八年级上册《平行线的证明》一

合集下载

北师大版数学八年级上《平行线的证明 》习题含答案

北师大版数学八年级上《平行线的证明 》习题含答案

八年级上册第7章《平行线的证明》专题演练1.(1)如图1,AC平分∠DAB,AB∥CD,求证:∠1=∠2;(2)如图2,在(1)的条件下,AB的下方两点E、F满足:BF平分∠ABE,DF平分∠CDE,若∠DFB=25°,∠CDE=80°,求∠ABE的度数;(3)在前面的条件下,若P是BE上一点,G是CD上任一点,PQ平分∠BPG,PQ∥GN,GM平分∠DGP,如图3,则∠MGN=.2.如图1,点A、B分别在直线GH、MN上,∠GAC=∠NBD,∠C=∠D.(1)求证:GH∥MN;(2)如图2,AE平分∠GAC,DE平分∠BDC,若∠AED=∠GAC,求∠GAC与∠ACD之间的数量关系;(3)如图3,BF平分∠DBM,点K在射线BF上,∠KAG=∠GAC,若∠AKB=∠ACD,直接写出∠GAC的度数.3.已知,如图,在四边形ABCD中,AB∥CD,延长BC至点E,连接AE交CD于点F,使∠BAC=∠DAE,∠ACB=∠CFE(1)求证:∠BAF=∠CAD;(2)求证:AD∥BE;(3)若BF平分∠ABC,请写出∠AFB与∠CAF的数量关系.(不需证明)4.如图,E、F分别在AB和CD上,∠1=∠D,∠2与∠C互余,AF⊥CE于G,求证:AB∥CD.证明:∵AF⊥CE,∴∠CGF=90°,∵∠1=∠D,∴AF∥,∴∠4==90°(),又∵∠2与∠C互余(已知),∠2+∠3+∠4=180°,∴∠2+∠C=∠2+∠3=90°,∴∠C=,∴AB∥CD.5.(1)①如图1,已知AB∥CD,点E在直线AB、CD之间,探究∠ABE、∠BED、∠CDE之间的数量关系,并说明理由.②将图1中射线BA绕B逆时针方向旋转一定角度后,射线BA交射线DC于F,得到图2,形成四边形BFDE,探究四边形中∠B、∠E、∠D、∠BFD之间有何数量关系,并说明理由.(2)在图3中,AB∥CD,∠ABE与∠CDE的角平分线交于点N,∠ABM=∠ABN,∠CDM =∠CDN,写出∠M与∠E之间数量关系,并说明理由.6.已知:∠BDG+∠EFG=180°,∠B=∠DEF.(1)如图1,求证:DE∥BC.(2)如图2,当∠A=∠EFG=90°时,请直接写出与∠C互余的角.7.如图,直线EF交直线AB、CD与点M、N,NP平分∠ENC交直线AB于点P.已知∠EMB=112°,∠PNC=34°.(1)求证:AB∥CD;(2)若PQ将分∠APN成两部分,且∠APQ:∠QPN=1:3,求∠PQD的度数.8.已知:如图,∠1=∠2,∠B=∠C.(1)求证AB∥CD;(2)若∠A=30°,求∠D的度数.9.完成下面的证明:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,连接DE,DF,DE∥AB,∠BFD=∠CED,连接BE交DF于点G,求证:∠EGF+∠AEG=180°.证明:∵DE∥AB(已知),∴∠A=∠CED()又∵∠BFD=∠CED(已知),∴∠A=∠BFD()∴DF∥AE()∴∠EGF+∠AEG=180°()10.如图,若∠ADE=∠ABC,BE⊥AC于E,MN⊥AC于N,试判断∠1与∠2的关系,并说明理由.参考答案1.解:(1)∵AC平分∠DAB,∴∠1=∠3,∵AB∥CD,∴∠2=∠3,∴∠1=∠2;(2)过F作作FQ∥AB,∵AB∥CD,∴CD∥FQ,∵DF平分∠CDE,∴∠CDF=∠EDF=CDE==40°,∵CD∥FQ,∴∠DFQ=∠CDF=40°,∵∠DFB=25°,∴∠BFQ=15°,∵AB∥FQ,∴∠ABF=∠QFB=15°,∵BF平分∠ABE,∴∠ABE=2∠ABF=30°;(3)过P作PK∥AB,则PK∥DG,∴∠BPK=∠ABP=30°,∵PQ平分∠BPG,∴∠GPQ=∠BPQ,设∠GPQ=∠BPQ=x,∴∠GPK=2x+30°,∵DG∥PK,∴∠DGP=∠GPK=30°+2x,∵GM平分∠DGP,∴∠DGM=∠PGM=DGP=15°+x,∵PQ∥GN,∴∠PGN=∠GPQ=x,∴∠MGN=∠PGM﹣∠PGN=15°,故答案为:15°.2.