质数 合数 分解质因数
质数合数

质数合数(上)100以内质数有些质数,加上2或者减去2,得到的结果仍是质数。
那么100以内,请写出这些数。
两个质数的和是40,求这两个质数的乘积有几个。
两个质数的和是30,求这两个质数的乘积有几个。
判断247、227是否是质数。
判断101、159是否是质数。
分解质因数:360、999 分解质因数:240、10101课后作业:1、一个两位质数的两个数字交换位置后,仍然是一个质数,请写出一些这样的质数。
2、两个质数的和是99,那么这两个质数的积是多少?3、分解质因数:120、1080、1001质数合数(中)写出下面数的全部因数:24、36 写出下面数的全部因数:48、64 求360共有多少个因数?求280共有多少个因数?求下列自然数所有因数的和:9、72求下列自然数所有因数的和:240用1155个大小相同的正方形拼成一个长方形,有多少种不同的拼法?用105个大小相同的正方形拼成一个长方形,有多少种不同的拼法?作业:写出下面数的全部因数:56、81求252共有多少个因数?求下列自然数所有因数的和:360用56个大小相同的正方形拼成一个长方形,有多少种不同的拼法?质数合数(下)已知三个连续自然数的乘积是210,求这三个数。
已知五个连续自然数的乘积是55440,求这五个数。
用一个两位数除330,结果正好能整除。
请写出所有可能的两位数。
用一个两位数除140,结果正好能整除。
请写出所有可能的两位数。
975×935×972×(),要使这个连乘积的最后4个数字都是0,()内最小应该填什么?168×86×760×(),要使这个连乘积的最后3个数字都是0,()内最小应该填什么?1×2×3×4×......×149×150,这150个数相乘的积的末尾会出现多少个连续的零?1×2×3×4×......×49×50,这50个数相乘的积的末尾会出现多少个连续的零?作业:已知四个连续自然数的乘积是1680,求这四个数。
小学五年奥数-质数合数分解质因数

质数、合数和分解质因数【知能大展台】一个自然数,如果只有1和它本身这两个约数,这样的数叫做质数(或素数)一个自然数,如果除了1和它本身还有别的约数,这样的数叫做合数。
1既不是质数,也不是合数。
每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
【试金石】例1:三个质数的和是80,这三个质数的积最大是多少?【分析】由于三个数的和是偶数,所以这三个数中必有一个是偶数,在质数中只有2是偶数,所以三个数中一定有2。
另外两个质数的和是78,要使乘积尽可能的大,那么这两个质数的差值应尽可能的小。
显然,和是78的两个质数中,以41和37的差最小,即这两个数的积最大。
【解答】80=2+37+412×37×41=3034答:这三个质数的积最大是3034。
【智力加油站】【针对性训练】三个质数的和是62,这三个质数的积最大是多少?【试金石】例2:班主任李老师带领五年(一)班同学去植树,学生按人数恰好平均分成三组,已知李老师与学生共种了312棵树,老师与学生、每人种的树一样多,并且不超过10棵。
这个班共有学生多少人?每人种树多少棵?【分析】种树总数=每人种树棵数×师生总人数即:312=每人种树棵数×(1+学生人数)由于学生人数是3的倍数,再加上李老师一人,则师生总人数被3除余1。
因此先将312分解质因数312=2×2×2×3×13,然后按题意进行组合使之成为两数之积。
【解答】312=2×2×2×3×13若312=24×13,13为师生总人数,则每人种树24棵,与题意不相符。
若312=6×52,52为师生总人数,则每人种树6棵。
答:这个班共有学生51人,每人种6棵。
