第十三讲 应用枚举法解应用题
小学奥数知识点趣味学习--枚举法

小学奥数知识点趣味学习——枚举法运用枚举法解题的关键是要正确分类,要注意以下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来。
【典型例题】【例1】:从小华家到学校有3条路可以走,从学校到岐江公园有4条路可以走,从小华家到岐江公园,有几种不同的走法?【试一试】1. 从甲地到乙地,有3条公路直达,从乙地到丙地有2条铁路可以直达,从甲地到丙地有多少种不同的走法?2. 新华书店有3种不同的英语书,4种不同的数学读物销售,小明想买一种英语书和一种数学读物,共有多少种不同的买法?【例2】把4个同样的苹果放在两个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?【试一试】1.把5个同样的苹果放在两个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?2.把7个同样的苹果放在三个同样的盘子里,不允许有的盘子空着不放,问共有多少种不同的分法?【例3】从1~6这六个数字中,每次取2个数字,这两个数字的和都必须大于7,能有多少种取法?【试一试】1.从1~9这九个数字中,每次取2个数字,这两个数字的和都必须大于10,能有多少种取法?2.从1~19这十九个数字中,每次取2个数字,这两个数字的和都必须大于20,能有多少种取法?【例4】一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多少种可能值?【试一试】1.一个长方形的周长是30厘米,如果它的长和宽都是整厘米数,那么这个长方形的面积有多少种可能值?2.把15个玻璃球分成数量不同的4堆,共有多少种不同的分法?【例5】有4位小朋友,寒假中互相通一次电话,他们一共打了多少次电话?【试一试】1.6个小队进行排球比赛,每两队比赛一场,共要进行多少次比赛?2.有8位小朋友,要互通一次电话,他们一共打了多少次电话?。
小学数学《常规应用题的解法——枚举法》练习题(含答案)

小学数学《常规应用题的解法——枚举法》练习题(含答案)知识要点我们在课堂上遇到的数学问题,有一些需要计算总数或种类的趣题,因其数量关系比较隐蔽,很难利用计算的方法解决。
我们可以抓住对象的特征,按照一定的顺序,选择恰当的标准,把问题分为不重复、不遗漏的有限种情形,通过一一列举或计数,最终达到解决目的。
这就是枚举法,也叫做列举法或穷举法。
解题指导11.枚举法在数字组合中的应用。
按照一定的组合规律,把所有组合的数一一列举出来。
【例1】用数字1,2,3组成不同的三位数,分别是哪几个数?【思路点拨】根据百位上的数字的不同分为3类。
第一类:百位上为1的有:123 132第二类:百位上为2的有:213 231第三类:百位上为3的有:312 321答:可以组成123,132,213 ,231,312 ,321六个数。
【变式题1】用0、6、7、8、9这五个数字组成各个数位上数字不相同的两位数共有多少个?解题指导22.骰子中的点数掷骰子是生活中常见的游戏玩法,既可以掷一个骰子,比较掷出的点数大小,也可以掷两个骰子,把两个骰子的点数相加,再比较点数的大小。
一个骰子只有6个点数,而两个骰子的点数经过组合最小是2,最大是12。
在解决有关掷两个骰子的问题时,要全面考虑所有出现的点数情况。
【例2】小明和小红玩掷骰子的游戏,共有两枚骰子,一起掷出。
若两枚骰子的点数和为7,则小明胜;若点数和为8,则小红胜。
试判断他们两人谁获胜的可能性大。
【思路点拨】将两枚骰子的点数和分别为7与8的各种情况都列举出来,就可得到问题的结论。
