圆的基础习题(含答案)
圆的练习题(含答案)

圆的练习题一.选择题1.⊙O是△ABC的外接圆,直线EF切⊙O于点A,若∠BAF=40°,则∠C等于()A、20°B、40°C、50°D、80°2.如图,BC是⊙O的直径,P是CB延长线上一点,P A切⊙O于点A,如果P A=, PB=1,那么∠APC等于()3.某工件形状如图所示,圆弧BC的度数为,AB=6厘米,点B到点C的距离等于AB,∠BAC=,则工件的面积等于()(A)4π(B)6π(C)8π(D)10π4.下列语句中正确的是()(1)相等的圆心角所对的弧相等;(2)平分弦的直径垂直于弦;(3)长度相等的两条弧是等弧;(4)经过圆心的每一条直线都是圆的对称轴.(A)1个(B)2个(C)3个(D)4个5.如图,两个等圆⊙O和⊙的两条切线OA、OB,A、B是切点,则∠AOB等于() (A)(B)(C)(D)6.如图,⊙A、⊙B、⊙C、⊙D、⊙E相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和是()(A)π(B)1。
5π(C)2π(D)2。
5π7。
在Rt△ABC中,已知AB=6,AC=8,∠A=.如果把Rt△ABC绕直线AC旋转一周得到一个圆锥,其表面积为S;把Rt△ABC绕直线AB旋转一周得到另一个圆锥,其表面积为S,那么S∶S()(A)2∶3(B)3∶4(C)4∶9(D)5∶128.圆锥的母线长为13cm,底面半径为5cm,则此圆锥的高线长为() A.6 cm B.8 cm C.10 cm D.12 cm9.已知⊙O1和⊙O2相外切,它们的半径分别是1厘米和3厘米.那么半径是4厘米,且和⊙O1、⊙O2都相切的圆共有()(A)1个(B)2个(C)5个(D)6个10.已知圆的半径为6。
5厘米,如果一条直线和圆心距离为6。
5厘米,那么这条直线和这个圆的位置关系是()(A)相交(B)相切(C)相离(D)相交或相离二.填空题1.已知:如图,AB是⊙O的直径,弦CD⊥AB于P,CD=10cm,AP︰PB=1︰5.则:⊙O的半径为。
九年级圆知识点及习题(含答案)

圆圆的有关概念与性质1.圆上各点到圆心的距离都等于半径。
2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形,圆心是它的对称中心。
3.垂直于弦的直径平分这条弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等,那么它们所对应的其余各组量都分别相等。
5.同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半。
6.直径所对的圆周角是 90°,90°所对的弦是直径。
7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。
8.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。
9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外,②点在圆上,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交,②相切,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:①内含,②相内切,③相交,④相外切,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线, 切线长 相等,这点与圆心之间的连线 平分 这两条切线的夹角。
初中数学九年级上册《圆》基础典型练习题(整理含答案)

圆一、认认真真,书写快乐1.圆内接五边形各边相等,各边所对的圆心角的度数是 .2.如图1,在⊙O 中,AB AC =,∠B =70°,则∠C = .3.在半径为2的⊙O 中,弦AB 的长为则弦AB 所对的圆心角∠AOB 的度数是 .4.若⊙O 是△ABC 的外接圆,OD ⊥BC 于D ,且∠BOD =48°,则∠BAC = .5.如图2所示,弦AB 过圆心O ,∠A =30°,⊙O 的半径长为CD ⊥AB 于E ,则CD 的长为 .二、仔仔细细,记录自信6.下列图形中对称轴最多的是( )A .圆B .正方形C .等腰三角形D .线段7.在同圆或等圆中,如果圆心角∠BOA 等于另一圆心角∠COD 的2倍,则下列式子中能成立的是( )A .AB =2CD B .2AB CD =C .2AB CD < D .AB CD =8.