【智力加油站】【针对性训练】小青去看电影,他买的票的排数与座位号数的积是391,而且排数比座位号大6,小青买的电影票是几排几座?【试金石】例3在做一道两位数乘以两位数的乘法题时,小马虎把一乘数中的数字5看成8,由此得乘积为1872.那么原来的乘积是多少?【分析】1872=2×2×2×2×3×3×13=口口×口口,其中某个口为8,验证只有:1872=48×39,1872=78×24满足.【解答】当为1872=48×39时,小马虎错把5看成8,也就是错把45看成48,所以正确的乘积应该是45×39=1755.当为1872=78×24时,小马虎错把5看成8,也就是错把75看成78,所以正确的乘积应该是75×24=1800.答:原来的积为1755或1800.【智力加油站】【针对性训练】在下面算式的框内,各填入一个数字,使算式成立。
质数、合数和分解质因数

第一讲质数和合数例1 两个质数的和是39,这两个质数的积是多少?例2 数d是质数,且a+10、a+14的和也都是质数,数a是多少?例3 三个质数的和是80,这三个质数的积最大是多少?练习:1.在20个连续自然数中最多有多少个质数?最少有几个质数?2.两个质数的和是1995,这两个质数的乘积是多少?3.两个连续自然数的积加上11,其和是一个合数,这两个自然数的和最小是多少?4.两个质数的和是40,求这两个质数的乘积最大是多少?5.两个质数的和是99,这两个质数的积是多少?第二讲分解质因数例1 三个连续自然数的乘积是120,求这三个数。
例2 小明是个中学生,他说:“这次考试,我的名次乘以我的年龄再乘以我的考试分数,结果是2910。
”你能算出小明的名次、年龄与他这次考试的分数吗?例3 学校举行跳绳比赛,取得前4名的同学恰好一个比一个大一岁,四人年龄的乘积是11880,这四个同学的年龄各是多少?例4 下面算式中,不同的字母代表不同的数字。
求这个算式。
例5 1512乘以自然数a得到一个平方数,求a的最小值。
例6 有三个自然数,它们的和是338,积是1986,求这三个数。
例7 有24盆花,分成几堆(至少分2堆),使每堆的盆数都相等,可以怎样分?例8 自然数151200的约数中有许多两位数,其中最大的是几?例9 有三个自然数,最大的比最小的大6,另一个是它们的平均数,且三个数的乘积是42560,求这三个自然数。
例10 有3个自然数a、b、c,已知a×b=6,b×c=15,a×c=10,贝a×b×c=?例11 用216元去买一种钢笔,正好将钱用完。
如果每支钢笔便宜1元,则可以多买3支钢笔,钱也正好用完。
共买了多少支钢笔?例12 将下面八个数平均分成两组,使这两组数各自的乘积相等。
例13 自然数1111155555是两个连续奇数的乘积,则这两个连续奇数的和是多少?例14 在射箭运动中,每射一箭的环数是O(脱靶)或者是不超过10的自然数,甲、乙两名运动员各射了5箭,每人5箭的环数的积都是1764,但甲的总环数比乙的总环数多4环,求甲、乙两人的总环数各是多少?练习:1.相邻两个自然数的乘积是756,这两个自然数分别是多少?2.下面算式中,不同的字母代表不同的数字,求这个算式中四个字母的和,3.三个自然数的和是160,三个自然数的积是32118,这三个数是哪几个数?4.自然数a乘以2376,正好是一个平方数,求a的最小值。
2六年级上-质数、合数与分解质因数

解:1、74
解:2、7、31
• 练习 1
1、两个质数的乘积是62,这两个质数的是多少? 2、三个互不相同的质数相加,和为30,那么这三个质数是多少?
解:1、2和31
解:2、11、17
•例 2
自然数N是一个两位质数,它的个位数字和十位数字都是质数, 且交换位置后,仍然是一个质数,这个自然数是多少?
• 小练习
用短除法分解质因数:252
5005
解:252=2×2×3×3×7 解:5005=5×7×11×13
•例 4
请把下面的数分解质因数:(1)360;(2)373;(3)17640
解:1、360=2×2×2×3×3×5 2、质数 3、17640=2×2×2×3×3×5×7×7
• 练习 4
请写出88的所有素因数. 解:88=2×2×2×11
100以内的质数:
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131
•总 结
•例 1
1、两个质数的和是39,这两个质数的乘积是多少? 2、三个互不相同的质数相加,和为40,那么这三个质数是多少?