解:(1)如图1,延长AC交MN于点P,∵∠ACD=∠D,∴AP∥BD,∴∠NBD=∠NPA,∵∠GAC=∠NBD,∴∠GAC=∠NPA,∴GH∥MN;(2)延长AC交MN于点P,交DE于点Q,∵∠E+∠EAQ+∠AQE=180°,∠EQA+∠AQD=180°,∴∠AQD=∠E+∠EAQ,∵AC∥BD,∴∠AQD=∠BDQ,∴∠BDQ=∠E+∠EAQ,∵AE平分∠GAC,DE平分∠BDC,∴∠GAC=2∠EAQ,∠CDB=2∠BDQ,∴∠CDB=2∠E+∠GAC,∵∠AED=∠GAC,∠ACD=∠CDB,∴∠ACD=2∠GAC+∠GAC=3∠GAC;(3)设射线BF交GH于I,∵GH∥MN,∴∠AIB=∠FBM,∵BF平分∠MBD,∴∠DBF=∠FBM=,∴∠AIB=∠DBF,∵∠AIB+∠KAG=∠AKB,∠AKB=∠ACD,∴∠ACD=∠DBF+∠KAG,∵∠KAG=∠GAC,∠GAC=∠NBD,∴∠GAC+=∠ACD=3∠GAC,即∠GAC+∠GAC=3∠GAC,解得∠GAC=.故答案为.3.解:(1)∵∠BAC=∠DAE,∴∠BAC+∠CAF=∠DAE+∠CAF,∴∠BAF=∠CAD;(2)∵∠BAC=∠DAF,∠ACB=∠CFE=∠AFD,∴∠B=∠D,∵AB∥CD,∴∠B+∠BCD=180°,∴∠D+∠BCD=180°,∴AD∥BE;(3)如图2,∵AD∥BE,∴∠E=∠1=∠2,∵BF平分∠ABC,∴∠3=∠4,∵∠AFB是△BEF的外角,∴∠AFB=∠4+∠E=∠4+∠1,∴∠AFB=3+∠2,又∵AD∥BC,∴∠ABC+∠BAD=180°,∴∠3+∠4+∠1+∠CAF+∠2=180°,即2∠AFB+∠CAF=180°.故答案为:2∠AFB+∠CAF=180°.4.证明:如图所示:∵AF⊥CE(已知),∴∠CGF=90°,∵∠1=∠D(已知),∴AF∥ED,∴∠4=∠CGF=90°(两直线平行,同位角相等),又∵∠2与∠C互余(已知),∠2+∠3+∠4=180°,∴∠2+∠C=∠2+∠3=90°,∴∠C=∠3,∴AB∥CD(内错角相等,两直线平行),故答案为:已知,已知,ED,两直线平行,同位角相等;∠3,内错角相等,两直线平行.5.解:(1)①如图1,过E作EF∥AB,∴∠FEB+∠EBA=180°,∵CD∥AB,EF∥AB,∴CD∥EF,∴∠CDE+∠DEF=180°,∴∠CDE+∠DEB+∠ABE=360°,②如图2,过点B作GB∥CD,∴∠BFD=∠GBF,由(1)知∠GBE+∠E+∠D=360°,∴∠B+∠E+∠D+∠BFD=360°;(2)如图3,过M作MF∥AB,∵AB∥CD,∴MF∥CD,∵∠ABM=∠ABN,∠CDM=∠CDN,∴设∠MBN=x,∠MDN=y,则∠MDC=2y,∠ABM=2x,∠EBN=3x,∠EDN=3y,∴∠BMF=2x,∠DMF=2y,∠ABE=6x,∠CDE=6y,∴∠BMD=2(x+y),过E作EG∥AB,∵AB∥CD,∴EG∥CD,∴∠BEG=180°﹣∠ABE=180°﹣6x,∠DEG=180°﹣∠CDE=180°﹣6y,∴∠BED=∠BEG+∠DEG=360°﹣(6x+6y)=360°﹣3∠BMD,∴3∠BMD+∠BED=360°.6.(1)证明:∵∠EFD+∠EFG=180°,∠BDG+∠EFG=180°,∴∠BDG=∠EFD,∴BD∥EF,∴∠BDE+∠DEF=180°,又∵∠DEF=∠B,∴∠BDE+∠B=180°,∴DE∥BC;(2)解:∵∠A=∠EFG=90°,∴∠ADE+∠AED=90°,∠B+∠C=90°,∵DE∥BC,∴∠ADE=∠B,∵∠B=∠DEF,∴与∠C互余的角有∠B,∠ADE,∠DEF.7.(1)证明:∵∠EMB=112°,∴∠PMN=112°,∵NP平分∠EN,∴∠CNE=2∠CNP,∵∠CNP=34°,∴∠CNE=68°,∴∠PMN+∠CNE=180°,∴AB∥CD;(2)解:∵∠APN=∠PMN+∠PNM=112°+34°=146°,∵∠APQ:∠QPN=1:3,∴∠APQ=36.5°,∵AB∥CD,∴∠PQD=∠APQ,∴∠PQD=36.5°.8.解:(1)∵∠1=∠2,∠1=∠FMN,∴∠2=∠FMN,∴CF∥BE,∴∠C=∠BED.又∵∠B=∠C,∴∠B=∠BED,∴AB∥CD.(2)∵AB∥CD,∴∠A=∠D.又∵∠A=30°,∴∠D=30°.9.证明:∵DE∥AB(已知),∴∠A=∠CED(两直线平行,同位角相等)又∵∠BFD=∠CED(已知),∴∠A=∠BFD(等量代换)∴DF∥AE(同位角相等,两直线平行)∴∠EGF+∠AEG=180°(两直线平行,同旁内角互补)故答案为:两直线平行,同位角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补.10.解:∠1与∠2相等.理由如下:∵∠ADE=∠ABC,∴DE∥BC,∴∠1=∠EBC,∵BE⊥AC于E,MN⊥AC于N,∴BE∥MN,∴∠EBC=∠2,∴∠1=∠2.。