下列语句中,正确的有( )①相等的圆心角所对的弦相等;②平分弦的直径垂直于弦;③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴.A .1个B .2个C .3个D .4个9.如图3,已知圆心角∠AOB =100°,则圆周角∠ACB 的度数为( )A .100°B .80°C .50°D .40°10.已知:如图4,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=30°,则∠CAD等于()A.30°B.40°C.50°D.60°三、平心静气,展示智慧11.如图5,AB是⊙O的直径,AC、CD、DE、EF、FB都是⊙O的弦,且AC=CD=DE=EF=FB,求∠AOC与∠COF的度数.12.如图6,一座圆弧形的拱桥,它所在圆的半径为10米,某天通过拱桥的水面宽度AB为16米,现有一小帆船高出水面的高度是3.5米,问小船能否从拱桥下通过?13.如图7,在⊙O中,弦AB与CD相交于点E,AB=CD.(1)求证:△AEC≌△DEB;(2)点B与点C关于直线OE对称吗?试说明理由.参考答案:一、1.722.70 3.90 4.48 5.6 二、6.A 7.B 8.A 9.C 10.D三、11.解:因为AC DC DE EF FB ====,所以180536AOC COD DOE EOF FOB =====÷=∠∠∠∠∠, 所以336108COF AOC ==⨯=∠∠.12.先算出拱桥高出水面的高度为4米,4 3.5>,因此可以通过.13.解:因为AB CD =,所以AB CD =.所以AB AD CD AD -=-,即BD CA =,所以BD CA =.在AEC △与DEB △中,BD CA =,ACE DBE =∠∠,AEC DEB =∠∠, 所以AEC DEB △≌△.(2)点B 与点C 关于直线OE 对称.理由略.。
《圆》同步练习题含答案

九年级数学上册第24章《圆》同步练习一、选择题1.圆的直径为13cm,如果圆心与直线的距离是d,则()A.当d=8 cm,时,直线与圆相交B.当d=4.5 cm时,直线与圆相离C.当d=6.5 cm时,直线与圆相切D.当d=13 cm时,直线与圆相切2.如图,在⊙O中,AB为直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连接CD.如果∠BAC=20°,则∠BDC=()A.80°B.70°C.60°D.50°3.如图是一个正八边形,图中空白部分的面积等于20,则阴影部分的面积等于()A.102 B.20 C.18 D .2024.如图,△ABC内接于⊙O,且∠ABC=700,则∠AOC为()(A)1400 (B)1200(C)900 (D)3505.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外 D.无法确定6.(3分)在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为()A.30° B.45° C.60° D.90°7.(3分)(2015•牡丹江)如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于().A.32° B.38° C.52° D.66°8.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是()A.24cm B.48cm C.96cm D.192cm二、填空题9.用半径为6cm的半圆围成一个圆锥的侧面,则圆锥的底面半径等于cm.10.一个几何体的三视图如图,根据图示的数据计算该几何体的表面积为.(结果保留π)11.如果一个扇形的圆心角为120°,半径为6,那么该扇形的弧长是.12.如图,在⊙O中,∠OAB=45°,圆心O到弦AB的距离OE=2cm,则弦AB的长为 cm.13.(3分)用一个圆心角为90°,半径为4的扇形围成一个圆锥的侧面,该圆锥底面圆的半径.14.(3分)边长为1的正三角形的内切圆半径为.15.(3分)(2015•郴州)已知圆锥的底面半径是1cm,母线长为3cm,则该圆锥的侧面积为 cm2.16.(4分)如图,AD是⊙O的直径,弦BC⊥AD于E,AB=BC=12,则OC= .三、解答题17.如图,已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C,若AB=2,∠P=30°,求AP的长(结果保留根号).18.已知:如图,AB 为⊙O 的直径,AD 为弦,∠DBC =∠A 求证: BC 是⊙O 的切线;19.