1.小于10的素数有( )
A.3个 B.4个 C.5个 D.6个
2.几个素数的积一定是( )
A.素数 B.合数 C.奇数 D.偶数
3.下列说法中正确的是( )
A.一个正整数不是素数,就是合数 B.两个素数的乘积也可能是偶
数
C.所有的偶数都是合数
D.一个素数的因数肯定是素数
解:1.B 2.B 3.B
•小 总 结
解:37或73
第3讲质数合数分解质因数

100以内的质数有25个:2、3、5、7、11、13、 17、19、23、29、31、37、41、47、53、59、 61、67、71、73、79、83、89、97。
2、质因数: 一个数的因数是质数,就叫做这个数的质因数. 3、分解质因数: 把一个合数分解质因数,就是把这个合数用质 因数相乘的形式表示出来。 4、互质数: 公约数只有1的两个数,叫做互质数。 5、自然数按约数的个数可分为:质数、合数还 有1.
84=3×7×4 7=3+4 这三个数是:3,4,7.
3、有四个孩子,恰好一个比一大一岁。它 们的年龄相乘的积等于3024,那么他们各 几岁? 3024=2×2×2×2×3×3×3×7 因为7是质数,所以保留下来 2×2×2=8,2×3=6,3×3=9 所以分别是6,7,8,9岁
点击例题5 用216元钱去买一种拖鞋,正好将钱用完, 如果每双拖鞋便宜1元,则可多买3双,钱也正好 用完,求一共买了多少双拖鞋? 216=2×2×2×3×3×3 216=(3×3)×(2×2×2×3) =9×24 =3×27 答:一共买了24双拖鞋。
第 3 讲
质数合数和分解质因数
研究目标:质数合数 分解质因数 一、质数与合数的概念 自然数可以按约数(即因数)的个数进行分类: ①质数:只能被1和自身整除的自然数叫质数,即质数只 有两个约数(即因数):1和它本身。如2、3、5等 ②合数:除了能被1和自身整除外,还有能被其他整数整 除的自然数叫合数,即,合数的约数(即因数)多于2个, 除了1和它本身外,还有别的约数(即因数)。如4、6、8 等等 ③1 1不是质数也不是合数。既不是质数也不是合数的自 然数。 注意: 1不能质数也不是合数 2是最小的质数,也是质数中唯一的偶数 4是最小的合数
3、有这样一个质数,它分别加上2,8,14,26后, 得到的仍为质数,这个质数最小是多少?
奥数质数合数分解质因素讲义及答案

奥数质数合数分解质因素讲义及答案数的整除(2)质数、合数、分解质因数教室姓名学号【知识要点】1、质数与合数自然数按其因数的个数可以分成三类:(1)单位1:只含有1这一个因数的自然数。
(2)质数(也称为素数):只含有1与它本身这两个因数的自然数。
(质数有无穷多个,不存在最大的质数,但有最小的质数2,而且2是质数中唯一的偶数。
)(3)合数:含有三个或三个以上因数的自然数。
(4)分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
(5)因数个数定理:例如:1980=22×32×5×11所以:(T表示因数个数)T(1980)=(1+2)×(1+2)×(1+1)×(1+1)=36 (6)因数和的定理:例如:1980=22×32×5×11所以:S(1980)=(02+12+22)×(03+13+23)×(05+15)×(011+111)=7×13×6×12=6552【典型例题】例1、两个质数的和是49,这两个质数的积是多少?解:因为两个质数的和49是奇数,所以必有一个质数是偶数,另一个质数是奇数,而偶数中只有2是质数,于是另一个质数是49-2=47,从而得到它们的积是2×47=94。
例2、有三张卡片,上面分别写着2、3、4三个数字,从中任意抽出一张、两张、三张,按任意顺序排列起来,可以得到不同的一位数、两位数、三位数,写出其中的质数。
解:由于2+3+4=9是3的倍数,所以任意排出的三位数都不是质数。
任意取两张卡片排出的两位数,末尾数字不能是2和4,只能排3.所以用2、3、4三个数字排出两位质数有23和43.取一张卡片排出的质数有2和3.所以最后排出的质数有2、3、23、43这四个。
例3、360这个数的因数有多少个?这些因数的和是多少?解:360=2×2×2×3×3×5=23×32×5,所以360有(3+1)×(2+1)×(1+1)=24个因数。
1.4质数合数分解质因数

