积最大?并求此时四棱锥P﹣EFCB 的体积及直线PC与平面EFCB所成角的正切值.【考点】直线与平面所成的角;空间中直线与直线之间的位置关系.【分析】(1)推导出EF⊥AB,EF⊥BE,EF⊥PE,由此能证明EF⊥PB.(2)设BE=x,PE=y,则x+y=4,当且仅当x=y=2时,S△PEB的面积最大,此时,BE=PE=2.EF⊥平面PBE,从而平面EFCB⊥平面PBE.作PO⊥BE于O,则PO为四棱锥P﹣EFCB的高,∠PCO就是PC与平面EFCB所成角.由此能求出结果.【解答】证明:(1)∵EF∥BC且BC⊥AB,∴EF⊥AB,即EF⊥BE,EF⊥PE.又BE∩PE=E,∴EF⊥平面PBE,又PB⊂平面PBE,∴EF⊥PB.解:(2)设BE=x,PE=y,则x+y=4.∴.当且仅当x=y=2时,S△PEB的面积最大,此时,BE=PE=2.由(1)知EF⊥平面PBE,∵EF⊂平面EFCB,∴平面EFCB⊥平面PBE.在平面PBE中,作PO⊥BE于O,则PO⊥平面EFCB.即PO为四棱锥P﹣EFCB的高.又.∴∵,∴BO=1,在Rt△OBC中,.∵PO⊥平面EFCB,∴∠PCO就是PC与平面EFCB所成角.∴,故直线PC与平面EFCB所成角的正切值为20.在平面直角坐标系xOy中,经过点且斜率为k的直线l与椭圆有两个不同的交点P和Q.(Ⅰ)求k的取值范围;(Ⅱ)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.【考点】向量的共线定理;平面的概念、画法及表示.【分析】(1)直线l与椭圆有两个不同的交点,即方程组有2个不同解,转化为判别式大于0.(2)利用2个向量共线时,坐标之间的关系,由一元二次方程根与系数的关系求两根之和,解方程求常数k.【解答】解:(Ⅰ)由已知条件,直线l的方程为,代入椭圆方程得.整理得①直线l与椭圆有两个不同的交点P和Q,等价于①的判别式△=,解得或.即k的取值范围为.(Ⅱ)设P(x1,y1),Q(x2,y2),则,由方程①,.②又.③而.所以与共线等价于,将②③代入上式,解得.由(Ⅰ)知或,故没有符合题意的常数k.21.平面上两点A(﹣1,0),B(1,0),在圆C:(x﹣3)2+(y﹣4)2=4上取一点P,(Ⅰ)x﹣y+c≥0恒成立,求c的范围(Ⅱ)从x+y+1=0上的点向圆引切线,求切线长的最小值(Ⅲ)求|PA|2+|PB|2的最值及此时点P的坐标.【考点】圆的切线方程.【分析】(Ⅰ)由x﹣y+c≥0,得c≥y﹣x,由圆的参数方程得c≥4+2sinθ﹣3﹣2cosθ,即可求c 的范围;(Ⅱ)求出圆心C到直线x+y+1=0的距离为,利用勾股定理求切线长的最小值;(Ⅲ)设出的是PP(a,b),使要求的式子转化为求圆上的点到原点的距离问题,利用数形结合法求最值.【解答】解:(Ⅰ)由x﹣y+c≥0,得c≥y﹣x,由圆的参数方程得c≥4+2sinθ﹣3﹣2cosθ,所以(Ⅱ)圆心C到直线x+y+1=0的距离为,切线长的最小值为(Ⅲ)设P(a,b),则|PA|2+|PB|2=2a2+2b2+2,a2+b2为圆C:(x﹣3)2+(y﹣4)2=4上的点到原点的距离平方,所以最小值为20,;最大值为100,.22.如图,椭圆M:+=1(a>b>0)的离心率为,直线x=±a和y=±b所围成的矩形ABCD的面积为8.(Ⅰ)求椭圆M的标准方程;(Ⅱ)设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T.求的最大值及取得最大值时m的值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(Ⅰ)通过椭圆的离心率,矩形的面积公式,直接求出a,b,然后求椭圆M的标准方程;(Ⅱ)通过,利用韦达定理求出|PQ|的表达式,通过判别式推出的m的范围,①当时,求出取得最大值.利用由对称性,推出,取得最大值.③当﹣1≤m≤1时,取得最大值.求的最大值及取得最大值时m的值.【解答】解:(I)…①矩形ABCD面积为8,即2a•2b=8…②由①②解得:a=2,b=1,∴椭圆M的标准方程是.(II),由△=64m2﹣20(4m2﹣4)>0得.设P(x1,y1),Q(x2,y2),则,.当l过A点时,m=1,当l过C点时,m=﹣1.①当时,有,,其中t=m+3,由此知当,即时,取得最大值.②由对称性,可知若,则当时,取得最大值.③当﹣1≤m≤1时,,,由此知,当m=0时,取得最大值.综上可知,当或m=0时,取得最大值.2016年12月1日。
2016-2017学年高二数学上学期期末试卷含答案)