若OC ∥AD ,OC 交BD 于E ,BD=6,CE=4,求AD 的长.20.如图,已知⊙O 与BC 相切,点C 不是切点,AO ⊥OC ,∠OAC=∠ABO ,且AC=BO ,判断直线AB 与⊙O 的位置关系,并说明理由.21.已知,如图,直线MN 交⊙O 于A ,B 两点,AC 是⊙O 的直径,DE 切⊙O 于点D ,且DE ⊥MN 于点E . (1)求证:AD 平分∠CAM .(2)若DE=6,AE=3,求⊙O 的半径. 22.(10分)如图,已知AB 是⊙O 的直径,点C ,D 在⊙O 上,点E 在⊙O 外,∠EAC=∠B . (1)求证:直线AE 是⊙O 的切线;(2)若∠D=60°,AB=6时,求劣弧AC 的长(结果保留π).O E D CB A参考答案1.C2.B.3.B.4.A5.B.6.D.7.B.8.B.9.310.24π.11.4π.12.4.13.1.14.6.15.3π.16.17.18.证明:(1)∵AB为⊙O的直径∴∠D=90°, ∠A+∠ABD=90°∵∠DBC =∠A∴∠DBC+∠ABD=90°∴BC⊥AB∴BC是⊙O的切线19.∵OC∥AD,∠D=90°,BD=6∴OC⊥BD∴BE=12BD=3∵O是AB的中点∴AD=2EO -∵BC⊥AB ,OC⊥BD∴△CEB ∽△BEO ,∴2BE CE OE =• ∵CE=4, ∴94OE = ∴AD=9220.直线AB 与⊙O 的位置关系是相离.理由见解析. 21.(1)证明见解析;(2)⊙O 的半径为7.5. 22.(1)证明见试题解析;(2)2π.。
(完整版)有关圆的经典练习题及答案

圆的经典练习题及答案一、填空题1. (2011浙江省舟山,15 , 4分)如图,AB 是半圆直径,半径0C丄AB于点O, AD平分/ CAB交弧BC于点D,连结CD、0D,给出以下四个结论:① AC// 0D :②CE 0E ;③厶0DE ADO :④2CD2CE AB •其中正确结论的序号是___________________ .【答案】①④2. (2011安徽,13, 5分)如图,O 0的两条弦AB、CD互相垂直,垂足为E,且AB=CD , 已知CE=1 , ED=3,则O 0的半径是 ______________________ •4. (2011山东日照,14, 4分)如图,在以AB为直径的半圆中,有一个边长为1的内接正5. (2011山东泰安,23 , 3分)如图,FA与O 0相切,切点为A, P0交O 0于点C,点B是优弧CBA上一点,若/ ABC==32°,则/ F的度数为 ____________________________ 。
方形CDEF,则以AC和BC的长为两根的元二次方程是(第16题)【答,贝ACD=x+1=0【答案】26°6.(2011山东威海,15,3分)如图,O O的直径A B与弦C D相交于点E,若【答案】(—2,—1)8. (2011浙江杭州,14 , 4 )女口图,点A , B , C , D都在O O上,的度数等于84° CA是/ OCD的平分线,则/ ABD 十/ CAO= ________ °【答案】53°9. (2011浙江温州,14, 5分)如图,AB是O O的直径,点C, D都在O O上,连结CA,D=30 ° BC= 3,贝U AB 的长是.10. (2011浙江省嘉兴,16, 5分)如图,AB是半圆直径,半径OC丄AB于点O, AD平分 /CAB分别交OC于点E,交弧BC于点D,连结CD、OD,给出以下四个结论:① S^2 AEC=2S^DEO ;②AC=2CD ;③线段OD是DE与DA的比例中项;④2CD CE AB .其的度数等于84° CA是/ OCD的平分中正确结论的序号是_________ .2【答案】①④ 11. (2011福建泉州,16, 4分)已知三角形的三边长分别为 3, 4, 5,则它的边与半径为1的圆的公共点个数所有可能的情况是 ______________________ .(写出符合的一种情况即 可)【答案】2 (符合答案即可)12. (2011甘肃兰州,16,4分)如图,0B 是O O 的半径,点C 、D 在O O 上,/ DCB=27 贝OBD=_________ 度。
初三数学圆基础练习题及答案

初三数学圆基础练习题及答案练习题一:直径和半径的关系1. 若一个圆的半径为5cm,求其直径的长度是多少?答案:直径的长度是2倍的半径长度,因此直径的长度为10cm。
2. 若一个圆的直径为12cm,求其半径的长度是多少?答案:半径的长度是直径长度的一半,因此半径的长度为6cm。