1、3 3的因数:
4的因数: 1、2、4 5的因数:1、5
6的因数:1、2、3、6
12的因数: 1、2、3、4、6、12
例:写出下面每个数的所有的因数。 有一个因数的是: 1 有两个因数的是: 2、3、5、7、11
有两个以上因数的是: 4、6、8、9、10、12
一个正整数,如果只有1和它本身两 个因数,这样的数叫做素数(或质数)。 一个数,如果除了1和它本身还有别 的因数,这样的数叫做合数。
1.4 素数合数分解素因数
素数和合数、分解素因数
找规律
我们学过求一个数的因数,那么 每个数的因数个数有什么规律?
例:写出下面每个数的所有的因数。
1 1的因数:
1、2 2的因数:
7的因数: 1、7
8的因数: 1、2、4、8 9的因数: 1、3、9 1、2、5、10 10的因数: 1、11 11的因数:
6=2×3
2和3是6的素因数
28 = 2 × 2 × 7
2和7是28的素因数
例:6、28和60可以写成哪几个素数相乘的形式
60 6 10 60 = 2 × 2 × 3 × 5
2
3
2
5
把一个合数用素因数相乘的形式 表示出来,叫做分解素因数。
合数=素因数相乘
• • • • 分解素因数的方法: 1)逐步分解法: 利用树形图逐步把合数分解成素因数相乘的形式。 一般运用在能直接看出是哪两个因数相乘的( 1)两个素数的和一定是偶数。 × ( 2)最小的素数是奇数。 ×
(3)一个自然数,不是奇数就是偶数。
√
判断数字
一个正方体 6个面上分别写着1、2、3、4、
5、6。根据下图摆放的三种情况,判断每个数字
质数合数分解质因数

(七)质数合数分解质因数闵识要点]若a能被b養除,b就是a的约数。
1. 质数与合数自然数按其约数的个数可以分成三类:⑴单位1:只含有1这一个约数的自然数。
⑵质数(也称为素数):只含有1与它本身这两个约数的自然数。
(质数有无穷多个,不存在最大的质数,但有最小的质数2,而且2履质数中唯一的偶数。
100之内有25个质数。
)(3)合数:含有三个或三个以上约数的自然数。
2. 分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
如:12 = 2X2X3;70 = 2X5X7; 126 = 2X3X3X7; ............................若校大的自然数要进行分解质因数往往用短除法。
练习:把21六、107八、504()写成质因数连乘的形式:例 1 :a、b、c 是质数,c 是一名数,且aXb+c=1993o 那么a+b+c=()。
例2:用一.二、3、4、五、六、7、八、9这九个数字组成质数, 若是每一个数字都要用到,而且只能用一次,那么这九个数字最多能1组成多少个质数?例3: 1500的约数有()个。
这些约数的和是()。
例4:有8个不同约数的自然数中,最小的一个是()。
例5: 504乘以一个自然数a,取得一个平方数,求a的最小值和这个平方数。
练习:1.36()的约数有 __ 个,这些约数的和是________ 。
2.找出1992所有不同的的质因数,它们的和是 ______ o3.若a、b、c、d是四个互不相等的自然数,且aXbXcXd= 1988,那么a+b+c+d的最大值是 ______ 。
24.3780乘以一个自然数的积是一个完全平方数,这个自然数最小是______ o5.在有12个约数的自然数中,最小的一个是______ o6.四个小于1()的自然数,它们的积是360。
已知这四个数中只有一个是合数,那么这四个数别离是_______ O7.在下面的算式里,四个小纸片各盖住一个数字,被盖住的四个数字之和是____ O□ 口X □□19 9 28.31-( )=( )余7,要在算式的括号内填入适当的数使等式成立,共有______ 种不同的填法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
质数合数分解质因数
在自然数中,一个数除1和它本身,不再有别的约数,这个数叫做质数,也叫做素数.例如2,3,5,7,11,……都是质数.一个数除了1和它本身,还有别的约数,这个数叫做合数.例如4,6,8,9,12,……都是合数.1既不是质数,也不是合数.这样,自然数在按约数个数分类,可以分成:质数、合数和1.
