2011年华中师范大学高等代数834考研真题

合集下载

华中师范大学历年考研笔试真题

华中师范大学历年考研笔试真题

华中师大试题填空1.戴尔提出的“经验之塔” 依照抽象程度的不同,把人类学习的经验划分为做的经验,观察的经验和抽象的经验三大类。

2.施拉姆传播模式强调传授双方只有双向互动才能达到真正的交流。

3.皮亚杰把人的发展分为感知运算阶段,前运算阶段,具体运算阶段和形式运算阶段四个阶段4.教学设计:是以传播理论,学习理论,教学理论为基础,运用系统论的观点,和方法,分析教学中的问题和需求,从而找出最佳解决方案的理论与实践。

5.布卢姆提出的教育目标分类学,将认知领域的教学目标从底级到高级分为:知识、领会、运用、分析、综合、评价六个层次6.教育技术是由三个不同的起源融合而成,它们是教育心理学,媒体技术,系统方法。

7.戴尔提出的“经验之塔”依照抽象程度的不同,把人类学习的经验划分为做,观察,和抽象三大类。

8.奥苏贝尔指出,有意义学习过程的实质就是符号所代表的新知识与学习者认知结构中已有的适当观念建立旧知识和新知识的联系9.计算机用于教学和训练始于20 世纪50 年代末;斯金纳被誉为当代程序教学运动之父;“媒体是人体的延伸”是由马歇尔.麦克卢汉提出的名词解释1.教学设计:是以传播理论,学习理论,教学理论为基础,运用系统论的观点,和方法,分析教学中的问题和需求,从而找出最佳解决方案的理论与实践2.先行组织者:指在介绍当前学习内容之前呈现的引导性材料,以便于建立新旧知识间的关系3.前端分析:在教学设计过程开始的时候,先分析若干直接影响教学设计但又不属于具体设计事项的问题(学习需要分析、教学内容分析和学习者特征分析)(做4.经验之塔:由戴尔提出的,戴尔将人的经验分成了三大类:直接的经验的经验)、间接的经验(替代的经验)、抽象的经验(符号的经验)。

其中直接的经验位于经验之塔的底层,表示直接的经验是上面两大类经验的基础,人的学习过程总是从最底层的做的经验开始,然后不断上升到最顶层的抽象的经验。

而抽象的经验获得比较困难,人们在学习的时候需要具备足够的学习和认知能力,但是上升到抽象的经验是学习的必然目的。

2019年华中师范大学社会学考研历年真题试题(2001-2014)共14套

2019年华中师范大学社会学考研历年真题试题(2001-2014)共14套

华中师范大学社会学考研历年真题经典试目录2001年华中师范大学社会学考研真题 (1)2002年华中师范大学社会学考研真题 (4)2003年华中师范大学社会学考研真题 (9)2004年华中师范大学社会学考研真题 (12)2005年华中师范大学社会学考研真题 (15)2006年华中师范大学社会学考研真题 (16)2007年华中师范大学社会学考研真题 (18)2008年华中师范大学社会学考研真题 (19)2009年华中师范大学社会学考研真题 (21)2010年华中师范大学社会学考研真题 (24)2011年华中师范大学社会学考研真题 (27)2012年华中师范大学社会学考研真题 (29)2013年华中师范大学社会学考研真题 (31)2014年华中师范大学社会学考研真题 (32)2001年华中师范大学社会学考研真题2001年华中师范大学社会学理论考研真题一、名词解释(每题6分)1、先赋角色与自致角色2、初级群体与次级群体3、城市社区与农村社区4、内因型发展与外因型发展5、硬控制与软控制二、问答(每题8分)1、什么是亚文化?其类型2、什么是人的社会化?其基本内容3、什么是社会流动?合理的社会流动有何社会功能?4、什么是社会安全阀?社会安全阀系统一般包括哪些内容5、什么是越轨行为?可分为哪几种类型?三、论述(每题15分)1、中国传统社会结构的基本特征2、社会转型的涵义与内容2001年华中师范大学社会调查原理与方法考研真题一、名词解释(每题4分)1、纵贯研究2、层次谬误3、测量4、概率抽样5、民意测验二、简答(每题8分)1、社会调查沿街一般程序2、社会调查研究选题应遵循的原则3、问卷法的特点4、观察法的三种主要分类方法5、资料审核的原则三、论述(每题13分)1、相关关系与因果关系的区别与联系2、测量的四种尺度四、计算(14分)某社区在去年的调查中其社区成员的生活质量指数平均得分为68.5分,今年抽样调查了400名社区成员,生活质量平均得分为70.5分,标准差为8.5分。