证明平行的方法

证明平行的方法

证明平行的方法在几何学中,平行线是指在同一平面上永远不会相交的直线。

证明两条直线平行的方法有很多种,下面将介绍几种常见的证明方法。

1. 同位角相等法。

同位角是指两条直线被一条第三条直线所切割时,位于这两条直线同侧的对应角。

如果两条直线被一条第三条直线所切割,而同位角相等,则可以证明这两条直线平行。

这是由于同位角相等是平行线的必要条件。

在实际操作时,可以利用角度的测量工具来测量两组同位角,如果它们相等,则可以得出结论,这两条直线平行。

2. 转角相等法。

转角相等法是指如果两条直线被一条第三条直线所切割,而它们的内部转角相等,则可以证明这两条直线平行。

在实际操作时,可以利用角度的测量工具来测量两组内部转角,如果它们相等,则可以得出结论,这两条直线平行。

3. 垂直线法。

垂直线法是指如果两条直线被一条第三条直线所切割,而它们的交叉角相等,则可以证明这两条直线平行。

在实际操作时,可以利用角度的测量工具来测量交叉角,如果它们相等,则可以得出结论,这两条直线平行。

4. 对应角相等法。

对应角相等法是指如果两条直线被一条第三条直线所切割,而它们的对应角相等,则可以证明这两条直线平行。

在实际操作时,可以利用角度的测量工具来测量两组对应角,如果它们相等,则可以得出结论,这两条直线平行。

5. 平行线性质法。

平行线性质法是指如果两条直线被一条第三条直线所切割,而它们的一组内部转角之和为180度,则可以证明这两条直线平行。

在实际操作时,可以利用角度的测量工具来测量两组内部转角,如果它们之和为180度,则可以得出结论,这两条直线平行。

综上所述,证明两条直线平行的方法有同位角相等法、转角相等法、垂直线法、对应角相等法和平行线性质法等多种。

在实际操作中,可以根据具体情况选择合适的方法进行证明。

希望本文介绍的方法能够对大家理解和掌握平行线的证明提供帮助。

北师大版八年级数学(上)第七章 平行线的证明 第1节 为什么要证明

北师大版八年级数学(上)第七章  平行线的证明  第1节  为什么要证明

例 4:观察下列关于自然数的等式: (1)32-4×12=5 ① (2)52-4×22=9 ② (3)72-4×32=13 ③ … 根据上述规律解决下列问题: (1)完成第四个等式:92-4×( )2=( );
(2)写出你猜想的第 n 个等式(用含 n 的式子表示),并验证其正确性.
解:(1)4,17 (2)第 n 个等式为(2n+1)2-4n2=4n+1.∵左边=4n2+4n+1-4n2=4n+1= 右边,∴第 n 个等式成立.
练习:下列问题你不能肯定的是( D )
A.一支铅笔和一瓶矿泉水的体积的大小关系 B.三角形的内角和 C.八边形的外角和 D.三角形与矩形的面积关系
课程导入2:
代数式n2+ n+41的值是质数吗?取n=0,1,2,3,4, 5试一试,你能否 由此得到结论:对于所有自然数n2+ n+41的值都是质数?与同伴进行交流.
2.在学习中,小明发现:当 n=1,2,3 时,n2-6n 的值都是负数,于是小明猜想:当 n 为 任意正整数时,n2-6n 的值都是负数,小明的猜想正确吗?请简要说明你的理由.