2016-2017学年高二数学上学期期末试卷(含答案)kj.co荆州中学2016~2017学年度上学期期末考试卷年级:高二科目:数学(理科)本试题卷共4页,三大题22小题.全卷满分150分,考试用时120分钟.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.某单位员工按年龄分为A、B、c三个等级,其人数之比为,现用分层抽样的方法从总体中抽取一个容量为20的样本,则从c等级组中应抽取的样本数为A.2B.4c.8D.102.下列有关命题的说法错误的是A.若“”为假命题,则均为假命题B.“”是“”的充分不必要条件c.“”的必要不充分条件是“”D.若命题:,则命题:3.若向量,,则A.B.c.D.4.如右图表示甲、乙两名运动员每场比赛得分的茎叶图.则甲得分的中位数与乙得分的中位数之和为A.分B.分c.分D.分5.已知变量与负相关,且由观测数据计算得样本平均数,则由该观测数据算得的线性回归方程可能是A.B.c.D.6.执行如图所示的程序框图,输出的等于A.B.c.D.7.圆柱挖去两个全等的圆锥所得几何体的三视图如图所示,则其表面积为A.B.c.D.8.函数图象上的动点P到直线的距离为,点P到y轴的距离为,则A.B.c.D.不确定的正数9.如果实数满足条件,则的最大值为()A.B.c.D.10.椭圆的长轴为,短轴为,将椭圆沿y轴折成一个二面角,使得点在平面上的射影恰好为椭圆的右焦点,则该二面角的大小为A.75°B.60° c.45° D.30°11.如图,在正方体ABcD-A1B1c1D1中,P是侧面BB1c1c 内一动点,若P到直线Bc与直线c1D1的距离相等,则动点P的轨迹所在的曲线是A.直线B.圆c.双曲线D.抛物线12.过双曲线的一个焦点作平行于渐近线的两条直线,与双曲线分别交于、两点,若,则双曲线离心率的值所在区间是A.B.c.D.二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.13.已知椭圆x210-+y2-2=1,长轴在y轴上,若焦距为4,则=________.14.下列各数、、中最小的数是___________.15.已知函数,其中实数随机选自区间,对的概率是_________.16.已知的三边长分别为,,,是边上的点,是平面外一点.给出下列四个命题:①若平面,且是边中点,则有;②若,平面,则面积的最小值为;③若,平面,则三棱锥的外接球体积为;④若,在平面上的射影是内切圆的圆心,则三棱锥的体积为;其中正确命题的序号是(把你认为正确命题的序号都填上).三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分12分)设是实数,有下列两个命题:空间两点与的距离.抛物线上的点到其焦点的距离.已知“”和“”都为假命题,求的取值范围.18.(本小题满分12分)已知圆过点,,且圆心在直线上.(1)求圆的方程;(2)若点在圆上,求的最大值.19.(本题满分12分)某校从参加高二年级数学竞赛考试的学生中抽出60名学生,将其成绩(均为整数,满分100分)分成六段[40,50),[50,60)…,[80,90),[90,100],然后画出如图所示部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率以及频率分布直方图中第四小矩形的高;(2)估计这次考试的及格率(60分及60分以上为及格)和平均分;(3)把从[80,90)分数段选取的最高分的两人组成B组,[90,100]分数段的学生组成c组,现从B,c两组中选两人参加科普知识竞赛,求这两个学生都来自c组的概率.20.(本题满分12分)在直角梯形PBcD中,∠D=∠c=,Bc=cD=2,PD=4,A为PD的中点,如图1.将△PAB 沿AB折到△SAB的位置,使SB⊥Bc,点E在SD上,且,如图2.(1)求证:SA⊥平面ABcD;(2)求二面角E-Ac-D的正切值;(3)在线段Bc上是否存在点F,使SF∥平面EAc?若存在,确定F的位置,若不存在,请说明理由.21.(本题满分12分)已知直线经过椭圆:的一个焦点和一个顶点.(1)求椭圆的方程;(2)如图,分别是椭圆的顶点,过坐标原点的直线交椭圆于两点,其中在第一象限,过作轴的垂线,垂足为,连接,并延长交椭圆于点,设直线的斜率为.①若直线平分线段,求的值;②对任意,求证:.22.(本题满分10分)已知平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线方程为;的参数方程为(为参数).(Ⅰ)写出曲线的直角坐标方程和的普通方程;(Ⅱ)设点为曲线上的任意一点,求点到曲线距离的取值范围.