用a+b表示第一枚骰子的点数为a,第二枚骰子的点数是b的情况。
出现7的情况共有6种,它们是:1+6,2+5,3+4,4+3,5+2,6+1。
出现8的情况共有5种,它们是:2+6,3+5,4+4,5+3,6+2。
所以,小明获胜的可能性大。
注意,本题中若认为出现7的情况有1+6,2+5,3+4三种,出现8的情况有2+6,3+5,4+4也是三种,从而得“两人获胜的可能性一样大”,那就错了。
三年级数学 简单枚举

第十九周简单枚举专题简析:枚举是一种常见的分析问题、解决问题的方法。
一般地,要根据问题要求,一一列举问题解答。
运用枚举法解应用题时,必须注意无重复、无遗漏,因此必须有次序、有规律地进行枚举。
运用枚举法解题的关键是要正确分类,要注意以下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来。
例题1 从小华家到学校有3条路可走,从学校到文峰公园有4条路可走。
从小华家到文峰公园,有几种不同的走法?文峰公园小华家为了帮助理解题意,我们可以画出如上示意图。
我们把小华的不同走法一一列举如下:根据列举可知,从小明家经学校到文峰公园,走①路有4种不同走法,走②路有4种不同走法,走③路也有4种不同走法,共有4×3=12种不同走法。
练习一1,从甲地到乙地,有3条公路直达,从乙地到丙地有2条铁路直达。
从甲地到丙地有多少种不同走法?2,新华书店有3种不同的英语书,4种不同的数学读物销售。
小明想买一种英语书和一种数学读物,共有多少种不同买法?3,明明有2件不同的上衣,3条不同的裤子,4双不同的鞋子。
最多可搭配成多少种不同的装束?例题2 用红、绿、黄三种信号灯组成一种信号,可以组成多少种不同的信号?思路导航:要使信号不同,要求每一种信号颜色的顺序不同,我们可以把这些信号进行列举:红绿黄红绿黄红绿黄红绿黄红绿黄黄绿红从上面可以看出,红色信号灯排在第一个位置时,有两种不同的信号,绿色信号灯排在第一个位置时,也有两种不同的信号,黄色信号灯排在第一个位置时,也有两种不同的信号,因而共有3个2种不同排列方法,即2×3=6种。
练 习 二1,用红、黄、蓝三种颜色涂圆圈,每个圆圈涂一种颜色,一共有多少种不同的涂法?○○○2,用数字1、2、3,可以组成多少个不同的三位数?分别是哪几个数?3,用2、3、5、7四个数字,可以组成多少个不同的四位数?例题3 一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多少种可能?思路导航:由于长方形的周长是22米,可知它的长与宽之和为11米。
第十三讲枚举法(讲义)

第十三讲数学问题常用方法(二)——枚举法我们在课堂上遇到的数学问题,一般都可以列出算式,然后求出结果。
但在数学竞赛或生活中却经常会遇到一些有趣的题目,由于找不到计算它们的算式,似乎无从下手。
但是,如果题目所述的情况或满足题目要求的对象能够被一一列举出来,或能被分类列举出来,那么问题就可以通过枚举法获得解决。
所谓枚举法,就是根据题目要求,将符合要求的结果不重复、不遗漏地一一列举出来,从而解决问题的方法。
例1 小明和小红玩掷骰子的游戏,共有两枚骰子,一起掷出。
若两枚骰子的点数和为7,则小明胜;若点数和为8,则小红胜。
试判断他们两人谁获胜的可能性大。
【分析与解】:将两枚骰子的点数和分别为7 与8 的各种情况都列举出来,就可得到问题的结论。
用a+b 表示第一枚骰子的点数为a,第二枚骰子的点数是b 的情况。
出现7 的情况共有6 种,它们是:1+6,2+5,3+4,4+3,5+2,6+1。
出现8 的情况共有5 种,它们是:2+6,3+5,4+4,5+3,6+2。
