九年级数学下册 26_1_2 第2课时 反比例函数的图象和性质的综合运用 新人教版2
人教版九年级数学下册:26.1.2《反比例函数的图象和性质》教案2

人教版九年级数学下册:26.1.2《反比例函数的图象和性质》教案2一. 教材分析《反比例函数的图象和性质》是人教版九年级数学下册第26章第1节的内容。
本节课主要介绍了反比例函数的图象和性质,是学生在学习了正比例函数和一次函数的基础上进行学习的。
通过本节课的学习,使学生能理解反比例函数的概念,会绘制反比例函数的图象,掌握反比例函数的性质,并能应用于实际问题中。
二. 学情分析学生在学习本节课之前,已经学习了正比例函数和一次函数的相关知识,对函数的概念、图象和性质有一定的了解。
但反比例函数的概念和性质与前两者存在较大差异,需要学生在已有的知识基础上进行迁移和拓展。
同时,学生需要理解反比例函数图象的特点,如双曲线、渐近线等,这对学生的空间想象能力有一定要求。
三. 教学目标1.了解反比例函数的概念,掌握反比例函数的性质。
2.学会绘制反比例函数的图象,并能分析反比例函数图象的特点。
3.能将反比例函数应用于实际问题中,提高解决问题的能力。
4.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.反比例函数的概念和性质。
2.反比例函数图象的绘制和分析。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法。
通过设置问题引导学生思考,分析案例使学生理解反比例函数的应用,小组合作讨论促进学生交流和拓展思维。
六. 教学准备1.准备反比例函数的相关案例和问题。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备反比例函数图象的素材,如图片、图表等。
七. 教学过程导入(5分钟)教师通过展示一些实际问题,如购物时商品的单价和数量的关系,引出反比例函数的概念。
让学生思考并讨论这些问题,引导学生发现其中的规律。
呈现(10分钟)教师通过多媒体展示反比例函数的图象和性质,引导学生观察和分析。
同时,教师给出反比例函数的定义,并解释反比例函数的性质。
操练(10分钟)教师提出一些有关反比例函数的问题,让学生独立解答。
教师选取部分学生的解答进行讲解和分析,引导学生掌握反比例函数的性质。
人教版九年级数学下册26.1.2反比例函数的图像和性质(第2课时) 课件

【解析】因为反比例函数y=mxm²-5,它的两个
分支分别在第一、第三象限,
所以必须满足{
m²-5= m﹥0
-1
得 m =2
y
y=mxm²-5
0
x
1、反比例函数 y kx的图象经过(2,
-1),则k的值为
; -2
2、反比例函数 y kx的图象经过点(2, 5),若点(1,n)在反比例函数图象
【解析】选C.设A点的坐标为(a,b),则k=ab,△ABO的
面积为 1 OB OA 1 ab 3 ,所以ab=6,即k=6
2
2
5.(威海·中考)如图,一次函数y=kx+b的图象与反比
知识巩固
1.函数 y =
5 x
的图象在第_二__,四__象限,在每
个象限内,y 随 x 的增大而_增__大__ .
2. 双曲线 y =
1 3x
经过点(-3,___)
3.函数
y
=
m-2 x
的图象在二、四象限,则m的取
值范围是m__<_2_ .
4.对于函数 y =
1 2x
,当 x<0时,y 随x的_减__小__而
y
y
B
P(m,n)
oA
x
根据象限确定k的符号
B
P(m,n)
oA
x
2.根据图中点的坐标
y A(-2,b).
0
(1)求出y与x的函数解析式.
(2)如果点A(-2,b)在双
x 曲线上,求b的值. B (3,-1) (3)比较绿色部分和黄色部
分的面积的大小.
答案:(1) y 3 x
(2)
y3 2
26.1.2反比例函数的图像与性质 (教学课件)- 初中数学人教版九年级下册