练习题二:圆的周长和面积计算3. 已知一个圆的半径为3cm,求其周长和面积。
答案:圆的周长公式为C = 2πr,其中r为半径。
将半径代入公式,可得C = 2π × 3 = 6π ≈ 18.85cm。
圆的面积公式为A = πr²,将半径代入公式,可得A = π × 3² = 9π ≈ 28.27cm²。
4. 已知一个圆的周长为10π cm,求其半径和面积。
答案:圆的周长公式为C = 2πr,已知周长为10π,因此10π = 2πr,可得r = 5。
圆的面积公式为A = πr²,将半径代入公式,可得A = π × 5² = 25π ≈ 78.54cm²。
练习题三:相交圆的交点个数5. 如果两个圆相交于两个点,这两个圆的关系是什么?答案:两个相交的圆是相交圆。
6. 如果两个圆相交于一个点,这两个圆的关系是什么?答案:两个相交于一个点的圆是切圆。
7. 如果两个圆不相交,也不包含对方,这两个圆的关系是什么?答案:两个不相交也不包含对方的圆是相离圆。
练习题四:判断圆心在坐标系中的位置8. 圆心坐标为(2, 3),半径为4的圆在坐标系中处于哪个位置?答案:根据圆心坐标和半径,我们可以在坐标系中画出这个圆。
圆心(2, 3)代表圆心在横坐标2,纵坐标3处,半径为4表示从圆心向外延伸4个单位的长度。
因此该圆处于横坐标为2,纵坐标为3的位置,并以该点为中心向外扩展4个单位的长度。
练习题五:圆的切线和切点9. 若一条直线与圆相切,这条直线与圆的关系是什么?答案:一条与圆相切的直线称为圆的切线。
圆的认识练习题(含答案)

圆的认识一、选择题:(每小题3分,共24分)1.图1中所示,点A 、O 、D 以及B 、O 、C 分别在一条直线上,则圆中弦的条数为( ) A.2 B.3 C.4 D.5(1)EDCBAO(2)NMFE (3)CBAO(4)DCBAO2.下列说法:①直径是弦;②弦是直径;③过圆内一点有无数多条弦,这些弦都相等;④直径是圆中最长的弦,其中正确的有( ) A.1个 B.2个 C.3个 D.4个3.⊙O 的半径是20cm,圆心角∠AOB=120°,AB 是⊙O 弦,则AOB S 等于( ) A.253cm 2 B.503cm 2 C.1003cm 2 D.2003cm 24.如图2所示,EF 是⊙O 直径,且EF=10cm,弦MN=8cm,则E 、F 两点到直线MN 的距离之和等于( )A.12cmB.6cmC.8cmD.3cm5.在⊙O 中,∠AOB=84°,则弦AB 所对的圆周角是( ) A.42°或138° B.138° C.69° D.42°6.△AOB 中,∠AOB=90°,∠B=34°,如图3所示,以O 为圆心,OA 为半径的圆交AB 于C,则AC 的度数是( )A.56°B.68°C.72°D.84°7.如图4所示,O 是圆心,半径OC ⊥弦AB,垂足为D 点,AB=8,CD=2,则OD 等于( ) A.2 B.3 C.22 D.238.一条弦分圆周为5:7,这条弦所对的圆周角为( )A.75°B.105°C.60°或120°D.75°或105° 二、填空题:(每小题4分,共40分)9.确定一个圆的两个条件是_______和_______,________决定圆的位置, _____决定圆的大小.10.如图5所示,OA 、OB 是圆的两条半径,∠OAB=45°,AO=5,则AB=_________.(5)BAO(6)MD CBAO(7)EDCBAO(8)CBAO(9)B A O 11.圆内最长弦长为30cm,则圆的半径为______cm.12.如图6所示,CD 是⊙O 的直径,AB 是弦,CD ⊥AB,交AB 于M,则可得出AM=MB,AC BC 等多个结论,请你按现在图形再写出另外两个结论:__________. 13.如图7所示,AB 是⊙O 的直径,弦CD 与AB 相交于点E,若_______,则CE=DE(只需填写一个你认为适当的一个条件)14.如图8,A 、B 、C 三点在⊙O 上,∠BOC=100°,则∠BAC=_________. 15.在⊙O 中,弦AB 所对的圆周角之间的关系为_________.16.如果⊙O 的直径为10cm,弦AB=6cm,那么圆心O 到弦AB 的距离为_____cm. 17.过圆上一点引两条互相垂直的弦,如果圆心到两条弦的距离分别是2和3, 那么这两条弦长分别是___________. 18.如图9,在半径为2cm 的⊙O 内有长为23cm 的弦AB,则此弦所对圆心角∠ABO=___. 三、求解题:(9分)19.如图,⊙O 的直径AB 和弦CD 相交于点E,已知AE=6cm,EB=2cm, ∠CEA=30°, 求CD 的长.EDCBAO四、证明题:(每小题9分,共27分)20.