解:小明的猜想不正确.理由为:当 n=6 时,n2-6n=62-6×6=0;当 n> 6 时,n2-6n=n(n-6)>0.
练习:观察下列各式的计算过程: 5×5=0×1×100+25, 15×15=1×2×100+25, 25×25=2×3×100+25, 35×35=3×4×100+25, …
请猜测,第 n 个算式(n 为正整数)应表示为 100n(n-1)+25 .
证明的必要性
1.要判断一个数学结论是否正确,仅仅依靠实验,观察、归纳是不够的,
解:小明的猜想正确,理由:因为 n 为奇数,所以可设 n=2k+1(k 为自然数), 所以 n2﹣1=(2k+1)2﹣1=(2k+1+1)(2k+1﹣1)=(2k+2)×2k=4k(k+1), 因为 k 为自然数,所以 k,k+1 是相邻的自然数, 所以 k,k+1 中必有一个是偶数,一个是奇数,所以 k(k+1)必定是 2 的倍数, 所以 4k(k+1)必定是 8 的倍数,故当 n 为任意正奇数时, n2﹣1 的值一定是 8 的倍数.

北师大版八年级数学上册第7章 平行线的证明 定义与命题

北师大版八年级数学上册第7章 平行线的证明 定义与命题
规定.也就是给出它们的定义.
请你举出你所熟知的一些定义例子.
例如: 1.“具有中华人民共和国国籍的人,叫做中华人 民共和国公民” 是“中华人民共和国公民”的定 义; 2.“两点之间线段的长度,叫做这两点之间的距 离” 是“两点之间的距离”的定义; 3.“无限不循环小数称为无理数” 是“无理数” 的定义.
结论
⑵ 在同一个三角形中,等角对等边;
如果在同一个三角形中,有两个角相等,那么这两个角所对
的边也相等. 条件
结论
⑶ 对顶角相等.
如果两个角是对顶角,那么这两个角相等.
条件
结论
定义与命题
定义 命题
概念:判断一个事件的句子 结构:如果……那么……
分类:真命题、假命题
如果两个角是对顶角,那么它们就相等.
(3) 平行于同一条直线的两条直线平行.
如果两条直线都和第三条直线平行,那么这两条
直线也互相平行.
命题一般都可以写成“如果……那么……” 的形式. 反之,如果一个句子没有对某一件事情 作出任何判断,那么它就不是命题.
例如,下列句子都不是命题: (1) 你喜欢数学吗? (2) 作线段 AB = CD. (3) 清新的空气. (4) 不许讲话!
改变,改写的句子要完整,语句要通顺,使命题的
题设和结论更明朗,易于分辨,改写过程中,要适
当增加词语,切不可生搬硬套.
总结归纳 命题的组成: 题设的事项
同位角相等.
题设(条件)
结论
例2 下列命题的条件是什么?结论是什么? (1) 如果两个角相等,那么它们是对顶角; (2) 如果 a>b,b>c,那么 a = c; (3) 两角和其中一角的对边分别相等的两个三角形全等; (4) 全等三角形的面积相等. 解:(1) 条件:两个角相等. 结论:它们是对顶角. (2) 条件:a>b,b>c. 结论:a = c. (3) 条件:两个三角形的两角和其中一角的对边分别 相等. 结论:这两个三角形全等. (4) 条件:两个三角形全等. 结论:它们的面积相等.