所以,小明获胜的可能性大。
注意,本题中若认为出现7 的情况有1+6,2+5,3+4 三种,出现8 的情况有2+6,3+5,4+4 也是三种,从而得“两人获胜的可能性一样大”,那就错了。
练习11.将6 拆成两个或两个以上的自然数之和,共有多少种不同拆法?【分析与解】:10 种。
6=1+5=2+4=3+3=1+1+4=1+2+3=2+2+2=1+1+1+3=1+1+2+2 =1+1+1+1+2=1+1+1+1+1+1。
2.小明有10 块糖,如果每天至少吃3 块,吃完为止,那么共有多少种不同的吃法?【分析与解】:9 种。
一天吃完有1 种:(10)。
两天吃完有5 种:(3,7),(4,6),(5,5),(6,4),(7,3)。
三天吃完有3 种:(3,3,4),(3,4,3),(4,3,3)。
共1+5+3=9(种)。
例2 数一数,右图中有多少个三角形。
【分析与解】:图中的三角形形状、大小都不相同,位置也很凌乱,不好数清楚。
枚举问题

枚举问题在生活、生产和科学研究中,常常需要计算“完成一件事情,共有多少种不同的方法”的问题,这就要求我们根据题目的要求,把问题的答案一一列举出来,或者为了解决问题的方便,把问题分为不重复的有限种情况,一一列举各种情况加以解决,最终达到解决整个问题的目的,这种分析、解决问题的方法叫做枚举法。
枚举问题是分类计数进行解答的问题,利用枚举法解题的关键是合理分类。
正确分类可以促进问题的解决,利用正确分类把难点分散达到解决问题的目的。
在日常生活和生产实际中,我们还经常遇到这样一些问题:小红有白、黄两种衬衫,花、黑两种裙子,问小红有几种不同的打扮方法?3个人开会,每人都要和他人握手,共要握几次?解答这类问题,我们可以运用列举的方法,并从中找出一些解题的规律。
例题解析1、李娜、王蕾和吕丹并排在一起照相,共有几种不同的站法?2、用2、5、8三个数字,可以组成几个不同的三位数,其中最大的三位数是多少?最小的三位数是哪一个数?3、五个同学参加学校乒乓球决赛,每两人要赛一场,一共要赛多少场?4、王小明要从家到学校,共有几种不同的走法?(只准向上向右走,不准向下向左行)学校小明家5、从甲地到乙地有2条路可走,从乙地到丙地有3条路可走,从甲地经过乙地到丙地共有多少条不同的路可走呢?6、从1~~9这9个数字中,每次取2个数字,这两个数字的和都必须大于10,能有多少种取法?7、从甲地到乙地可以坐飞机、火车、汽车;从乙地到丙地可以坐飞机、火车、汽车、轮船,某人从甲地经过乙地到丙地共有几种走法?8、兰兰向妈妈要6分钱买一块橡皮。
妈妈叫兰兰从袋子里取硬币。
袋子里有1分、2分、5分硬币各6枚。
兰兰要拿6分钱,可以有几种拿法,用算式表示出来。
9、有红、黄、绿、蓝、白五种颜色的铅笔,每两种颜色的铅笔为一组,最多可以配成不重复的几组?10、三个圆A、B、C在同一条线上。
如图所示。
一只青蛙在这三个圆之间跳来跳去,它从A开始,跳了4次之后又回到A。
五年级奥数竞赛之枚举法

枚举法
1、A 、B 、C 三个小朋友互相传球,先从A 开始发球(作为第一次传球),这样经过了5次传球后,球恰巧又回到A 手中,那么不同的传球方式共有 种。
2、有一楼梯共10级,规定每次只能跨上二级或三级,要登上第10级,共有 种不同的走法。
3、两个分母不大于24的异分母分数的和是12
11。
这样的最简分数有多少对? 4、昌江商场采购了一批玻璃鱼缸,经预算,每只应卖A 元(A 为整数),总收入则为630元。
但在运输中损坏了3只鱼缸,为了不影响收入,每只鱼缸的价格增加1元。
问原来的售价是多少元?
5、用1分、2分和5分的硬币凑成一元钱。
共有多少种不同的凑法?