荆州中学2016~2017学年度上学期期末考试卷年级:高二科目:数学(理科)命题人:冯钢审题人:冯启安参考答案一、选择题(本大题共12小题,每小题5分,共60分)题号123456789101112答案AcDBccDBBBDc12【解析】选c设为左焦点,由双曲线的对称性,不妨设点的纵坐标为,则由得,又∵直线的方程为,∴,即,又∵,∴,两边同除以,得,即,令,∵,,∴双曲线离心率的值所在区间是.二、填空题(本大题共4小题,每小题5分,共20分.)13.814.15.16.①④三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.解答:和都是假命题,为真命题,为假命题.………………2分,;…………………………………………6分又抛物线的准线为,为假命题,,.…………………………………10分故所求的取值范围为.………………………………12分18.解答:(1)设圆心坐标为,则解得:,故圆的方程为:……………6分(2)因为z=x+y,即,当这条直线与圆相切时,它在y轴上的截距最大或最小,即可求出的最大和最小值.将代入圆的方程,令,或者利用圆心到直线的距离等于半径可求得最大值为:……………………………………12分 19.解答:(1)第四小组分数在[70,80)内的频率为:1-(0.005+0.01+0.015+0.015+0.025)10=0.30第四个小矩形的高为=0.03……4分(2)由题意60分以上的各组频率和为:(0.015+0.03+0.025+0.005)×10=0.75,故这次考试的及格率约为75%,………………6分由45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71,得本次考试中的平均分约为71:………………8分(3)由已知可得c组共有学生60×10×0.005=3人,则从B,c两组共5人中选两人参加科普知识竞赛,设5人分别为,共有等10种不同情况,其中这两个学生都来自c组有3种不同情况,∴这两个学生都来自c组的概率.……………………………………12分20.解法一:(1)证明:在题图1中,由题意可知,BA⊥PD,ABcD为正方形,所以在题图2中,SA⊥AB,SA=2,四边形ABcD是边长为2的正方形,因为SB⊥Bc,AB⊥Bc,所以Bc⊥平面SAB,又SA⊂平面SAB,所以Bc⊥SA,又SA ⊥AB,所以SA⊥平面ABcD,……………………4分(2)在AD上取一点o,使,连接Eo.因为,所以Eo∥SA 所以Eo⊥平面ABcD,过o作oH⊥Ac交Ac于H,连接EH,则Ac⊥平面EoH,所以Ac⊥EH.所以∠EHo为二面角E-Ac-D的平面角,.在Rt△AHo中,,,即二面角E-Ac-D的正切值为.……………………8分(3)当F为Bc中点时,SF∥平面EAc理由如下:取Bc的中点F,连接DF交Ac于,连接E,AD ∥Fc,所以,又由题意,即SF∥E,所以SF∥平面EAc,即当F为Bc的中点时,SF∥平面EAc...............12分解法二:(1)同方法一 (4)(2)如图,以A为原点建立直角坐标系,A(0,0,0),B(2,0,0),c(2,2,0),D(0,2,0),S(0,0,2),E 易知平面AcD的法向为设平面EAc的法向量为,由所以,可取所以所以即二面角E-Ac-D的正切值为.………………………………8分(3)设存在F∈Bc,所以SF∥平面EAc,设F(2,a,0)所以,由SF∥平面EAc,所以,所以4-2a-2=0,即a=1,即F(2,1,0)为Bc的中点.……………………………………12分21.解:(1)在直线中令x=0得y=1;令y=0得x=-1,由题意得c=b=1,∴,则椭圆方程为.…………………………3分(2)①由,,的中点坐标为,所以.……………………………………………6分②解法一:将直线PA方程代入,解得,记,则,于是,故直线的方程为,代入椭圆方程得,由,因此,………………………………………………9分∴,,∴,∴,故.…………12分解法二:由题意设,,,则,∵三点共线,∴,……………………………………8分又因为点在椭圆上,∴,两式相减得:, (10)分∴,∴.……………………………………………………12分 22.解:(I)曲线方程为,可得,可得∴的直角坐标方程:,的参数方程为,消去参数可得:的普通方程:.………………………………5分(II)由(I)知,为以(0,1)为圆心,为半径的圆,的圆心(0,1)到的距离为,则与相交,到曲线距离最小值为0,最大值为,则点到曲线距离的取值范围为.…………………10分kj.co。
四川省成都外国语学校2017-2018学年高二上学期期中考试试题 数学(理) Word版含答案