新教材北师大版八年级数学上册第7章《平行线的证明》回顾与思考

新教材北师大版八年级数学上册第7章《平行线的证明》回顾与思考

(新教材)北师大版精品数学资料第六章平行线的证明回顾与思考一、学生情况分析学生的技能基础:学生在已经接触了几何学的许多基本概念,有了一些基本的逻辑思维判断能力,在几何证明的推理上也有了长足的进步,不过对于较难的几何证明题则不能站在更高的逻辑思维层面上思考.学生活动经验基础:在本章内容的学习过程中,学生已经经历了观察、动手操作、说理、推理论证等几何活动,获得了解决实际问题所必须的一些数学活动经验基础,同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析在本章的学习中,学生已经掌握了几何的推理论证的基本理念,对于简单的几何证明有了一定的认识,但不能从更深层次进行思考,对于如何分析命题中的条件与结论则存在一定的困难,本课时安排让学生对本章内容进行回顾与思考,旨在把学生头脑中零散的知识点用一条线有机地组合起来,从而形成一个知识网络,使学生对这些知识点不再是孤立地看待,而是在应用这些知识时,能顺藤摸瓜地找到对应的及相关的知识点,同时能把这些知识加以灵活运用,因此,本节课的目标是:知识与技能:(1)了解命题的概念与命题的构成;(2)使学生进一步熟悉平行线的性质定理与判定定理,三角形内角和定理及三角形的外角的性质等概念;(3)进一步体会证明的必要性;数学能力:(1)培养学生的逻辑思维能力,发展学生的合情推理能力;(2)掌握证明的步骤与格式.三、教学过程分析本节课设计了五个教学环节:知识回顾——做一做——想一想——试一试——反馈练习.第一环节 知识回顾 活动内容:1.什么是定义?什么是命题?命题由哪两部分组成?举例说明!2.平行线的性质定理与判定定理分别是什么?3.三角形内角和定理是什么?4.与三角形的外角相关有哪些性质?5.证明题的基本步骤是什么?活动目的:通过学生的回顾与思考,使学生对平行线的性质定理与判定定理,三角形内角和定理及三角形的外角的性质有一个更深层次的认识,为下一步的简易的逻辑推理作好知识准备. 注意事项:由于学生对于上述概念都有较长时间的学习,但知识点是零散的,因此有必要在学生头脑中形成一个清晰的知识网络,如:}⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⇒⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⇒⎩⎨⎧⇒⇒⇒⇒⇒⇒结论题设部分条件结构反例假命题公理外角推论内角和定理三角形性质判定平行线应用证明推论定理真命题分类命题证明)()(第二环节 做一做 活动内容:1.下列语句是命题的有( )(1)两点之间线段最短;(2)向雷锋同志学习;(3)对顶角相等;(4)花儿在春天开放;(4)对应角相等的两个三角形是全等三角形;2.下列命题,哪些是真命题?哪些是假命题?如果是真命题,请写出条件与结论,如果是假命题,请举出反例.(1)同角的补角相等;(2)同位角相等,两直线平行;(3)若|a |=|b |,则a =b .3. 如图,AD 、BE 、CF 为△ABC 的三条角平分线,则:∠1+∠2+∠3=________.4. 用两个全等的等腰直角三角尺拼成四边形,则此四边形一定是_____。