6、从1至9这九个数字中挑出六个不同的数,填在右图所示的六个圆圈
内,使任意相邻两个圆圈内数字之和都是质数。
那么最多能找出多少中
不同的挑法来。
(六个数字相同,排列次序不同算同一种)
7、一次射击比赛中,5个泥制的靶子挂成3列,一射手按下列
规则去击碎靶子:先挑选一列,然后必须击碎这列中尚未
被击碎的靶子中最低的一个。
若每次都遵循这一原则,击
碎五个靶子可以有 种不同的次序。
8、有30个贰分硬币和8个伍分硬币。
用这些用比不能构成的1分到1元之间的币值有多少种?
9、将自然数N 接写在任意一个自然数的右面(例如,将2接写在35的右面得352),如果得到的新数都能被N 整除,那么N 称为魔术数,今问小于1996的自然数中有多少个魔术数?。
小学数学 枚举法 PPT+作业(带答案)

例1
(2)数一数,下图中一共有多少条线段?
分析: 横向有4条长线段 纵向有5条长线段
(1)横向:(4+3+2+1)×4=40(条) (2)纵向:(3+2+1)×5=30(条) (3)一共:40+30=70(条)
图(1)
图(2)
图(3)
作业2:
在下图中,由1 个图形构成的三角形有___3___ 个,由2 个图形构成的三角形有____4__ 个,由 3 个图形构成的三角形有___1___ 个,由4 个图形构成的三角形有____1__ 个,由5 个图形构成 的三角形有__0____ 个,由6 个图形构成的三角形有____1__ 个,一共有___1_0__ 个三角形。
例5
数一数,下图中一共有多少个长方形? 把图形分成两块分别算,再考虑重合部分
(1)(6+5+4+3+2+1)×(3+2+1)=126(个)
(2)(6+5+4+3+2+1)×(3+2+1)=126(个)
(3)(3+2+1)×(3+2+1)=36(个) (4)一共:126+126-36=216(个)
容斥原理
例7
如图:在由边长是1个单位长度的小正方形组成的4×4方格表中,一共有25 个格点。在 以格点为顶点的直角三角形中,一共有多少个两条直角边长分别是1个单位长度和3个单 位长度的直角三角形?
数出图中1×3的长方形即可
(1)4×2×2=16(个) (2)4×16=64(个)
初中数学培优辅导资料(13讲) - 用枚举法解题

初中数学竞赛辅导资料(13)用枚举法解题甲内容提要有一类问题的解答,可依题意一一列举,并从中找出规律。
列举解答要注意: ① 按一定的顺序,有系统地进行;② 分类列举时,要做到既不重复又不违漏;③ 遇到较大数字或抽象的字母,可从较小数字入手,由列举中找到规律。
乙例题例1 如图由西向东走, 从A 处到B 处有几 种走法? 解:我们在交叉路上有顺序地标上不同走法的数目,例如 从A 到C 有三种走法,在C 处标上3, 从A 到M (N )有3+1=4种, 从A 到P 有3+4+4=11种,这样逐步累计到B ,可得1+1+11=13(种走法)例2 写出由字母X ,Y ,Z 中的一个或几个组成的非同类项(系数为1)的所有四次单项式。
解法一:按X 4,X 3,X 2,X ,以及不含X 的项的顺序列出(如左) 解法二:按X →Y →Z →X 的顺序轮换写出(如右)X 4 , X 4 , Y 4 , Z 4X 3Y , X 3Z , X 3Y , Y 3Z , Z 3X X 2Y 2, X 2Z 2, X 2YZ , X 3Z , Y 3X , Z 3Y XY 3, XZ 3, XY 2Z , XYZ 2, X 2Y 2, Y 2Z 2 , Z 2X 2 Y 4, Z 4 Y 3Z , Y 2Z 2, YZ 3。
X 2YZ , Y 2ZX , Z 2XY 解法三:还可按3个字母,2个字母,1个字母的顺序轮换写出(略) 例3 讨论不等式ax<b 的解集。
