初二数学变式练习题
初中数学相似三角形知识库平行线分线段成比例经典例题与变式练习(精选题目)

平行线分线段成比例平行线分线段成比例定理及其推论1. 平行线分线段成比例定理如下图,如果1l ∥2l ∥3l ,则BC EF AC DF =,AB DE AC DF =,AB ACDE DF=. l 3l 2l 1FE D CB A2. 平行线分线段成比例定理的推论:如图,在三角形中,如果DE BC ∥,则AD AE DEAB AC BC==ABCDEEDC B A3. 平行的判定定理:如上图,如果有BCDEAC AE AB AD ==,那么DE ∥ BC 。
专题一、平行线分线段成比例定理及其推论基本应用【例1】 如图,DE BC ∥,且DB AE =,若510AB AC ==,,求AE 的长。
EDCBA【例2】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证:111c a b=+.FE DCBA【巩固】如图,AB BD ⊥,CD BD ⊥,垂足分别为B 、D ,AC 和BD 相交于点E ,EF BD ⊥,垂足为F .证明:111AB CD EF+=. FEDCBA【巩固】如图,找出ABD S ∆、BED S ∆、BCD S ∆之间的关系,并证明你的结论.FE DCBA【例3】 如图,在梯形ABCD 中,AB CD ∥, 129AB CD ==,,过对角线交点O 作EF CD ∥交AD BC ,于E F ,,求EF 的长。
OFED CBA【巩固】(上海市数学竞赛题)如图,在梯形ABCD 中,AD BC ∥,AD a BC b E F ==,,,分别是AD BC ,的中点,AF 交BE 于P ,CE 交DF 于Q ,求PQ 的长。
QPFED CBA专题二、定理及推论与中点有关的问题 【例4】 (2007年北师大附中期末试题)(1)如图(1),在ABC ∆中,M 是AC 的中点,E 是AB 上一点,且14AE AB =, 连接EM 并延长,交BC 的延长线于D ,则BCCD=_______. (2)如图(2),已知ABC ∆中,:1:3AE EB =,:2:1BD DC =,AD 与CE 相交于F ,则EF AFFC FD+ 的值为( )A.52 B.1 C.32D.2(1)MEDC BA(2)F ED CA【例5】 (2001年河北省中考试题)如图,在ABC ∆中,D 为BC 边的中点,E 为 AC 边上的任意一点,BE 交AD 于点O . (1)当1A 2AE C =时,求AOAD的值;E AO(2)当11A 34AE C =、时,求AOAD的值; (3)试猜想1A 1AE C n =+时AOAD的值,并证明你的猜想.【例6】 (2003年湖北恩施中考题)如图,AD 是ABC ∆的中线,点E 在AD 上,F 是BE 延长线与AC 的交点.(1)如果E 是AD 的中点,求证:12AF FC =; (2)由(1)知,当E 是AD 中点时,12AF AEFC ED=⋅成立,若E 是AD 上任意一点(E 与A 、D 不重合),上述结论是否仍然成立,若成立请写出证明,若不成立,请说明理由.F E DCBA【巩固】(天津市竞赛题)如图,已知ABC ∆中,AD 是BC 边上的中线,E 是AD 上的一点,且BE AC =,延长BE 交AC 于F 。
八年级数学下册平行四边形的判定练习题

BDCAO图1FEDCBA图2F E D CBA HG FEOAB C DOM ABCD图1FE DCB A4321图3F ED CBA H G 图2F E DCB A八年级数学下册平行四边形的判定练习题识记知识1)定义:两组对边分别平行的四边形是平行四边形.∵ , ∴四边形ABCD 是平行四边形.2)定理:两组对边分别相等的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.3)定理:一组对边平行且相等的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.4)定理:对角线互相平分的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.5)定理:两组对角分别相等的四边形是平行四边形∵∴四边形ABCD 是平行四边形. 二、平行四边形性质与判定的综合应用例1: 如图, 已知:E 、F 是平行四边形ABCD 对角线AC 上的两点,并且AE=CF 。