成都外国语学校2017-2018学年度上期期中考试高二理科数学试卷注意事项:1、 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
2、 本堂考试120分钟,满分150分;3、 答题前,考生务必先将自己的姓名、学号填写在答题卡上,并使用2B 铅笔填涂。
4、 考试结束后,将答题卡交回。
第Ⅰ卷(60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线01=++y x 的倾斜角是( )A .4π B .45π C . 4-π D .43π 2.椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( )A .14 B .12 C . 2 D .4 3.圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a =( )A .43-B . 34- C D .2 4.已知:p 所有有理数都是实数,:q 正数的对数都是负数,则下列中为真的是( )A .()p q ⌝∨B .p q ∧C .()()p q ⌝∧⌝D .()()p q ⌝∨⌝5.某几何体的正视图与侧视图相同,其正视图与俯视图如图所示,且图中四边形都是边长为2的正方形,正视图中的两条虚线互相垂直,则该几何体的表面积为( )A .24B .20+C .24+D .20+6.已知点M (a,b )(ab ≠0),是圆x 2+y 2=r 2内一点,直线m 是以M 为中点的弦所在的直线,直线l 的方程是ax+by=r 2,则( )A .l ∥m 且l 与圆相交B .⊥m 且l 与圆相切C .l ∥m 且l 与圆相离D .l ⊥m 且l 与圆相离7.以椭圆的两个焦点为直径的端点的圆与椭圆有四个不同的交点,顺次连接这四个点和两个焦点,恰好得到一个正六边形,那么这个椭圆的离心率等于( )A .13-.B 1C . 218.如图,已知四棱柱ABCD ﹣A 1B 1C 1D 1中,底面ABCD 是边长为3的正方形,侧棱AA 1长为4,且AA 1与A 1B 1,A 1D 1的夹角都是60°,则AC 1的长等于( )A .28B .58C .D .9.y x,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若ax y z -=取得最大值的最优解不唯一...,则实数a 的值为( )A . 21或-1B . 2或21 C .2或1 D .2或-1 10.在圆x 2+y 2=5x 内,过点)23,25(有n 条弦的长度成等差数列,最短弦长为数列首项a 1,最长弦长为数列第n 项a n ,若公差]31,61(∈d ,则n 的取值集合为( ) A .{4,5,6} B . {6,7,8,9} C .{3,4,5} D .{3,4,5,6}11.已知椭圆2222:1(0)x y C a b a b +=>>过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =( )A .1 B. 212.关于下列,正确的个数是( )(1)若点(2,1)在圆0152222=-++++k y kx y x 外,则2k >或4k <-(2)已知圆1)sin ()cos (:22=-++θθy x M ,直线kx y =,则无论θ为何值,总存在R k ∈使直线与圆恒相切。
[中学联盟]四川省成都外国语学校2016-2017学年高二下学期期末考试数学(理)试题
![[中学联盟]四川省成都外国语学校2016-2017学年高二下学期期末考试数学(理)试题](https://img.taocdn.com/s3/m/c63ca0026bd97f192279e94a.png)
绝密★启用前[中学联盟]四川省成都外国语学校2016-2017学年高二下学期期末考试数学(理)试题试卷副标题考试范围:xxx ;考试时间:67分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、设实数,满足约束条件,已知的最大值是,最小值是,则实数的值为()A .B .C .D .2、已知,则下列结论中错误的是( ) A . B ..C .D .3、已知,则下列结论正确的是( )A .是偶函数B .是奇函数C .是奇函数 D .是偶函数4、集装箱有标号为1,2,3,4,5,6且大小相同的6个球,从箱中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.