2011年全国硕士研究生入学统一考试数学(一)真题及答案解析

2011年全国硕士研究生入学统一考试数学(一)真题及答案解析

0
2
2
.
13.【答案】 1
【解】本题等价于将二次型 f (x, y, z) x2 3y2 z2 2axy 2xz 2 yz 经正交变换后化为
了 f y12 4z12 .由正交变换的特点可知,该二次型的特征值为1, 4, 0 .
1 a 1
该二次型的矩阵为
A
a
3
1 ,可知 A a2 2a 1 0 ,因此 a 1 。
0
0
5.【答案】
【解】由初等矩阵与初等变换的关系知
AP1
B
,P2 B
E
,所以
A
BP11
P2
P 1 1 1
P2 P11

故选 D.
6.【答案】D
【解】由 x 0 的基础解系只有一个知 r( A) 3 ,所以 r( A) 1,又由 A A A E 0 知,
1,2 ,3,4 都是 x 0 的解,且 x 0 的极大线生无关组就是其基础解系,又
^
(1)求参数 2 的最大似然估计 2 ;
^
^
(2)计算 E( 2 ) 和 D( 2 ) .
2011 年全国研究生入学统一考试数学一试题
答案及解析
一、选择题
1.【答案】C
【解】由 y x 1x 22 x 33 x 44 可知1, 2,3, 4 分别是
y
x
1
x
2
2
x
33
x
4
4
0
的一、二、三、四重根,故由导数与原函数之间的关
C. P2P1
D. P21P1
6.设 A (1,2,3,4 ) 是 4 阶矩阵, A* 是 A 的伴随矩阵,若 (1,0,1,0)T 是方程组 Ax 0 的一 个基础解系,则 A*x 0 的基础解系可为( )