求证:四边形BFDE 是平行四边形变式一:在□ABCD 中,E ,F 为AC 上两点,BE//DF .求证:四边形BEDF 为平行四边形.变式二:在□ABCD 中,E,F 分别是AC 上两点,BE ⊥AC 于E ,DF ⊥AC 于F.求证:四边形BEDF 为平行四边形想一想:在□ABCD 中, E ,F 为AC 上两点, BE =DF .那么可以证明四边形 BEDF 是平行四边形吗?例2:如图,平行四边形ABCD 中,AF =CH ,DE =BG 。
求证:EG 和HF 互相平分。
练习1、如图所示,在四边形ABCD 中,M 是BC 中点,AM 、BD 互相平分于点O ,那么请说明AM=DC 且AM ∥DC:1、以不在同一直线上的三点为顶点作平行四边形,最多能作( )A 、4个B 、3个C 、2个D 、1个 2、如图,在□ABCD 中,已知两条对角线相交于点O ,E 、F 、G 、H 分别是AO 、BO 、CO 、DO 的中点,以图中的点为顶点,尽可能多地画出平行四边形在四边形ABCD 中,AD ∥BC ,且AD >BC ,BC = 6cm ,P ,Q 分别从A ,C 同时出发,P 以1厘米/秒的速度由A 向D 运动,Q 以2厘米/秒的速度由C 向B 运动,几秒后四边形ABQP 成为平行四边形?1、下列条件中,能判定四边形是平行四边形的是( )A 、一组对边相等,另一组对边平行;C 、一组对角相等,一组邻角互补;B 、一组对边平行,一组对角互补;D 、一组对角互补,另一组对角相等。
初二数学(二元一次方程组专题复习)

二元一次方程组【知识点一:二元一次方程组的有关概念】二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.【典型例题】1.在下列方程中,不是二元一次方程的有()A.x+y=3 B.xy=3 C.x-y=3 D.x=3-y次方程.A.1个B.2个C.3个D.4个3.若关于x,y的方程x m+1+y n-2=0是二元一次方程,则m+n的和为()A.0 B.1 C.2 D.3【变式练习】1.下列各式中,属于二元一次方程的是()A.x2-25=0 B.x=2y C.y-6=0 D.x+y+z=02.下列四个方程中,是二元一次方程的是()A.xy=3 B.2x-y2=9 C.132x y=+D.3x-2y=03.若x a-2+3y b+3=15是关于x,y的二元一次方程,则a+b的值为()A.1 B.-1 C.2 D.-2 【提高练习】1.下列式子中,属于二元一次方程的是()A.2x+3=x-5 B.x+y<2 C.3x-1=2-5y D.xy≠1 2.已知:mx-3y=2x+6是关于x、y的二元一次方程,则m的值为()A.m≠0B.m≠3C.m≠-2 D.m≠23.已知x2m-1+3y4-2n=-7是关于x,y的二元一次方程,则m、n的值是()A.B.C.D.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.【典型例题】1.若是关于x、y的二元一次方程ax-3y=1的解,则a的值为()A.-5 B.-1 C.2 D.72.方程x+2y=5的正整数解有()A.一组B.二组C.三组D.四组3.已知方程5x-2y=1,当x与y相等时,x与y的值分别是()A.x=13,y=13B.x=-1,y=-1 C.x=1,y=1 D.x=2,y=2【变式练习】1.二元一次方程5a-11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解2.若是方程2x-3y+a=1的解,则a的值是()A.1 B.12C.2 D.03.已知是二元一次方程2x-y=14的解,则k的值是()A.2 B.-2 C.3 D.-34、方程2x+y=9在正整数范围内的解有()A、1个B、2个C、3个D、4个【提高练习】1.方程x +y =6的非负整数解有( ) A .6个B .7个C .8个D .无数个2.二元一次方程3x +2y =15在自然数范围内的解的个数是( )A .1个B .2个C .3个D .4个二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解. 【典型例题】1、下列方程组中,属于二元一次方程组的是( )A 、⎩⎨⎧==+725xy y xB 、⎪⎩⎪⎨⎧=-=+043112y x y xC 、⎪⎩⎪⎨⎧=+=343453y x y xD 、⎩⎨⎧=+=-12382y x y x2.下列方程组中,是二元一次方程组的是( )A 、B 、C 、D 、3.若方程组是二元一次方程组,则a 的值为_______.4.关于x 、y 的方程组的解是,则|m -n |的值是( )A .5B .3C .2D .15.