若有4人参与摸奖,恰好有3人获奖的概率是( ) A .B .C .D .5、设椭圆的左、右焦点分别为 ,其焦距为,点在椭圆的内部,点是椭圆上的动点,且恒成立,则椭圆离心率的取值范围是( )A .B .C .D .6、已知某几何体的三视图如图所示,则该几何体的外接球的表面积为( )A .B .C .D .7、运行如图所示的程序框图,输出的值为( )A .0B .C .-1D .8、若复数满足,其中为虚数单位,则( ) A .B .C .D .9、已知集合,,下列结论成立的是( )A .B .C .D .10、已知函数的图象如图所示,若,且,则的值为( )A .B .C .1D .011、已知等比数列的前项和为,则的极大值为()A.2 B.3 C. D.12、设,为的展开式的第一项(为自然对数的底数),,若任取,则满足的概率是( )A. B. C. D.第II卷(非选择题)二、填空题(题型注释)13、已知双曲线的左右焦点分别为,过点的直线交双曲线右支于两点,若是以为直角顶点的等腰三角形,则的面积为__________.14、等比数列中,,则的前项和__________.15、已知,在函数与的图象的交点中,距离最短的两个交点的距离为,则值为__________.16、已知△ABC是半径为5的圆O的内接三角形,且,若,则的取值范围是______.三、解答题(题型注释)17、如图,在四棱锥P—ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,PO=1,M为PD的中点.(Ⅰ)证明:PB∥平面ACM;(Ⅱ)设直线AM与平面ABCD所成的角为α,二面角M—AC—B的大小为β,求sinα·cosβ的值.18、如图,已知抛物线:与圆:()相交于、、、四个点.(Ⅰ)求的取值范围; (Ⅱ)当四边形的面积最大时,求对角线、的交点的坐标.19、选修4-4:坐标系与参数方程平面直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出直线的极坐标方程与曲线的直角坐标方程;(2)已知与直线平行的直线过点,且与曲线交于两点,试求.20、在中,角,,所对的边分别为,,,已知.(Ⅰ)求的值;(Ⅱ)若,求.21、设函数 ).(1)若直线和函数的图象相切,求的值;(2)当时,若存在正实数,使对任意都有恒成立,求的取值范围.22、“中国人均读书4.3本(包括网络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用.出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天名读书者进行调查,将他们的年龄分成6段:,,,,,后得到如图所示的频率分布直方图.问: (1)估计在40名读书者中年龄分布在的人数;(2)求40名读书者年龄的平均数和中位数; (3)若从年龄在的读书者中任取2名,求这两名读书者年龄在的人数的分布列及数学期望.参考答案1、D2、C3、A4、B5、B6、D7、B8、C9、D10、C11、C12、C13、14、15、16、17、(1)证明见解析(2)18、(1)(2)19、(1),;(2).20、(1) ;(2) 或.21、(1);(2).22、(1)人数为(2)平均值为;中位数为(3)分布列见解析;【解析】1、试题分析:画出不等式组表示的区域如图,从图形中看出当不成立,故,当直线经过点时,取最大值,即,解之得,所以应选D.考点:线性规划的知识及逆向运用.【易错点晴】本题考查的是线性约束条件与数形结合的数学思想的求参数值的问题,解答时先构建平面直角坐标系,准确的画出满足题设条件的平面区域,然后分类讨论参数的符号,进而移动直线,发现当该直线经过点时取得最大值,以此建立方程,通过解方程求出参数的值.2、试题分析:,当时,,单调递减,同理当时,单调递增,,显然不等式有正数解(如,(当然可以证明时,)),即存在,使,因此C错误.考点:存在性量词与全称量词,导数与函数的最值、函数的单调性.3、因为,所以,又,故,即答案C,D都不正确;又因为,所以应选答案A。
2016-2017学年四川省成都外国语学校高二下学期期末考试数学(理)试题含答案