如图所示,已知F 是以O 为圆心,BC 为直径的半圆上任一点,A 是BF 的中点,AD ⊥BC 于点D.求证:AD=12BF.21.如图所示,已知AE 为⊙O 的直径,AD 为△ABC 的BC 边上的高.求证:AD ·AE=AB ·AC22.如图所示,已知⊙O,线段AB 与⊙O 交于C 、D 两点,且OA=OB.求证:AC=BD.D CBA O. O D CFBA答案一、1.B 2.B 3.C 4.B 5.A 6.B 7.B 8.D二、9.圆心;半径;圆心;半径10.52 11.15 12.AC=BC;∠A=∠B13.AB=CD或AC AD=或BC BD=14.50° 15.相等或互补 16.4 17.6和4 18.120°三、19.解:过O作OF⊥CD于F,连结CO.∵AE=6cm,EB=2cm,∴AB=8cm,∴OA=12AB=4cm,OE=AE-AO=2cm.在Rt△OEF中,∵∠CEA=30°,∴OF=12OE=1cm.在Rt△CFO中,OF=1cm,OC=OA=4cm,∴CF=2215OC OF-=,又∵OF⊥CD,∴DF=CF,∴CD=2CF=215cm四、20.证明:延长AD,交⊙O于点M,由垂径定理知,AB BM=, 又∵A是BF的中点,∴AM BF=,AM=BF,而AD=12AM,∴AD=12BF.21.证明:连结BE,∵AE为⊙O的直径,∴∠ABE=90°, 在Rt△ABE和Rt △ADC中,∠E=∠C,∴△ABE∽△ADC,∴AD AEAD AC=,即AD·AE=AB·AC.22.证明:过O点作OM⊥AB于M, ∵OA=OB,∴AM=MB,又∵OM⊥AB,CD是弦,∴CM=MD,∵AM-CM=BM-DM,∴AC=BD.。
高中圆的练习题及答案

高中圆的练习题及答案高中圆的练习题及答案在高中数学中,圆是一个重要的几何概念。
它具有独特的性质和特点,是许多数学问题和应用的基础。
在本文中,我们将探讨高中圆的练习题及其答案,帮助学生更好地理解和掌握这一概念。
1. 题目:已知圆的半径为5cm,求其周长和面积。
解答:圆的周长公式为C=2πr,面积公式为A=πr²。
代入半径r=5cm,即可得到周长C=2π×5=10π cm,面积A=π×5²=25π cm²。
2. 题目:已知圆的直径为8cm,求其周长和面积。
解答:圆的直径等于半径的两倍,所以半径r=8/2=4cm。
根据前面的公式,周长C=2πr=2π×4=8π cm,面积A=πr²=π×4²=16π cm²。
3. 题目:已知圆的周长为12π cm,求其半径和面积。
解答:根据周长公式C=2πr,可以得到r=C/2π=12π/2π=6cm。
然后,根据面积公式A=πr²,可以得到面积A=π×6²=36π cm²。
4. 题目:已知圆的周长为30cm,求其半径和面积。
解答:同样利用周长公式C=2πr,可以得到r=C/2π=30/2π=15/π cm。
然后,利用面积公式A=πr²,可以得到面积A=π×(15/π)²=225/π cm²。
5. 题目:已知圆的面积为16π cm²,求其半径和周长。
解答:根据面积公式A=πr²,可以得到r=√(A/π)=√(16π/π)=√16=4cm。
然后,利用周长公式C=2πr,可以得到周长C=2π×4=8π cm。
通过以上练习题,我们可以看到圆的周长和面积与其半径之间的关系。
当我们已知半径时,可以利用周长和面积的公式求解;反之,当我们已知周长或面积时,可以反推出半径的值。
这种关系在解决实际问题和进行几何推理时非常有用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题ﻫ1.对于下列命题:
①任意一个三角形一定有一个外接圆,并且只有一个外接圆;ﻫ②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;ﻫ③任意三角形一定有一个内切圆,并且只有一个内切圆;ﻫ④任意一个圆一定有一个外切三角形,并且只有一个外切三角形.ﻫ其中,正确的有( ).ﻫ A.1个 B.2个C.3个D.4个
ﻫ 2.下列命题正确的是( ).ﻫA.相等的圆周角对的弧相等B.等弧所对的弦相等
C.三点确定一个圆 D.平分弦的直径垂直于弦
ﻫ 3.秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡秋千时,秋千在最高处踩板离地面2米(左右对称),如图所示,则该秋千所荡过的圆弧长为().ﻫA.米
B.米C.米 D.米
4.已知两圆的半径分别为2、5,且圆心距等于2,则两圆位置关系是( ).