北师大版八年级数学上册第7章 平行线的证明 平行线的判定

北师大版八年级数学上册第7章 平行线的证明  平行线的判定

CO
D
∴∠EOD +∠OEB = 180°.
∴ AB∥CD (同旁内角互补,两直线平行).
内错角相等, 两直线平行.
同旁内角互补, 两直线平行.
同位角相等, 内错角相等, 两直线平行. 两直线平行.
同旁内角互补, 两直线平行.
1. 对于图中标记的各角,下列条件能够推理得到 a∥b
的是 ( D )
定理证明
如图,∠1 和∠2 是直线 a,b 被直线 c 截出的内错
角,且∠1 =∠2. 求证:a∥b. 证明:∵∠1 =∠2 (已知), ∠1 =∠3 (对顶角相等),
c
a
3
12
b
∴∠2 =∠3 (等量代换).
∴ a∥b (同位角相等,两直线平行).
总结归纳
判定方法2:两条直线被第三条直线所截,如果内
c
a
1
2
又∵∠3 +∠2 = 180° (平角的定义), b 3
∴∠1 =∠3 (同角的补角相等).
∴ a∥b (同位角相等,两直线平行).
总结归纳 判定方法3:两条直线被第三条直线所截,如果同旁 内角互补,那么这两条直线平行.
简单说成:同旁内角互补,两直线平行.
应用格式: ∵∠1 +∠2 = 180° (已知), ∴ a∥b (同旁内角互补,两直线平行).
65
7 8D
F
练一练 根据图形完成填空: ① ∵∠1 =_∠__2__(已知),
CF 13
E
∴ AB∥CE (内错角相等,两直线平行).
② ∵∠1 +__∠__3_= 180°(已知),
∴ CD∥BF (同旁内角互补,两直线平行).
③ ∵∠1 +∠5 = 180°(已知),

八年级数学平行线的证明知识点

八年级数学平行线的证明知识点

八年级数学平行线的证明知识点八年级数学平行线的证明知识点在日复一日的学习、工作或生活中,大家最不陌生的就是证明了吧,证明是我们经常用到的应用文体。

写证明的注意事项有许多,你确定会写吗?以下是店铺帮大家整理的八年级数学平行线的证明知识点,希望对大家有所帮助。

八年级数学平行线的证明知识点 11、平行线的性质一般地,如果两条线互相平行的直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补.也可以简单的说成:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。

2、判定平行线两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.也可以简单说成:同位角相等两直线平行两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.其他两条可以简单说成:内错角相等两直线平行同旁内角相等两直线平行初中数学常见公式常见的初中数学公式1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.三角形内角和定理三角形三个内角的和等于180°6.多边形内角和定理 n边形的内角的和等于(n-2)×180°7.定理1 关于某条直线对称的两个图形是全等形初中5种数学提分方法1.细心地发掘概念和公式2.总结相似类型的题目3.收集自己的典型错误和不会的题目4.就不懂的问题,积极提问、讨论5.注重实践(考试)经验的培养初中数学有理数的运算加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