典例精析例4如下图,它是反比例函数 图象的一支,根据图象,回答下列问题:(1)图象的另一支位于哪个象限?常数 m 的取值范围是什么?(2)在这个函数图象的某一支上任取点 A(x₁,y₁) 和点B(x₂,y₂), 如果x₁>X₂, 那么 y₁ 和 y₂有怎样的大小关系? o A
3.反比例函 的图象如图所示,则k<_0, 在图象的每一支上,y 随 x 的增大而增 大4.如图,M 为反比例函 图象上的一点,MA 垂直y轴,垂足为A,△MAO 的面积为2,则k的 值 为 4 .
yA M0
642o5-2-6
5X
课堂练习
3
课堂练习5.已知一次函数y=kx+b 的图象与反比例函 图象交于点A(3, 司),点B(14-2a,2).(1)求反比例函数的解析式;(2)若一次函数图象与y 轴交于点C, 点 D 为点C 关于原点O 的对称点,求△A CD 的面 积 . yAC ABO X
可得 解 故一次函数的解析式为
●
课堂练习∵当x=0 时 ,y=6,C(0,6)..OC=6. ∵点D 为点C关于原点O 的对称点, ∴CD=20C=12.
板书设计反比例函数的图象和性质1.反比例函数的性质:反比例函 的图象,当k>0 时,图象位于第一、三象限, 在每一象限内,y 的值随x的增大而减小;当k<0 时,图象位于第二、四象限,y 的 值随x的增大而增大.2.双曲线的两条分支逼近坐标轴但不可能与坐标轴相交。3.反比例函数的图象是一个以原点为对称中心的中心对称图形.4. 在反比例函数 的图象上任取一点,分别作坐标轴的垂线(或平行线), 与 坐标轴所围成的矩形的面积S矩形=|k|.
典例精析解:(1)反比例函数的图象只有两种可能:位于第一、第三象限,或 者位于第二、第四象限.因为这个函数的图象的一支位于第一象限,所以另 一支必位于第三象限.因为这个函数的图象位于第一、第三象限,所以m-5>0解 得 m>5.( 2 ) 因 为m-5>0, 所以在这个函数图象的任一支上,y 都随x 的增大而减小,因此当X₁>X₂ 时 ,y₁<y₂.
反比例函数的图象和性质的的综合运用-完整版课件

反比例函数的图象永远不会与 $x$ 轴和 $y$ 轴相 交。当 $x = 0$ 时,$y$ 无定义;当 $y = 0$ 时 ,$x$ 也无定义。
02
反比例函数图象变换规律
平移变换对图象影响
平移不改变反比例函数的形状,只改变其位置。 当函数图象沿x轴正方向平移时,函数值减小;沿x轴负方向平移时,函数值增大。
当函数图象沿y轴正方向平移时,函数值增大;沿y轴负方向平移时,函数值减小。
伸缩变换对图象影响
伸缩变换会改变反比 例函数的形状和位置 。
当函数图象沿y轴方 向拉伸时,函数值增 大;压缩时,函数值 减小。
当函数图象沿x轴方 向拉伸时,函数值减 小;压缩时,函数值 增大。
对称性在反比例函数中应用
反比例函数的图象关于原点对称 。
时间、速度、路程类问题建模思路
匀速直线运动问题
根据速度、时间和路程之间的反比例 关系,建立相应的数学模型,解决与 匀速直线运动相关的问题。
变速直线运动问题
通过设定物体的加速度和时间,利用 反比例函数关系建立速度模型,进而 解决与变速直线运动相关的问题。
经济、金融类问题建模思路
1 2 3
投资回报问题
反比例函数的图象和性质的的综合运 用-完整版课件
汇报人:XXX 2024-01-22
目 录
• 反比例函数基本概念与性质 • 反比例函数图象变换规律 • 反比例函数与直线交点问题探讨 • 反比例函数在实际问题中应用举例 • 综合运用:反比例函数与其他知识点结合 • 总结回顾与拓展延伸
01
反比例函数基本概念与性质
比例函数解决问题。同时,也有助于提高学生的数学素养和跨学科综合能力。
06
总结回顾与拓展延伸
人教版数学九年级下册26.1.2反比例函数的图象和性质(教案)

在本次教学过程中,我尝试了多种方法来帮助学生理解反比例函数的图象和性质。从导入新课到实践活动,再到小组讨论,我注重引导学生从生活实例中发现数学问题,并运用反比例函数来解决。以下是我对这次教学的几点反思:
首先,我发现通过生活实例导入新课能够有效激发学生的学习兴趣。在提问关于速度与时间关系的问题时,学生们表现出很高的积极性,这为后续的学习奠定了良好的基础。然而,在讲授过程中,我意识到有些学生对反比例函数的基本概念仍然存在理解困难,特别是对于k值的取值范围和函数图象的绘制。
3.重点难点解析:在讲授过程中,我会特别强调反比例函数的图象特点及其性质这两个重点。对于难点部分,如双曲线的绘制和单调性理解,我会通过图象展示和实际例题来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与反比例函数相关的实际问题,如速度与时间的反比关系。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过改变物体质量来观察重力与质量的关系,从而理解反比例函数的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“反比例函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
在小组讨论环节,学生们展示了他们的成果,但我感觉有些学生的思考还不够深入。为了提高学生的思考能力,我计划在接下来的课程中,逐步增加问题的难度,引导学生深入探讨反比例函数在实际生活中的应用。
此外,教学过程中的难点部分,如反比例函数的单调性,我感觉讲解得还不够透彻。在今后的教学中,我将采用更多具体的例子和对比分析,帮助学生更好地理解这一难点。
26.1.2反比例函数的图象与性质