数1--11真题答案

数1--11真题答案

2011年考研数学(一)试题答案速查一、选择题(1)C (2)C (3)A (4)B (5)D (6)D (7)D (8)B 二、填空题(9)ln(1+ (10)esin xx − (11)4 (12)π(13)1 (14)22()μμσ+ 三、解答题 (15)12e−. (16)11112(1,1)(1,1)(1,1)f f f '''''++. (17)1k >时,原方程有三个根.1k 时,原方程有一个根. (18)略. (19)a .(20)(Ⅰ)5=a .(Ⅱ)112324=+−βααα,2122=+βαα,31235102=+−βααα.(21)(Ⅰ)1112223331231101,0,1,0,0,1,0110p k p k p k k k k λλλ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=−=====≠ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭⎝⎭.(Ⅱ)001000100⎛⎫⎪= ⎪ ⎪⎝⎭A .(22)(Ⅰ)(Ⅱ)(Ⅲ)0ρ=XY .(23)(Ⅰ)22011()n i i X n σμ==−∑.(Ⅱ)22()E σσ=,422()D nσσ=.2011年全国硕士研究生入学统一考试数学(一)参考答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上. (1)【答案】C .【解答】易知该曲线与x 轴有四个交点(1,0),(2,0),(3,0),(4,0),且1x <时,0y >;当12x <<时,0y <;当34x <<时,0y >;当4x >时,0y >. 根据以上结论描绘出曲线y 的大致图形为: 故选择答案C .(2)【答案】C . 【解答】因为1nn a∞=∑发散,而1(1)nn n a ∞=−∑收敛,所以1n n n a x ∞=∑的收敛域是[1,1)−,因此1(1)nn n a x ∞=−∑的收敛域是[0,2)故选择答案C .(3)【答案】A . 【解答】(0,0)(0,0)()ln ()|(0)ln (0)0zf x f y f f x ∂''=⋅==∂(0,0)(0,0)()()(0)0,()z f y f x f y f y '∂'=⋅==∂故(0)0f '=22(0,0)(0,0)()ln ()(0)ln (0)0,z A f x f y f f x ∂''''==⋅=⋅>∂22(0,0)(0,0)()[(0)]()0,()(0)z f y f B f x x y f y f ''∂'==⋅==∂∂22222(0,0)(0,0)()()[()][(0)]()(0)(0).()(0)z f y f y f y f C f x f f yf y f ''''∂−''''==⋅=−=∂又22[(0)]ln (0)0,AC B f f ''−=⋅>故(0)1,(0)0f f ''>>. 故正确答案选A. (4)【答案】B . 【解答】当π04x <<时,有0sin cos 1cot x x x <<<<,所以ln sin ln cos ln cot x x x <<,应选B . (5)【答案】D .【解答】易知100110,001⎛⎫⎪= ⎪⎪⎝⎭A B 100001010⎛⎫ ⎪ ⎪ ⎪⎝⎭B =E 即12,=AP B P B =E ,所以1112121−−−A =P P =P P ,选答案D . (6)【答案】D .【解答】易知**,()3,()1r r ==AA =O A A ,*=A x 0的基础解系有3个线性无关的向量,1234,,,αααα是*=A x 0的解;又因为T (1,0,1,0)是方程组0Ax =的一个基础解系,即13+=0αα,所以13,αα线性相关,则方程组*=A x 0的基础解系为234,,ααα,选答案D . (7)【答案】D . 【解答】122112[()()()()]d ()()1f x F x f x F x x F x F x +∞+∞−∞−∞+==⎰,故选答案D .(8)【答案】B .【解答】因为{}{}()()max ,,min ,,22X Y X Y X Y X YU X Y V X Y ++−+−−====所以UV XY =. 又,X Y 相互独立,所以()E UV =EX EY ⋅,故答案选B .二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)【答案】(ln 1.【解答】(ππ440sec d ln |sec tan |ln 1s x x x x ===+=+⎰.(10)【答案】e sin xy x −=.【解答】d d e (e cos e d )x x xy x x C −−⎰⎰=⋅+⎰e (cos d )x x x C −=+⎰e (sin )x x C −=+由于(0)0,y =故0C =,所以esin xy x −=.(11)【答案】4.【解答】2sin 1()F xy y x xy ∂=⋅∂+,22222cos sin 2[1()]F y xy xy xy y x xy ∂−⋅=⋅∂+,故2(0,2)2|4F x ∂=∂. (12)【答案】π.