偶数中只有2是质数,而且是全部质数中最小的一个.除2以外全部的偶数都是合数,除2以外全部的质数都是奇数.
每个合数都可以写成几个质数相乘的形式,这几个质数就叫做这个合数的质因数.例如,因为70=2&215;5&215;7,所以2,5,7是70的质因数.把一个合数用质数相乘的形式表示出来,叫做分解质因数.例如,60=2&215;2&215;3&215;5=22&215;3&215;5,把60这个合数用2&215;2&215;3&215;5或22&215;3&215;5的形式来表示,就是把60分解质因数.
例1 两个质数的积是46,求这两个质数的和.
分析:两个质数的积是46,46是偶数,只能是一个奇质数与一个偶质数的积,而偶质数只有2,因此很简单得出其它的质数,从而问题得以解决.解:因为46是偶数,因此它必是一个奇质数与一个偶质数的积,而偶质数只有2,另一质数46&247;2=23,所以2与23的和为25.
例2 用2,3,4,5中的三个数能组成哪些三位质数?
分析:首先考虑个位数字是几,如果个位数字是2或4,这样的三位数必能被2整除,因此这样的三位数不会是质数,如果个位数字是5,这样的三位数必能被5整除,这样的三位数也不会是质数,所以个位数字只能是3,再由剩下的三个数字组成百位、十位,得出个位数字是3的三位数为:243,423,253,523,453,543,最后依据质数的推断方法,得到所求的质数.
解:如果组成的三位数的个位数字是2、4、5时,这个数必能被2或5整除,因此个位数字只能是3,而个位数字是3的三位数有243,423,253,523,453,543,其中243,423,453,543均能被3整除,253能被11整除,所以只有523是质数.
质数的推断方法是,当一个数比拟小时,用定义直接推断,但这个数比拟大时,通常采纳查质数表,最好记住100以内的全部质数.在没有质数表的情况下,可以用质数从小到大的顺序逐个地去试除.如果能被其中某一个质数整除,就说明这个数是合数,如果除到商已比试除的质数小,还不能被这些质数中的任何一个整除,那么这个数肯定是质数.
例如,推断100以内的数是否是质数,只需用2、3、5、7这四个质数去试除,如果没有一个能整除它,这个数肯定是质数,否则不是质数.推断97是不是质数,因为97不能被2,3,5,7中的任何一个整除,因此97是质数.为什么不必去试除比97小的全部的质数呢?因为97不能被2,3,5,7中的任何一个整除,它就肯定不能被4,6,8,9,10等数〔分别为2,3,5的倍数〕整除,又因为,如果用11或大于11的质数去试除, 97&247;11=8…9,97&247;13=7…6,其商为8、7,比除数还小,都已试除过,因此推断100以内的数是否是质数只需用2,3,5,7去试除.
推断200以内的数是否是质数,只需用2,3,5,7,11,13,17这七个质数去试除;推断300以内的质数,只需用2到17这七个质数去试除;推断400以内的质数,只需用20以内的八个质数与去试除;推断500以内的质数,只需2到23的质数去试除.其余可用类似的方法推出,你可以思考一下1000以内的质数如何推断?