在求解反比例函数相关问题时,要确保 $x$ 的取值范围使得函数有意义(即 $x neq 0$ )。
在实际应用中,要注意理解反比例关系背后 的实际意义,避免盲目套用公式。
拓展延伸:反比例函数在其他领域应用
经济学中的应用
在经济学中,反比例函数可以表 示某些经济变量之间的关系,如 价格与需求量之间的反比关系。
04
感谢您的观看
THANKS
06
函数图像在第二象限和第四象限内分别位于 $x$ 轴和 $y$ 轴的两侧,且无限接近于坐标轴。
02
反比例函数图象特征
图象形状与位置
图象形状
反比例函数的图象为双曲线,两 支分别位于第一、三象限或第二 、四象限。
图象位置
当$k > 0$时,图象位于第一、三 象限;当$k < 0$时,图象位于第 二、四象限。
表达式
反比例函数的一般表达式为 $y = frac{k}{x}$,其中 $k$ 是比例系数, 且 $k neq 0$。
自变量取值范围
自变量 $x$ 的取值范围
在反比例函数中,自变量 $x$ 不能取值为 0,即 $x neq 0$。
函数定义域
反比例函数的定义域为 $x in R$ 且 $x neq 0$。
偶函数性质
反比例函数不是偶函数,即不满足$f(-x)=f(x)$,图像不关于 y轴对称。
周期性考察
无周期性
反比例函数不具有周期性,即不存在 一个正数T,使得对于定义域内的任 意x,都有$f(x+T)=f(x)$成立。
图像特征
反比例函数的图像是双曲线,两支分 别位于第一、三象限和第二、四象限 ,且无限接近坐标轴但永不相交。
渐近线与交点情况
渐近线
人教版九年级数学下册:26.1.1《反比例函数》教学设计

人教版九年级数学下册:26.1.1《反比例函数》教学设计一. 教材分析人教版九年级数学下册第26.1.1节《反比例函数》是学生在学习了正比例函数之后,进一步探索函数的性质和应用。
本节内容通过引入反比例函数的概念,让学生理解反比例函数的定义、性质及其在实际生活中的应用。
教材通过丰富的例题和练习,帮助学生掌握反比例函数的图象和解析式,提高解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的函数知识,对正比例函数有一定的了解。
但是,对于反比例函数的概念和性质,学生可能较为抽象,难以理解。
因此,在教学过程中,需要结合学生的实际情况,采用生动形象的实例,引导学生理解反比例函数的定义和性质。
三. 教学目标1.了解反比例函数的概念,理解反比例函数的性质。
2.学会反比例函数的解析式,并能灵活运用。
3.提高解决实际问题的能力,培养学生的数学思维。
四. 教学重难点1.反比例函数的概念和性质。
2.反比例函数的解析式的运用。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题,引导学生探索反比例函数的性质;以实际案例为例,让学生理解反比例函数的应用;小组讨论,培养学生的合作精神和数学思维。
六. 教学准备1.准备相关的案例和实际问题。
2.准备反比例函数的图象和解析式的资料。
3.准备教学课件和板书设计。
七. 教学过程1.导入(5分钟)通过提问方式复习正比例函数的知识,然后引导学生思考:如果两个量的乘积为定值,这两个量之间是什么关系?从而引出反比例函数的概念。
2.呈现(15分钟)呈现反比例函数的定义和性质,让学生初步了解反比例函数的概念。
通过展示反比例函数的图象,让学生直观地感受反比例函数的性质。
3.操练(15分钟)让学生分组讨论,根据反比例函数的性质,找出实际生活中的反比例关系。
每组选取一个实例,并用反比例函数的解析式表示。
4.巩固(10分钟)让学生独立完成教材中的练习题,检验学生对反比例函数的理解和运用。
新人教版数学九年级下册第二十六章 反比例函数教案