若方程组026ax y x by +=⎧⎨+=⎩的解是12x y =⎧⎨=-⎩,则a +b =_______.【变式练习】1.下列方程组中,是二元一次方程组的是( )A .228423119 (23754624)x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩ 2.下列方程组中,不是二元一次方程组的是( )A 、B 、C 、D 、3.已知是二元一次方程组的解,则2m -n 的算术平方根为( ) A .±2B .2 C .2D .44.若方程组2x y b x by a +=⎧⎨-=⎩的解是1x y =⎧⎨=⎩,那么│a -b │=_____.【提高练习】1.方程2x +3y =11和下列方程构成的方程组的解是 的方程是( )A .3x +4y =20B .4x -7y =3C .2x -7y =1D .5x -4y =62.已知│2x -y -3│+(2x +y +11)2=0,则( ) A .21x y =⎧⎨=⎩ B .03x y =⎧⎨=-⎩ C .15x y =-⎧⎨=-⎩ D .27x y =-⎧⎨=-⎩3、若3243y x b a +与b a y x -634是同类项,则=+b a ( )A 、-3B 、0C 、3D 、6【知识点二:二元一次方程组的两种解法】【例1】若1721x ax by y ax by =+=⎧⎧⎨⎨=--=-⎩⎩是方程组的解,则a =______,b =_______.【变式练习】1、以x 、y 为未知数的方程组⎩⎨⎧=+=-24by ax by ax 与方程组⎩⎨⎧=+=+654432y x y x 的解相同,试求a 、b 的值.2、若把上面题目改成方程组451x y ax by -=⎧⎨+=-⎩与⎩⎨⎧=-=+184393by ax y x 的解相同,试求a 、b 的值.【例四】已知二元一次方程3x +4y =6,当x 、y 互为相反数时,x =_____,y =______;当x 、y 相等时,x =______,y = _______ . 【例五】已知2x 2m -3n -7-3y m +3n +6=8是关于x ,y 的二元一次方程,求n 2m【变式练习】1、若2a y +5b 3x 与-4a 2x b 2-4y是同类项,则a =______,b =_______.2、如果(5a -7b +3)2+53+-b a =0,求a 与b 的值.【扩展】代入法在一些特殊方程中的巧妙应用⎩⎨⎧-=+-=+1)(258y x x y x【例五】方程组⎩⎨⎧-=+=-252132y x y x 中,x 的系数特点是______;方程组⎩⎨⎧=-=+437835y x y x 中,y 的系数特点是________.这两个方程组用__________________法解比较方便.【变式练习】【例六】已知方程mx +ny =10有两个解,分别是⎩⎨⎧-==⎩⎨⎧=-=1221y x y x 和,则m =________,n =__________. 【变式练习】1、若2a +3b =4和3a -b =-5能同时成立,则a =_____,b =______.2、如果二元一次方程组⎩⎨⎧=-=+a y x ay x 4的解是二元一次方程3x -5y -28=a 的一个解,那么a 的值是_________.3、若关于x 、y 的二元一次方程组⎩⎨⎧-=+=+1532m y x my x 的解x 与y 的差是7,求m 的值.4、若3122x m y m =+⎧⎨=-⎩,是方程组1034=-y x 的一组解,求m 的值.5、二元一次方程343x my mx ny -=+=和有一个公共解11x y =⎧⎨=-⎩,求m 和n 的值.【例七】已知⎩⎨⎧=+=+8272y x y x ,那么x -y 的值是___________.【变式练习】1、已知⎩⎨⎧=+=+8272y x y x ,则y x yx +-=_________. 2、已知⎩⎨⎧=-=+ay x a y x 22,a ≠0,则y x =__________.⎪⎪⎩⎪⎪⎨⎧=+=-+4231432y x y yx 观察思考,选择适当的方法消元并加以归纳总结(1) (2)(3) (4)【知识点三:一次函数与二元一次方程(组)的综合应用】1.若直线y =2x+n 与y =mx -1相交于点(1,-2),则( ). A .m =12,n =-52 B .m =12,n =-1 C .m =-1,n =-52 D .m =-3,n =-322.直线y =12x -6与直线y =-231x -1132的交点坐标是( ).A .