1.3 证明第1课时 平行线的性质与判定 浙教版数学八年级上册课件

1.3 证明第1课时 平行线的性质与判定 浙教版数学八年级上册课件

证明
•由“因”导“果”,执“果”索“因”是探索证明思路 最基本的方法. •言必有据,因果对应.是初学证明者谨记和遵循的原则. •我们必须用科学的观点来看待一切事物.
感谢观看!
变式跟进1 如图,在△ABC中, 点D在AB上, ∠ACD=∠A, ∠BDC的平分线交BC于点E. 求证:DE∥AC.
证明:∵DE是∠BDC的平分线, ∴ ∠BDE=∠CDE(角平分线的性质), 又∵∠BDE+∠CDE=180°-∠ADC
=∠A+∠ACD, ∴∠ACD=∠A, ∴∠A=∠BDE(等量代换), ∴DE∥AC(同位角相等,两直线平行).
例题讲解
A
已知:如图,DE∥BC,∠1=∠E. 求证:BE平分∠ABC.
D B 12
E C
证明:∵ DE∥BC(已知),
∴ ∠2=∠E(两直线平行,内错角相等),
∵ ∠1=∠E(已知),∴ ∠1=∠2,
∴BE平分∠ABC(角平分线的定义).
证明几何命题的思路分析
根据已知
依据所学
步步递推
证实判断
典型例题
第1章 三角形的初步知识
1.3 证 明
第1课时 平行线的性质与判定
学习目标 ✓ 了解证明的含义; ✓ 体验、理解证明的意义和必要性; ✓ 会根据平行线的性质与判定进行简单的推理论证.
知识回顾
现阶段我们在数学上学习的命题有类?
命题的分类
真命题 (包括定义、基本事实和定理) 假命题
知识回顾 判定一个命题是真命题的方法
1 平行线的判定
例1 已知:如图,在四边形ABCD中, AC平分∠BAD,∠1=∠2. 证明:AB∥CD.
注意:证明过程中的每一步推理都要有依据,依据作为推 理的理由,可以写在每一步后的括号内.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平行线的证明 》检测题
一、填空题:
1.命题“任意两个直角都相等”的条件是________,结论是___________, 它是________(真或假)命题.
2.已知,如图,直线AB 、CD相交于O ,OE 平分∠BOD 且∠AO E=150°,∠AOC 度为 .
3.如图1,如果∠B =∠1=∠2=50°,那么∠D = . ﻫ
4.如图2,直线l1、l2分别与直线l 3、l4相交,∠1与∠3互余,∠3的余角与∠2互补,∠4=125°,则∠
3= .
5.如图3,已知AB ∥CD ,∠C=75°,∠A =25°,则∠E 的度数为 .6ﻫ.如图AB ∥CD ∠1=∠2,∠3=∠4,试说明AD ∥BE 解:∵AB ∥CD(已知)
∴∠4=∠_____( )
∵∠3=∠4(已知) ∴∠3=∠_____( )
∵∠1=∠2(已知)
∴∠ 1+∠C AF=∠2+∠CAF( ) 即 ∠_____ =∠_____( ) ∴∠3=∠_____
∴AD ∥B E( ) 二、选择题:
1.如图,直线AB 、CD 相交于点O,OE ⊥AB 于点O,OF 平分∠AO E,∠1=15°30,则下列结论中不正确的是( ).ﻫA.∠2=45° B.∠1=∠3
C.∠AOD 与∠1互为补角
D.∠1的余角等于75°30′ 2.下列是命题的是( )
A.画两条相等的线段
B.等于同一个角的两个角相等吗?
C.延长线段AO 到C,使OC =OA D .两直线平行,内错角相等. 3.下列命题是假命题的是( ).
F E D
C B A
4
321
A.对顶角相等 B. -4是有理数
C. 内错角相等D. 两个等腰直角三角形相似
三、解答题:
1.已知如图,指出下列推理中的错误,并加以改正。

(1)∵∠1和∠2是内错角,∴∠1=∠2,
(2)∵∠1=∠2,∴AB//CD(两直线平行,内错角相等) ﻫ
2.如图2,已知:直线AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DFE的平分线相交于点P.你能说明∠P=90°吗?
3.如图,∠1=∠2,∠3=∠4,试问EF是否与GH平行?
4.如图写出能使AB//CD成立的各种条件。

ﻫﻫ
5.已知如图,AB//CD,∠1=∠3,求证:AC //BD 。

6.已知如图∠1=∠2,BD 平分∠ABC,求证:A B//C D ﻫﻫ
7.如图,已知直线a,b,c被直线d 所截,若∠1=∠2,∠2+∠3=180°,求证:a ∥c ﻫ
8.已知:如图、BE//CF,BE 、CF 分别平分∠ABC 和∠BCD 求证:AB //CD
9.已知:如图,AB//CD ,BC //DE ,∠B=70°,
求∠D 的度数。

A
C
D
F
B
E
1
2 A B E
10.已知:BC//EF,∠B=∠E,求证:AB//DE。

11.如图,已知AB∥CD,∠A =1000,CB平分∠ACD,求∠ACD、∠ABC的度数。

12.如图,已知:DE⊥AO于E, BO⊥AO,∠CFB=∠EDO,证明:CF∥DO .
A
B
E
P
D
C
F
C
B
A
F
E
D
O。

相关文档
最新文档