[中学联盟]四川省成都外国语学校2016-2017学年高二下学期期末考试数学(理)试题一、选择题1.已知集合{}2|540A x N x x =∈-+≤, {}2|40B x x =-=,下列结论成立的是( )A. B A ⊆B. A B A ⋃=C. A B A ⋂=D. {}2A B ⋂= 【答案】D【解析】由已知得{}1234A =,,,, {}22B =-,,则{}2A B ⋂=,故选D.2.若复数z 满足20171zi i=-,其中i 为虚数单位,则z =( ) A. 1i - B. 1i + C. 1i -- D. 1i -+【答案】C【解析】由2017i 1iz=+,得()()()50420174i 1i i i 1i 1i z =+=+=-+,则1i z =--,故选C.3.已知()21xx f x =-, ()2xg x =则下列结论正确的是( ) A. ()()()h x f x g x =+是偶函数 B. ()()()h x f x g x =+是奇函数 C. ()()()h x f x g x =是奇函数 D. ()()()h x f x g x =是偶函数 【答案】A【解析】因为()(),212x x x f x g x ==-,所以()()()212xx xF x f x g x =+=+-,又()()()()2221x xG x f x g x =⋅=-,故()()()()()2,221xx G x G x G x G x --=≠-≠--,即答案C ,D 都不正确;又因为()()2111111212122122221x x x x xx x F x F x -⎛⎫--⎛⎫-=+=-+=--++=+= ⎪ ⎪----⎝⎭⎝⎭,所以应选答案A 。
4.运行如图所示的程序框图,输出的S 值为( )A. 0B. 12C. -1D. 32- 【答案】B【解析】由题设中提供的算法流程图可知22017coscoscos 333S πππ=++⋅⋅⋅+,由于()cos3f x x π=的周期是263T ππ==,而201763=⨯+,所以220171coscoscos cos 33332S ππππ=++⋅⋅⋅+==,应选答案B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都外国语学校高2015级(高二上期)期末考试数学试题(文科)满分150分,时间:120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题:p x ∃∈R ,sin 1x >,则( )A .:p x ⌝∃∈R ,sin 1x ≤B . :p x ⌝∃∈R ,sin 1x ≤C .:p x ⌝∀∈R ,sin 1x ≤D .:p x ⌝∀∈R ,sin 1x >2.若10件产品中有7件正品,3件次品,从中任取2件,则恰好取到1件次品的概率是( )A.37 B. 715 C. 815 D. 473. “35m -<<”是“方程22153x y m m +=-+表示椭圆”的( )A.充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.执行如图所示的程序框图,若输出的88S =,则判断框内应填入的条件是( )A .7?k >B .6?k >C .5?k >D .4?k >5.过抛物线2(0)y ax a =>的焦点F 作一直线交抛物线于,P Q 两点,若线段PF 和线段FQ 的长分别是,p q ,则11p q+等于( ) A .14a B . 12aC .2aD .4a 6.如图,一竖立在地面上的圆锥形物体的母线长为4,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥爬行一周后回到点P 处,若该小虫爬行的最短路程为 )7.已知a ∈R ,若方程222(2)4850a x a y x y a +++++=表示圆,则此圆心坐标( )A. (2,4)--B. 1(,1)2--C. (2,4)--或1(,1)2-- D. 不确定 8.样本(12,,,n x x x )的平均数为x ,样本(12,,m y y y )的平均数为()y x y ≠,若样本(12,,,n x x x ,12,,m y y y )的平均数(1)z a x a y =-+,其中102a <<,则,m n 的大小关系为( )A .n m <B .n m >C .n m =D .不能确定9.某农户计划种植黄瓜和冬瓜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜与冬瓜的产量、成本和售价如下表:为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜与冬瓜的种植面积(单位:亩)分别为( )A. 50,0B. 30,20C. 20,30D. 0, 5010.已知椭圆2212221(0),x y a b F F a b+=>>、为椭圆的左.右焦点,M 是椭圆上任一点,若12MF MF ⋅的取值范围为[3,3]-,则椭圆方程为( )A .22193x y +=B .22163x y +=C .221124x y +=D .2214x y +=11.在等腰直角三角形ABC 中,=4AB AC =,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图11).若光线QR 经过ABC ∆的重心,则AP 等于( )A .2B .1C .43D .8312. 设双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,离心率为e ,过2F 的直线与双曲线的右支交于,A B 两点,若1F AB ∆是以A 为直角顶点的等腰直角三角形,则2e =( )A. 3+4-1+5-二、填空题(本大概题共4小题,每小题5分。