【解答】设S 是平面=+z x y 上位于柱面221x y +=内的部分,S 在xOy 平面上的投影为22{(,)|1}D x y x y =+,由斯托克斯公式,得22d d d d d d d d d 22L Sy z z x x yy xz x x y z x y z y xzx∂∂∂++=∂∂∂⎰⎰⎰d d d d d d (1)d d πSDy y z x z x x y x y x y =++=−−=⎰⎰⎰⎰.(13)【答案】1.【解答】二次型矩阵为1131111a a ⎛⎫⎪= ⎪ ⎪⎝⎭A ,其特征值为0,1,4,所以0,1a =|A |=.(14)【答案】22()μμσ+.【解答】因为(,)X Y 服从二维正态分布22(,;,;0)N μμσσ,不相关,所以,X Y 相互独立,故22222()()()E XY EXEY EX E Y DY μμσ==+=+.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上. (15)(本题满分10分)解:1e 10ln(1)lim x x x x −→+⎡⎤⎢⎥⎣⎦0ln(1)1lim[1].e 1e x x x x →+−−=2ln(1)limex x xx →+−=22201()2lim ex x x o x x x →−+−=12e .−=(16)(本题满分10分) 解:[][]12,(),()()zf xy yg x y f xy yg x yg x x∂'''=⋅+⋅∂ []211112,()(,())(,())()zf xy yg x y f xy yg x x f xy yg x g x x y∂'''''⎡⎤=++⎣⎦∂∂[]{}22122(),()()[,()][,()]()g x f xy yg x yg x f xy yg x x f xy yg x g x '''''''+⋅+⋅+ 又()g x 在1x =可导,且为极值,所以(1)0g '=,所以21111211d (1,1)(1,1)(1,1).d d x y zf f f x y=='''''=++(17)(本题满分10分)解:易知0x =为方程的一个实根.当0x ≠时,令(),arctan xf x k x=−则()()22arctan 1arctan xx x f x x −+'=. 令()2arctan 1=−+xg x x x ,则 ()()()222222211220111x x x x g x x x x +−⋅'=−=>+++,()g x 单调递增.又(0)0g =,所以当0x <时,有()0g x <,从而()'0f x <; 当0x >时,有()0g x >,从而()'0f x >. 又,()00lim lim1arctan x x x f x k k x →→=−=−,()lim lim arctan x x xf x k x→±∞→±∞=−=+∞,所以当10k −<时,由零点定理可知()f x 在(,0)−∞,(0,)+∞内各有一个零点; 当10k −时,则()f x 在(,0)−∞,(0,)+∞内均无零点.综上所述,当1k >时,原方程有三个根;当1k 时,原方程有一个根.(18)(本题满分10分) 证:(Ⅰ)设1()ln(1),[0,]f x x x n=+∈. 显然()f x 在1[0,]n上满足拉格朗日中值定理:111111()(0)ln(1)ln1ln(1),(0,)1f f n n n n nξξ−=+−=+=⋅∈+当1(0,)nξ∈时,11111111101n n n nξ⋅<⋅<⋅+++,即111111n n n ξ<⋅<++, 111ln 11n n n⎛⎫<+< ⎪+⎝⎭. (Ⅱ)利用(Ⅰ)的结论,可以得到11ln(1)1n n<++,所以11ln(1)01n n −+<+得到1n n a a +<,即数列{}n a 单调递减.因为,1111ln ln(1)ln nnn k k a n n k k ===−>+−∑∑,而,11112341ln(1)ln ()ln()ln(1)123nnk k k n n k k n==+++==⋅⋅=+∑∏, 所以,11111ln ln(1)ln ln(1)ln 0nnn k k a n n n k k n ===−>+−>+−>∑∑.因此,数列{}n a 有下界. 由单调有界定理可知,数列{}n a 收敛.(19)(本题满分11分) 解:110d (,)d xyI x x yf x y y ''=⎰⎰1100d (,)d x x x ydf x y y '=⎰⎰ ()()111000d ,,d x x x x yf x y f x y y ⎡⎤''=−⎢⎥⎣⎦⎰⎰ ()11d (,1)(,)d x x x x f x f x y y ''=−⎰⎰因为(,1)0f x =,所以(,1)0x f x '=110d (,)d x I x x f x y y '=−⎰⎰1100d (,)d x y xf x y x '=−⎰⎰111000d (,)(,)d y x f x y f x y x ⎡⎤=−−⎢⎥⎣⎦⎰⎰1100d (1,)(,)d y f y f x y x ⎡⎤=−−⎢⎥⎣⎦⎰⎰ d (,)d Df x y x y =⎰⎰a =.