A.外离 B.外切C.相切 D.内含ﻫ
5.如图所示,在直角坐标系中,一个圆经过坐标原点O,交坐标轴于E、F,OE=8,OF=6,则圆的直径ﻫ长为( ).
A.12 B.10 C.4 D.15ﻫ
ﻫ
第3题图第5题图第6题图第7题图ﻫﻫ6.如图所示,方格纸上一圆经过(2,5),(-2,1),(2,-3),(6,1)四点,则该圆圆心的坐标为( ).
A.(2,-1)B.(2,2)C.(2,1) D.(3,1)
7.如图所示,CA为⊙O的切线,切点为A,点B在⊙O上,若∠CAB=55°,则∠AOB等于( ).
A.55°B.90°C.110° D.120°ﻫﻫ 8.一个圆锥的侧面积是底面积的3倍,这个圆锥的侧面展开图的圆心角是( ).ﻫ A.60° B.90°C.120°
D.180°ﻫ
二、填空题9 ﻫ.如图所示,△ABC内接于⊙O,要使过点A的直线EF与⊙O相切于A点,则图中的角应满足的条件是________ﻫ(只填一个即可).ﻫ
10.已知两圆的圆心距为3,的半径为1.的半径为2,则与的位置关系为________.ﻫ
11.如图所示,DB切⊙O于点A,∠AOM=66°,则∠DAM=________________.
第9题图第11题图第12题图第15题图
ﻫ12.如图所示,⊙O的内接四边形ABCD中,AB=CD,则图中与∠1相等的角有________________.
ﻫ 13.点M到⊙O上的最小距离为2cm,最大距离为10 cm,那么⊙O的半径为________________.
14.已知半径为R的半圆O,过直径AB上一点C,作CD⊥AB交半圆于点D,且,则AC的长为_______.
ﻫ15.如图所示,⊙O是△ABC的外接圆,D是弧AB上一点,连接BD,并延长至E,连接AD,若AB=AC,ﻫ∠ADE=65°,则∠BOC=________________.
16.已知⊙O的直径为4cm,点P是⊙O外一点,PO=4cm,则过P点的⊙O的切线长为________________cm,这两条切线的夹角是________________.
三、解答题ﻫ17.如图,是半圆的直径,过点作弦的垂线交半圆
于点,交于点使.试判断直线与圆的位置关系,并证明你的结论;ﻫ
ﻫ 18.在直径为20cm的圆中,有一弦长为16cm,求它所对的弓形的高。
ﻫﻫ19.如图,点P在y轴上,交x轴于A、B两点,连结BP并延长交于C,过点C的直线
交轴于,且的半径为,.ﻫ (1)求点的坐标;
(2)求证:是的切线;
ﻫﻫ 20. 阅读材料:如图(1),△ABC的周长为,内切圆O的半径为r,连接OA、OB、OC,△ABC 被划分为三个小三角形,用.表示△ABC的面积.
∵,
又∵,,,
∴(可作为三角形内切圆的半径公
式).
(1)理解与应用:利用公式计算边长分别为5、12、13的三角形的内切圆半径;
(2)类比与推理:若四边形ABCD存在内切圆(与各边都相切的圆,如图(2)),且面积为S,各边长分别为a、b、c、d,试推导四边形的内切圆半径公式;
(3)拓展与延伸:若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1、a2、a3、…、a n,合理猜想其内切圆半径公式(不需说明理由).
答案与解析
【答案与解析】一、选择题1 ﻫ.【答案】B;ﻫ【解析】任意一个圆的内接三角形和外切三角形都可以作出无数个.①③正确,②④错误,故选B.ﻫ 2.【答案】B;ﻫ【解析】在同圆或等圆中相等的圆周角所对的弧相等,所以A不正确;等弧就是在同圆或等圆中能够
重合的弧,因此B正确;三个点只有不在同一直线上才能确定一个圆,所以C不正确;平分
弦(不是直径)的直径垂直于此弦,所以D不正确.对于性质,定义中的一些特定的条件,3.【答案】B;ﻫ【解析】以实物或现实为背景,以与圆相关的位置关系或数量关系为考查目标.这样的考题,背景公平、
现实、有趣,所用知识基本,有较高的效度与信度.