例3 将40,44,45,63,65,78,99,105这八个数平分成两组,使每组四个数的乘积相等.
分析:如果采纳观察、计算调整的方法是比拟麻烦的.要使两组数的乘积
相等,只有两组数中的质因数相同,而且质因数的个数也相同,就可以了,所以从这八个数分解质因数入手,依据各质因数的个数,进行适当的搭配,便能找出问题的答案.
解:将八个数分解成质因数:
40=23&215;5 44=22&215;11
45=32&215;5 63=32&215;7
65=5&215;13 78=2&215;3&215;13
99=32&215;11 105=3&215;5&215;7
这八个数分解质因数后一共有6个2,8个3,4个5,2个7,2个11,2个13.因此,这八个数被分成两组后,每一组应含有3个2,4个3,2个5,1个7,1个11,1个13,这样可以得到两组分别为:40,63,65,99和44,45,78,105.
例4 360有多少个约数?
分析:如果先求360的全部约数,再数出它们的个数,显然比拟麻烦.为此,先将360分解质因数:360=23&215;32&215;5,360的任意一个约数均由假设干个2或3或5组成,我们将360的全部约数列成下面的数阵:
1 2 22 23
3 2&215;3 22&215;3 23&215;3
32 2&215;32 22&215;32 23&215;32
5 2&215;5 22&215;5 23&215;5
3&215;5 2&215;3&215;5 22&215;3&215;5 23&215;3&215;5
32&215;52&215;32&215;522&215;32&215;5 23&215;32&215;5
这个数阵共6行,每行4个约数,所以360共有4&215;6=24个,而
24=〔3+1〕&215;〔2+1〕&215;〔1+1〕,这里3,2,1恰好是360分解质数式子中2,3,5的个数,从而得到下面关于约数个数的一个重要结论:一个大于1的整数的约数个数,等于它的质因数分解式中每个质因数的个数加1的连乘积.用数字式子表示为:
如果A分解质因数为:
则A的全体约数的个数为:
〔r1+1〕&215;〔r2+1〕&215;…&215;〔rn+1〕
例5 有30个约数的最小自然数是多少?
分析:设所求的数为A,则A有30个约数,因为30= 30&215;1=2&215;15=6&215;5=10&215;3=2&215;3&215;5,要使A最小,一般使A的质因数的幂指数尽可能小,质因数的个数尽可能少,所以A必为以下形式:
其中a1,a2,a3为互不相同的质数.
要使A最小,a1,a2,a3尽可能小,显然a3=2,a2=3,a1=5,这样
A=24&215;32&215;5=720
解:因为30=30&215;1=2&215;15=6&215;5=10&215;3=2&215;3&215;5,而且题中要求
a2、a3为互不相等的质数,为了使A最小,a3=2,a2=3,a1=5,所以A=24&215;32&215;5=720.
例6 九个连续自然数中至多有四个质数,例如1至9中有2、3、5、7四个质数.请在200以内再找出五组这样的质数.
分析:9个连续自然数中至多有5个奇数.在两位数中,个位是5的数必能被5整除,而且三个连续的奇数必有一个能被3整除,所以只有当个位数字为5的两位数又能被3整除时,其余的四个奇数才有可能是质数.当找到一组这样的两位以上的质数时,另一组与这组对应的数的差必定是30的倍数.按
照上述方法找出后,再依据质数的推断方法去筛选就可得出结果.
首先简单得出3,5,7,11;5,7,11,13;在两位数中,按照上面的方法可得出以下各组数:
11,13,15,17,19;
41,43,45,47,49;
71,73,75,77,79;
101,103,105,107,109;
131,133,135,137,139;
161,163,165,167,169;
191,193,195,197,199;
依据质数的推断方法可以得出两位数中还有11,13,17,19;101,103,107,109;191,193,197,199这三组符合条件.
解:200以内其它五组这样的质数为:3,5,7,11;5,7,11,13;11,13,17,19;101,103,107,109;191,193,197,199.。