(20)(本题满分11分)解: (Ⅰ)由于123,,ααα不能由123,,βββ线性表示,对123123(,,,,,)βββααα进行初等行变换:123123(,,,,,)βββααα= 11310112401313115a ⎛⎫ ⎪ ⎪ ⎪⎝⎭113101011112023014a ⎛⎫ ⎪→− ⎪ ⎪−⎝⎭113101011112005210a ⎛⎫ ⎪→− ⎪ ⎪−−⎝⎭当5a =时,1231231(,,)2(,,,)3r r =≠=ββββββα,此时,1α不能由123,,βββ线性表示,故5a =.(Ⅱ)对123123(,,,,,)αααβββ进行初等行变换123123(,,,,,)=αααβββ101113013124115135⎛⎫ ⎪ ⎪ ⎪⎝⎭101113013124014022⎛⎫ ⎪→ ⎪ ⎪⎝⎭101113013124001102⎛⎫ ⎪→ ⎪ ⎪−−⎝⎭1002150104210001102⎛⎫⎪→ ⎪ ⎪−−⎝⎭. 故112324=+−βααα,2122=+βαα,31235102=+−βααα.(21)(本题满分11分)解: (Ⅰ)设()()TT121,0,1,1,0,1=−=αα,则()()1212,,=−ααααA ,即1122,=−=ααααA A ,从而A 有特征值121,1λλ=−=,对应的特征向量分别为()1110k k ≠α,()2220k k ≠α. 由于()2r =A ,所以30λ=.由于A 是三阶实对称矩阵,故不同特征值对应的特征向量相互正交,设30λ=对应的特征向量为()T3123,,x x x =α,则T 13T2300⎧=⎨=⎩αααα,即131300x x x x −=⎧⎨+=⎩ 解此方程组,得()T30,1,0=α,故30λ=对应的特征向量为()3330k k ≠α.故A 的所有特征值为1231,1,0λλλ=−==,对应的特征向量分别为()1110k k ≠α,()2220k k ≠α和()3330k k ≠α.(Ⅱ)由于不同特征值对应的特征向量已经正交,只需单位化:))()T T T3121231231,0,1,1,0,1,0,1,0==−====αααβββααα. 令()123,,=βββQ ,则T110−⎛⎫⎪== ⎪ ⎪⎝⎭ΛQ AQ , T =A Q QΛ022012200110220010022⎛⎫−⎛⎫ ⎪ ⎪ ⎪−⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭ ⎪ ⎪− ⎪ ⎪⎝⎭⎪⎝⎭022022000022010022⎛⎫−⎛⎫ ⎪− ⎪ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭001000100⎛⎫ ⎪= ⎪⎪⎝⎭. (22)(本题满分11分) 解:(Ⅰ)因为{}221P XY ==,所以有{}{}222210P X Y P X Y ≠=−==,即{}{}{}0,10,11,00P X Y P X Y P X Y ==−=======. 利用边缘概率和联合概率的关系得到{}{}{}{}10,000,10,13P X Y P X P X Y P X Y ====−==−−===;{}{}{}11,110,13P X Y P Y P X Y ==−==−−==−=;{}{}{}11,110,13P X Y P Y P X Y ====−===;即(),X Y 的概率分布为(Ⅱ)Z 的所有可能取值为1,0,1−,{}{}111,13P Z P X Y =−==−=−=,{}{}111,13P Z P X Y =====,{}{}{}101113P Z P Z P Z ==−=−=−=.所以,Z XY =的概率分布为(Ⅲ) cov XY XY E XY E X E Y ρ−⋅==由(I )中(),X Y 的联合分布可知()()1111010333E XY E Z ==−⋅+⋅+⋅=,()1111010333E Y =−⋅+⋅+⋅=,()()()0E XY E X E Y −⋅=,所以cov 0XY XY E XY E X E Y ρ−⋅===.(23)(本题满分11分) 解:总体X 的概率密度为202()2()x f x μσ−−=,x −∞<<+∞(Ⅰ)似然函数 202()22211()(;)i x nn i i i L f x μσσσ−−==⎡⎤==⎥⎥⎦∏∏, 取对数 222211ln ()ln(2π)ln ()222nii n n L x σσμσ==−−−−∑,求导 22022221d ln ()1[()]d()22()nii L n x σμσσσ==−+−∑,令22d ln ()0d()L σσ=,解得22011()n i i x n σμ==−∑, 故2σ的最大似然估计量为22011()ni i X n σμ==−∑.(Ⅱ)20~(,)i X N μσ,则~(0,1)i X N μσ−,得到()2201~ni i X Y n μχσ=−⎛⎫= ⎪⎝⎭∑,即()2201ni i Y X σμ==−∑. ()()()222222011111().n i i E E X E Y E Y n n n n n σμσσσσ=⎡⎤=−===⋅=⎢⎥⎣⎦∑ ()()()22244402222111112()2.n i i D D X D Y D Y n n nn n n σμσσσσ=⎡⎤=−===⋅=⎢⎥⎣⎦∑。