)13.根据下列算法语句, 当输入x 为60时, 输出y 的值为________.14.若,x y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩则z x y =-的最小值为_____________.15.如果双曲线22221(0,0)x y a b a b-=>>的一个焦点到渐近线的距离为3,且离心率为2则此双曲线的方程___________.16.设点0(,1)M x ,设在圆22:1O x y +=上存在点N ,使得030OMN ∠=,则实数0x 的取值范围为_______.三、解答题:(应写出文字说明过程或演算步骤)17. (本小题满分10分)某校高二某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,其可见部分如下:据此解答如下问题: (Ⅰ)计算频率分布直方图中[80,90)间的矩形的高; (Ⅱ)根据频率分布直方图估计这次测试的平均分.18.(本小题满分12分)命题p :“关于x 的不等式22(1)0,(0)x a x a a +-+≤>的解集为∅”,命题q :“在区间[2,4]-上随机地取一个数x ,若x 满足||(0)x a a ≤>的概率56P ≥”,当""p q ∧与""p q ∨一真一假时,求实数a 的取值范围.19.(本小题满分12分)在如图所示的几何体中,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD ,EF//AB ,90BAF ∠=,AD=2,AB= AF=2EF=l ,点P 在棱DF 上.(Ⅰ)若P 为DF 的中点,求证:BF//平面ACP ; (Ⅱ)求三棱锥P BEC -的体积.20. (本小题满分12分)某农场所对冬季昼夜温差大小与某反季大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了2016年12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下表:该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的两组数据进行检验。
(Ⅰ)求选取的2组数据恰好是不相邻的2天数据的概率; (Ⅱ)若选取的是12月1日至12月5日的两组数据,请根据12月2日至12月4日的数据,求出y 关于x 的线性回归方程y bx a =+;并预报当温差为09C 时,种子发芽数.附:回归直线方程:y bx a =+,其中1221ni ii nii x y nx yb xnx==-=-∑∑;a y bx =-21. (本小题满分12分)已知动点(,)P x y 到定点A (2,0)的距离与到定直线:2l x =-的距离相等. (Ⅰ) 求动点P 的轨迹C 的方程;(Ⅱ) 已知点B (-3,0), 设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P , Q , 若x 轴是PBQ ∠的角平分线, 证明直线l 过定点.22. (本小题满分12分)已知椭圆()22122:10x y C a b a b +=>>,其短轴的下端点在抛物线24x y =的准线上. (1)求椭圆1C 的方程;(2)设O 为坐标原点,M 是直线:2l x =上的动点,F 为椭圆的右焦点,过点F 作OM 的垂线与以OM 为直径的圆2C 相交于,P Q 两点,与椭圆1C 相交于,A B 两点,如图所示.①若PQ =2C 的方程;②设2C 与四边形OAMB 的面积分别为12,S S , 若12S S λ=,求λ的取值范围.成都外国语学校高2015级(高二)上期期末考试数学试题(文科) 参考答案一、选择题:CBBCD CABBA CD二、填空题:13. 31 14. 1- 15. 22139x y -= 16. [三、解答题:17.