4.【答案】D;
【解析】通过比较两圆半径的和或差与圆心距的大小关系,判断两圆的位置关系. 5-2=3>2,所以两圆
位置关系是内含.
5.【答案】B;ﻫ【解析】圆周角是直角时,它所对的弦是直径.直径EF
.ﻫ 6.【答案】C;
【解析】横坐标相等的点的连线,平行于y轴;纵坐标相等的点的连线,平行于x轴.结合图形可以发现,
由点(2,5)和(2,-3)、(-2,1)和(6,1)构成的弦都是圆的直径,其交点即为圆心(2,1).
7.【答案】C;
【解析】能够由切线性质、等腰三角形性质找出数量关系式.由AC切O于A,则∠OAB=35°,
所以∠AOB=180°-2×35°=110°.
8.【答案】C;ﻫ【解析】设底面半径为r,母线长为,则,
∴,∴,
∴n=120,∴∠AOB=120°.
二、填空题9 ﻫ.【答案】∠BAE=∠C或∠CAF=∠B.ﻫ10.【答案】外切.ﻫ11.【答案】147°;ﻫ【解析】因为DB是⊙O的切线,所以OA⊥DB,由∠AOM=66°,
得∠OAM=
∠DAM=90°+57°=147°.
12.【答案】∠6,∠2,∠5.ﻫ【解析】本题中由弦AB=CD可知,因为同弧或等弧所对的圆周角相等,ﻫ故有∠1 =∠6=∠2=∠5.ﻫ13.【答案】4 cm或6 cm ;
【解析】当点M在⊙O外部时,⊙O半径4(cm);
当点M在⊙O内部时,⊙O半径.ﻫ点与圆的位置关系不确定,
分点M在⊙O外部、内部两种情况讨论.ﻫ14.【答案】或;
【解析】根据题意有两种情况:ﻫ①当C点在A、O之间时,如图(1).
由勾股定理OC=,故.
②当C点在B、O之间时,如图(2).由勾股定理知,
故.
没有给定图形的问题,在画图时,一定要考虑到各种情况.1 ﻫ5.【答案】100°;
【解析】∠ADE=∠ACB=65°,∴∠BAC=180°-65°×2=50°,∠BOC=2∠BAC=100°.ﻫ在前面的学习中,我们用到了圆内接四边形的性质(对角互补,外角等于内对角),ﻫ在解一些客观性题目时,可以使用.
16.【答案】; 60°;
【解析】连接过切点的半径,则该半径垂直于切线.在由⊙O的半径、切线长、OP组成的直角三角形中,
半径长2cm,PO=4cm.由勾股定理,求得切线长为,两条切线的夹角为30°×2=60°.
本题用切线的性质定理得到直角三角形,利用勾股定理和切线长定理求解.
三、解答题
17.【答案与解析】
AC与⊙O相切.ﻫ证明:∵弧BD是∠BED与∠BAD所对的弧,
∴∠BAD=∠BED,
∵OC⊥AD,ﻫ∴∠AOC+∠BAD=90°,
∴∠BED+∠AOC=90°,ﻫ即∠C+∠AOC=90°,
∴∠OAC=90°,
∴AB⊥AC,即AC与⊙O相切. 18 ﻫ.【答案与解析】ﻫ一小于直径的弦所对的
弓形有两个:劣弧弓形与优弧弓形.
如图,HG为⊙O的直径,且HG⊥AB,AB=16cm,HG=20cmﻫ
ﻫﻫ
ﻫﻫ故所求弓形的高为4cm或16cm
19.【答案与解析】ﻫ (1)连结.
.ﻫ,ﻫ,.
是的直径,ﻫ.
,,ﻫ,ﻫ,,.ﻫ(2)过点ﻫ
.ﻫ当时,,ﻫ.
,,
,ﻫ
,ﻫ的切线.ﻫﻫ.【答案与解析】ﻫ
=30.ﻫ
,ﻫ
.ﻫ
(3).。