华南师大2011年考研试卷(高等代数)

华南师大2011年考研试卷(高等代数)

华南师大 2011 年考研试卷(高等代数)
一、1.写出四条矩阵 A的秩为 r 的充要条件;
2.写出欧式空间中子空间的正交补定义;
3.写出关于多项式 f(x)的代数基本定理;
4.写出 n 阶方阵 A的伴随矩阵的定义和基本结论;
5.写出对称变换的定义。

二、写出方程组
当 a、b 为何值时,方程组有唯一解,无解,无穷多解?并求无穷多 解的通解。

三、设多项式 f(x)=x 4 +4kx+1(k 为整数),证明 f(x)在有理数域 Q 上不 可约。

四、A、B为 n 阶方阵,证明:
r(A)+r(B)=
五、给定实二次型 f(x1,x2,x3)=x1 2 +2x2 2 +5x3 2 ­2x1x2+2tx1x3+6x2x3,试求 t 的值,使得该二次型正
定。

六、设 V 是有限维欧式空间,又 σ 为 V 的一个正交变换,记 V1= {α∈V|σ(α)=α},
V2={α­σ(α)|α∈V},证明:
1、 V1、V2 都是 V 的子空间;
2、 V1⊥V2
3、 V=V1 V2
七、设 W1 和 W2 是 n维向量空间 V 的两个子空间,且维数之和为 n, 证明:存在 V 上的线性变换 σ,使 ker(σ)=W1,Im(σ)=W2。

华中师范大学《高等代数》《数学分析》考研真题(2009-2017汇总)

华中师范大学《高等代数》《数学分析》考研真题(2009-2017汇总)