解:(Ⅰ)设该班的数学测试成绩的人数为m ,则由频率分布直方图第一个矩形框知道:20.00810m =⨯得到25m =,所以频率分布直方图中[80,90)间的矩形的高为252110.0162510-⨯= (Ⅱ)550.08650.28750.4850.16950.0873.8x =⨯+⨯+⨯+⨯+⨯= 所以:根据频率分布直方图估计这次测试的平均分为73.8分.18.解:命题p :因为关于x 的不等式22(1)0x a x a +-+≤的解集为∅所以:22(1)0x a x a +-+=对应的0∆≤即:23210a a +-≥ 即:1a ≤-或者13a ≥,又:因为0a >,所以13a ≥ 命题q :“在区间[2,4]-上随机地取一个数x ,若x 满足||(0)x a a ≤>的概率56P ≥” 因为||(0)x a a ≤>,所以a x a -<<当2a ≤时,则23P ≤不满足条件, 当2a >时,则(2)566a P --=≥,所以3a ≥ 当""p q ∧与""p q ∨一真一假时,则p q 与一真一假时,得到实数a 的取值范围:1[,3)319.解:(Ⅰ)证明:连接BD ,交AC 于点O ,连接OP . 因为P 是DF 中点,O 为矩形ABCD 对角线的交点, 所以OP 为三角形BDF 中位线, …………3分 所以BF // OP ,因为B F ⊄平面ACP ,OP ⊂平面ACP ,所以BF // 平面ACP . ……………………5分(II) 1113384P BEC B PEC PEC V V S h --∆===⨯=20.解:(Ⅰ)设这五组数据分别记为:1,2,3,4,5则从中任取两组共有10个结果:分别为(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5);不相邻的结果有:(1,3),(1,4),(1,5),(2,4),(2,5),(3,5)则63105P == (Ⅱ)由数据得: 12,27x y ==,由公式:122152ni ii ni i x y nx yb x nx==-==-∑∑,3a y bx =-=- 所以线性回归方程: 532y x =- 所以:当9x =时,19.5y =,即种子发芽数为19或20.21.解:(Ⅰ)设动圆圆心(,)P x y ,则由抛物线定义易得:动圆圆心的轨迹方程为:28y x =(Ⅱ) 设两点1122(,),(,)P x y Q x y 设不垂直于x 轴的直线::l x ty m =+(0t ≠),则28x ty m y x =+⎧⎨=⎩有:2880y ty m --=,所以:12128,8y y t y y m +==-因为x 轴是PBQ ∠的角平分线, 所以:0BP BQ k k +=即:1212033y yx x +=++即:12122(3)()0ty y m y y +++= 则:16(3)80tm m t -++=,所以:3m =:3l x ty=+所以直线l 过定点(3,0)。
22.(Ⅰ)椭圆短轴下端点在抛物线24x y =的准线上,1b ∴=2c e a ===,a ∴= 所以椭圆1C 的方程为2212x y +=(Ⅱ)①由(1),知()1,0F ,设()2,M t ,则2C 的圆心坐标为1,2t ⎛⎫ ⎪⎝⎭2C 的方程为()2221124t t x y ⎛⎫-+-=+ ⎪⎝⎭,当0t =时,PQ 所在直线方程为1x =,此时2PQ =,与题意不符,不成立,0t ∴≠.∴可设直线PQ 所在直线方程为()()210y x t t=--≠,即()2200x ty t +-=≠ 又圆2C的半径r ==由2222PQ d r ⎛⎫+= ⎪⎝⎭,得()222211444t ⎛⎫+⨯=+⎝⎭解得242t t =⇒=±∴圆2C 的方程为()()22112x y -+-=或()()22112x y -++=②当0t ≠,由①,知PQ 的方程为220x ty +-=由2212220x y x ty ⎧+=⎪⎨⎪+-=⎩消去y ,得()222816820t x x t +-+-= 则()()()()22242164882840tt tt ∆=--+-=+>21212221682,88t x x x x t t -∴+==++2248t AB t +∴===+2222241142288t t S OM AB t t ++∴=⨯⨯==++ ()221124,4S r t S S ππλ==+=()22122448t S S t πλ+⎫====≥=+=,即0t =时取等号又0,t λ≠∴>,当0t =时,直线PQ 的方程为1x =2AB OM ==,212S OM AB ∴=⨯=2112S OM ππ⎛⎫∴== ⎪⎝⎭,122S S λ∴===综上,λ≥, 所以实数λ的取值范围为,2⎫+∞⎪⎪⎣⎭.。