新人教版数学九年级下册第二十六章反比例函数教案第26章反比例函数26.1.1反比例函数的意义【学习目标】1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。
2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用学情分析:虽然学生在八(上)已学过一次函数及特例“正比例函数”的内容,对函数有了初步的认识。
从学生接触函数所蕴含的“变化与对应”思想至今已经半年有余,学生对与函数相关的概念不可避免会有所遗忘或生疏。
因此,学习本节课的关键是处理好新旧知识的联系,尽可能地减少学生接受新知识的困难。
【学习重点】理解反比例函数的意义,确定反比例函数的解析式【学习难点】反比例函数的解析式的确定26.1.2 反比例函数的图象和性质知能准备【学习目标】1、画反比例函数的图象,并知道该图象与正比例函数、一次函数图象的区别,能从反比例函数的图象上分析出简单的性质.2、能用反比例函数的定义和性质解决实际问题.【学情分析】前面已经学习了一次函数和二次函数,对研究函数有了一定的方法;即画出图像并根据图像研究其性质【学思指导】教法:讲授法、对比法学法:类比法、数形结合法学科素养:通过画图象,进一步培养“描点法”画图的能力和方法,并提高对函数图象的分析能力.同时尝试用类比和特殊到一般的思路方法,归纳反比例函数一些性质特征.【【课前预习】1.若y=(21)(1)n nx-+是反比例函数,则n必须满足条件 n≠12或n≠-1 .2.用描点法画图象的步骤简单地说是列表、描点、连线. 3.试用描点法画出下列函数的图象:(1)y=2x;(2)y=1-2x.设计意图:通过回忆,学会用描点法画函数的图象课堂引讨——【展示互动】问题:我们已知道,一次函数y=kx+b(k≠0)的图象是一条直线,•那么反比例函数y=k x(k为常数且k≠0)的图象是什么样呢?[尝试]用描点法来画出反比例函数的图象.画出反比例函数y=6x和y=-6x的图象.解:列表思考:取什么值更易描出来x …-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …y=6x-1 -1.5 -2 -6 3 1y=-6x1 1.23 6 -1.5(请把表中空白处填好)描点,以表中各对应值为坐标,在直角坐标系中描出各点.连线,用平滑的曲线把所描的点依次(从大到小或从小到大的顺序)连接起来探究反比例函数y=6x和y=-6x的图象有什么共同特征?它们之间有什么关系?做一做把y=6x和y=-6x的图象放到同一坐标系中,观察一下,看它们是否对称.归纳:反比例函数y=6x和y=-6x的图象的共同特征:(1)它们都由两条曲线组成.(2)随着x的不断增大(或减小),曲线越来越接近坐标轴(x轴、y轴).(3)反比例函数的图象属于双曲线.此外,y=6x的图象和y=-6x的图象关于x轴对称,也关于y轴对称.做一做在平面直角坐标系中画出反比例函数y=3x和y=-3x的图象.交流两个函数图象都用描点法画出?【分析】由y=6x和y=-6x的图象及y=3x和y=-3x的图象知道,(1)它们有什么共同特征和不同点?(2)每个函数的图象分别位于哪几个象限?(3)在每一个象限内,y随x的变化而如何变化?猜想反比例函数y=kx(k≠0)的图象在哪些象限由什么因素决定?•在每一个象限内,y随x的变化情况如何?它可能与坐标轴相交吗?【归纳】(1)反比例函数y=kx(k为常数,k≠0)的图象是双曲线.(2)当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内,y•值随x值的增大而减小.(3)当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内,y•值随x值的增大而增大.设计意图:通过画图并研究:得到反比例函数图像的形状及其增减性精编精练例题指出当k>0时,下列图象中哪些可能是y=kx与y=kx(k≠0)在同一坐标系中的图象()【分析】对于y=kx来说,当k>0时,图象经过一、三象限,当k<0时,图象经过二、四象限;对于y=kx来说,当k>0时,图象在一、三象限,当k<0时,图象在二、四象限,所以应选B.备选例题1.请你写出一个反比例函数的解析式,使它的图象在第一、三象限.2.如图所示的函数图象的关系式可能是(• )A.y=x B.y=1xC.y=x2 D.y=1||x设计意图:通过具体的习题使学生加深对本部分知识的理解能解决具体问题。