考试复习重点资料(最新版)资料见第三页封面第1页温馨提示提示:本套资料经过精心编排,前2页是封面和提示部分,后面是资料试题部分。

资料涵盖了考试的重点知识和题型,可以很好的帮助你复习备考。

资料不在多而在精,一套系统的涵盖考试重点的资料,能够帮助你很好的提高成绩,减轻学习负担,再加上自己勤奋练习,肯定能取得理想的成绩。

寄语:无论你是考研、期末考试还是准备其他考试,既然决定了,就要坚持到底,花几个月的时间,精心准备,在加上资料的帮助,必然会得到回报。

1.一份合理科学的学习计划是你备考的领航灯。

要有总体的时间规划,也要有精细到每天的计划,不打无准备的仗。

2.资料需要反复练习,任何一件看似轻而易举的事情,都是经过反复刻意练习的结果。

公众号:第七代师兄,学习也是一样的,手里的资料,一定要反复练习几遍,才能孰能生巧,融汇贯通,考场上才能轻松应对。

3.态度决定一切,不要手稿眼底,从最基础的知识学起,基础扎实了,才能平底起高楼,才能将各类知识点运用自如。

4.坚持到底,无论是考试还是做事情,很多人打败自己的永远是自己。

切记心浮气躁,半途而废。

5.希望这套资料能够很好的帮助你复习备考,祝学习进步,加油。

第2页目录1华中师范大学2009年研究生入学考试试题高等代数4 2华中师范大学2010年研究生入学考试试题高等代数5 3华中师范大学2011年研究生入学考试试题高等代数6 4华中师范大学2012年研究生入学考试试题高等代数7 5华中师范大学2013年研究生入学考试试题高等代数9 6华中师范大学2014年研究生入学考试试题高等代数11 7华中师范大学2015年研究生入学考试试题高等代数12 8华中师范大学2016年研究生入学考试试题高等代数13 9华中师范大学2017年研究生入学考试试题高等代数15 10华中师范大学2009年研究生入学考试试题数学分析17 11华中师范大学2010年研究生入学考试试题数学分析19 12华中师范大学2011年研究生入学考试试题数学分析21 13华中师范大学2012年研究生入学考试试题数学分析23 14华中师范大学2013年研究生入学考试试题数学分析25 15华中师范大学2014年研究生入学考试试题数学分析27 16华中师范大学2015年研究生入学考试试题数学分析29 17华中师范大学2016年研究生入学考试试题数学分析31 18华中师范大学2017年研究生入学考试试题数学分析331.(20分)设a1,¨¨¨,a n是n个复数,x是复变元.求解:x取哪些复数值时下述等式(等式左边是n`1阶行列式)成立:ˇˇˇˇˇˇˇˇˇˇˇˇˇ111¨¨¨1x a1a2¨¨¨a nx2a21a22¨¨¨a2n............x n a n1a n2¨¨¨a n nˇˇˇˇˇˇˇˇˇˇˇˇˇ“0.2.(20分)设f p x q是n次实系数多项式,ną1.设f1p x q是f p x q的导数多项式.证明:(1)如果r是f p x q的m重根,mą0,则r是f1p x q的m´1重根(若r是f p x q的零重根则表示r不是f1p x q的根).(2)如果f p x q的根都是实数,则f1p x q的根也都是实数.3.(20分)设A是秩为r的mˆn阶矩阵,B是非零的mˆ1阶矩阵.考虑线性方程组AX“B,其中X是变元x1,¨¨¨,x n的列向量.证明:(1)线性方程组AX“B的任意有限个解向量X1,¨¨¨,X k的向量组的秩ďn´r`1.(2)若线性方程组AX“B有解,则它有n´r`1个解向量是线性无关的.4.(30分)设A,B,C都是n阶方阵,令˜A BC0¸是分块构成的2n阶方阵,其中右下块0表示n阶零方阵.(1)证明:rank ˜A BC0¸ěrank p B q`rank p C q.这里rank p B q表示矩阵B的秩.(2)举例说明:p1q中的等号和不等号都可能成立.5.(30分)设V是有限维向量空间,设U,W是V的两个子空间.(1)什么是U与W的和子空间U`W?请叙述关于U`W的维数公式.(2)证明关于和子空间的维数公式.6.(30分)设A为n阶实矩阵,λi“r`si是A的特征根,其中r,s是实数,i是虚数单位.(1)证明:12p A`A1q的特征根都是实数,令µ1﨨¨ďµn是12p A`A1q的全部特征根.(2)证明:µ1ďrďµn.(3)你有类似的估计s的办法吗?1.(20分)设F是任意数域,p p x q P F r x s.证明:p p x q是不可约多项式当且仅当p p x q是素多项式.2.(20分)(1)设A是n阶方阵,E是单位矩阵,k‰0.证明:A2“kA当且仅当rank p A q`rank p A´kE q“n.(2)证明:任意方阵可以表示为满秩矩阵和幂等矩阵的乘积.3.(20分)设R表示实数域,V“M3p R q表示所有3ˆ3实矩阵构成的向量空间.对给定的A P M3p R q,定义V上的线性变换A:VÑV为A pB q“AB´BA,对任意的B P M3p R q.设A“¨˚˝000010002˛‹‚.求A的特征值和相应的特征子空间;并求此时A的极小多项式.4.(30分)设有三元实二次型f p x,y,z q“x2`3y2`z2`4xz.并设x,y,z满足x2`y2`z2“1.试求f的最大值和最小值,并求当x,y,z取什么值时,f分别达到最大值和最小值.5.(30分)设R是实数域,V“C1r0,1s是闭区间r0,1s上的实连续可微函数的集合.V在函数的加法和数乘函数的运算下是一个向量空间.(1)证明函数f p x q“cos x,g p x q“2x,h p x q“e x在V中线性无关.(2)任意给定ną0,在V中找出n`1个线性无关的元素,并证明你的结论.(3)对某个m,是否有V和R m同构,如果是,给出证明;如果不是,说明理由.6.(30分)(1)设A和B均为n阶复方阵,证明:A与B相似当且仅当作为λ´矩阵,有λE´A等价于λE´B.(2)设A,B都是3阶幂零矩阵,证明:A相似于B当且仅当A与B有相同的极小多项式.(3)试说明上述结论p2q对4阶幂零矩阵是否成立,为什么?。

全国名校高等代数考研真题汇编(含部分答案)

全国名校高等代数考研真题汇编(含部分答案)

考生注意: 1.本 试 卷 满 分 为 150 分,共计10道题,每题满分15 分,考试时间总计180 分钟;
2.答案必须写在答题纸上,写在试题纸上或草稿纸 上均无效。
一、设 是 阶单位矩阵, ,证明 的行列式等于 .
,矩阵 满足
二、设 是 阶幕零矩阵满足