解:把a 、b 、c 都以正、负、零三种不同取值,组合成九种情况列表 当a>0时,解集是x<a , 当a<0时,解集是x>a, 当a=0,b>0时,解集是所有学过的数,当a=0,b ≤0时,解集是空集(即无解)例4 如图把等边三角形各边4等分,分别连结对应点,试计算图中所有的三角形个数 解:设原等边三角形边长为4个单位,则最小的等边三角形边长是1个单位, 边长1单位,顶点在上的△有:1+2+3+4=10边长1单位,顶点在下的▽有:1+2+3=613A B边长2单位,顶点在上的△有:1+2+3=6边长2单位,顶点在下的▽有:1边长3单位,顶点在上的△有:1+2=3边长4单位,顶点在上的△有:1合计共27个丙练习131.己知x,y都是整数,且xy=6,那么适合等式解共___个,它们是___2.a+b=37,适合等式的非负整数解共___组,它们是__________3.xyz=6,写出所有的正整数解有:_____4.如图线段AF上有B,C,D,E四点,试分别写出以A,B,C,D,E为一端且不重复的所有线段,并统计总条数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三讲应用枚举法解应用题
在进行归纳推理时,如果逐个考察了某类事件的所有可能情况,因而得出一般结论,那么这结论是可靠的,这种归纳方法叫做枚举法.即将问题的所有可能的答案一一列举,然后根据条件判断此答案是否合适,合适就保留,不合适就丢弃。
枚举法具备以下几个特点:
1、得到的结果肯定是正确的;
2、可能做了很多的无用功,浪费了宝贵的时间,效率低下。
3、通常会涉及到求极值(如最大,最小,最重等)。
4、数据量大的话,可能会需要很多的时间。
例1、用数字1、2、3可以组成多少个不同的三位数?分别是哪几个数?
例2. 小明有面值为5角、8角的邮票各两枚,他用这些邮票能付出多少种不同的邮资?
例3. 用一台天平和重1克、3克、9克的砝码各一个,当砝码只能放在同一盘内时,可称出不同的重量有多少种?
例4. 课外小组组织30人做游戏,按1~30号排队报数,第一次报数后,单数全都站出来,以后每次余下的人中,从第一个人开始,隔一人站出来一人,到第几次,这些人全都站出来了?
例5. 如图所示,数字1处有一颗棋子,现移动这颗棋子到5处,规定每次只能移到邻近的一格,且总是向右移,。
问有多少种不同的移法?
例6. 商店出售饼干,现存10箱5千克重的,4箱2千克重的,5箱1千克重的。
一顾客要买9千克饼干,为了便于携带要求不开箱,营业员有多少种发货方法?
二、课后练习:
1.用1、2、4、0可组成多少个不同的三位数?
2. 现有1克、3克、9克的砝码各一个和一台天平,你最多能称出多少种不同重量的物体?
3. 用3张10元、2张50元一共可组成多少种不同的币值?
4. 从A城到B城可乘火车、汽车、轮船;从B城到C城可乘火车、汽车、轮船和飞机;某人从A城开始游览,经B城到C城共有多少种不同的走法?
5. 从甲到乙有3条不同的路可走,从乙到丙有5条不同的路可走,从甲经乙到丙有多少种不同的路可走?
6. 把7只相同的笔分成3份,有多少种不同的分法?
7. 一个整数除以7所得的商和余数相同,这个数是多少?
8. 有甲、乙、丙、丁、戊五个足球代表队进行比赛,每个队都要和其他的队赛一场,总共要赛几场?
9. 用3、4、7三张数字卡片,可以排成几个不同的三位数?其中最小的是几,最大的是几?
10. A、B、C三个自然数的乘积是6,求A、B、C三个数分别可能是几?(A、B、C可以相同,也可以不同)
11. 两个自然数的乘积是96,它们的和是22,这两个自然数分别是多少?
12. 甲、乙、丙三个小朋友都有一些图书,如果甲把自己的一部分书给乙、丙两人,使乙、丙两人的书各增加一倍;然后乙把自己的一部分书给甲、丙两人,使甲、丙两人的书各增加一倍;接着丙也把自己的一部分书给甲、乙两人,使甲、乙两人的书各增加一倍。
这时,三人的图书都是48本,甲、乙、丙三个小朋友原来各有图书多少本?。