.证明所有的 都相似于一个对角矩阵,
的特征值之和等于矩阵 的秩.
3.南开大学高等代数考研真题 2012年南开大学804高等代数考研真题 2011年南开大学802高等代数考研真题
4.厦 门 大 学 825高等代数考研真题 2014年厦门大学825高等代数考研真题 2013年厦门大学825高等代数考研真题 2012年厦门大学825高等代数考研真题 2011年厦门大学825高等代数考研真题

证明:
(1)
.
(2) 是 的不变子空间,则 也是的 不变子空间.
10.四川大学高等代数考研真题及 详解
2013年四川大学931高等代数考研真 题及详解
2011年四川大学高等代数考研真题
11.浙江大学高等代数考研真题
2012年浙江大学601高等代数考研真题
浙江大学2012年攻读硕士学位研究生入学试题 考试科目:高等代数(601)
5.中 山 大 学 877高等代数考研真题
2015年中山大学877高等代数考研真题 2014年中山大学874高等代数考研真题 2013年中山大学869高等代数考研真题 2012年中山大学869高等代数考研真题 2011年中山大学875高等代数考研真题 6.中南大学高等代数考研真题 2011年中南大学883高等代数考研真题 7.湖南大学高等代数考研真题 2013年湖南大学813高等代数考研真题 8.华 东 师 范 大 学 817高等代数考研真题 2013年华东师范大学817高等代数考研真题 2012年华东师范大学817高等代数考研真题 2011年华东师范大学817高等代数考研真题 9.华中科技大学高等代数考研真题及详解 2013年华中科技大学高等代数考研真题 2012年华中科技大学高等代数考研真题及详解 2011年华中科技大学高等代数考研真题 10.四川大学高等代数考研真题及详解 2013年四川大学931高等代数考研真题及详解 2011年四川大学高等代数考研真题 11.浙江大学高等代数考研真题 2012年浙江大学601高等代数考研真题

2010~2011年华中师范大学333教育综合[专业硕士]考研真题及详解【圣才出品】

2010~2011年华中师范大学333教育综合[专业硕士]考研真题及详解【圣才出品】

2011年华中师范大学333教育综合[专业硕士]考研真题一、名词解释1.学校制度2.课程标准3.智育4.分组教学5.陶冶6.技能二、简答题1.我国教育目的的基本精神是什么?2.上好一堂课的要求有哪些?3.简述教师的素养。

4.简述培养集体的方法。

三、论述题1.试论述人的发展的规律性及其教育学意义。

2.试论述陶行知的生活教育理论。

3.试论述赞可夫的发展性教学理论。

4.联系实际谈谈创造性的培养措施。

2011年华中师范大学333教育综合[专业硕士]考研真题及详解[视频讲解]一、名词解释1.学校制度答:学校教育制度简称学制,它是指一个国家各级各类学校的系统,它规定各级各类学校的性质、任务、入学条件、修业年限以及它们之间的关系。

按教育程度划分,有幼儿教育、初等教育、中等教育、高等教育机构;按教育类型划分,有普通教育、专业教育等教育机构;按受教育的时间划分,有全日制、半日制、业余教育等机构;按主要教育手段和场所划分,有面授、函授、巡回、广播、电视等教育机构;按教育对象的年龄划分,有学龄期教育、成人教育机构;按主办单位划分,有国家办、地方办、企事业办和私人办的教育机构,组成了一个纵横交叉的学校教育网。

2.课程标准答:课程标准即教学大纲,是指根据课程计划以纲要形式编定的有关课程教学内容的指导性文件。

它规定课程的知识范围、深度、体系、教学进度和教学法的要求。

学科课程标准一般包括两个方面的内容:第一,说明部分。

扼要地说明本学科教学目的、任务,提出教材选编的原则以及教学法上的建议。

第二,正文部分。

它是根据教材选编的原则、知识本身的逻辑和学生认识的规律,系统地安排教材的主要课程、要目或章节,规定每个课题的讲授内容、教学要点和教学时数,同时也列出有关练习、实验、实习的内容与时数等。

3.智育答:智育亦称“智力教育”,是指使受教育者掌握系统科学文化知识与技能、发展智力的教育。

它是教育的组成部分,与德育、体育、美育等密切联系,为受教育者思想品德、审美观点、良好身体素质等的形成与发展准备知识与能力的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档