(-8,-10)B .(0,-6)C .(10,-1)D .以上答案均不对 3.在y =kx +b 中,当x =1时y =2;当x =2时y =4,则k ,b 的值是( ). A .00k b =⎧⎨=⎩ B . 20k b =⎧⎨=⎩ C .31k b =⎧⎨=⎩ D . 02k b =⎧⎨=⎩4.直线kx -3y =8,2x +5y =-4交点的纵坐标为0,则k 的值为( ) A .4 B .-4 C .2 D .-2⎩⎨⎧=+-=65732y x y x ⎩⎨⎧=-=+6341953y x y x5.已知4353xy⎧=⎪⎪⎨⎪=⎪⎩,是方程组3,12x yxy+=⎧⎪⎨-=⎪⎩的解,那么一次函数y=3-x和y=2x+1的交点是________.6.一次函数y=3x+7的图像与y轴的交点在二元一次方程-2x+by=18上,则b=_________.7.已知关系x,y的二元一次方程3ax+2by=0和5ax-3by=19化成的两个一次函数的图像的交点坐标为(1,-1),则a=_______,b=________.8.已知方程组230,2360y xy x-+=⎧⎨+-=⎩的解为4,31,xy⎧=⎪⎨⎪=⎩则一次函数y=3x-3与y=-32x+3的交点P的坐标是______.9.若直线y=ax+7经过一次函数y=4-3x和y=2x-1的交点,求a的值.10.(1)在同一直角坐标系中作出一次函数y=x+2,y=x-3的图像.(2)两者的图像有何关系?(3)你能找出一组数适合方程x-y=2,x-y=3吗?________,这说明方程组2,3,x yx y-=-⎧⎨-=⎩_______.11.如图所示,求两直线的解析式及图像的交点坐标.12.在直角坐标系中,直线L1经过点(2,3)和(-1,-3),直线L2经过原点,且与直线L1交于点(-2,a).(1)求a的值.(2)(-2,a)可看成怎样的二元一次方程组的解?(3)设交点为P,直线L1与y轴交于点A,你能求出△APO的面积吗?【知识点四:二元一次方程组应用题】【一、百分数问题】1.某市现有42万人口,计划一年后城镇人口增加%,农村人口增加工厂%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口?2.要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?3.校办工厂去年的总收入比总支出多50万元,今年的总收入比去年增加了10%,总支出节约了20%,因而总收入比总支出多100万元. 求去年我校校办工厂的总收入和总支出各多少万元?4.某工厂去年的利润(总产值-总支出)为200万元,今年的总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元。
初中数学教材变式题

变式题1、原题: 计算:2)32(-.(9年级上册P5第2(4)题)变式1 填空: 94= ,412= .变式2 当x 时,式子231-x 在实数范围内有意义?变式3 若23-n 是整数,求正整数n 的值(至少写出3个). 变式4 是否存在正整数n ,使得231+n 是有理数?若存在,求出一个n 的值;若不存在,说明理由.2、原题: 四边形ABCD 是正方形,点E 是边BC 的中点,∠AEF = 90︒,且EF 交正方形外角的平分线CF 于点F .求证:AE = EF .(提示:取AB 的中点G ,连结EG )(8年级下册P122页第15题)变式1 连结AC ,则点A 、E 、C 、F 四点在一个圆上(利用圆周角的性质,结论AE = EF 立即自明).变式2 连结AH ,则AH = AB + CH ,∠BAE =∠EAH .变式3 如图,设E 是边BC 上的任意一点,① AE ⊥EF ,② CF 是正方形外角的平分线,③ AE = EF .则可得 ①② ⇒ ③,①③ ⇒ ②,②③ ⇒ ①,共三个命题,不难证明它们都是正确的.变式4 如图,E 是正方形ABCD 中BC 边上的任意一点,连结AE ,过E 作EF ⊥AE 交CD 于H ,设∠BAE = α,∠EAH = β.求tan α + tan β 的值.变式5 如图,正三角形ABC 中,E 是BC 边(不含端点B 、C )上任意一点,D 是BC 延长线上一点,F 是∠ACD 的平分线上一点.(1)若∠AEF = 60°,求证:AE = EF ;(2)若将题中的“正三角形ABC ”改为“正多边形A n B n C n D n …X n ”,其它条件不变,请你猜想:当∠A n E n F n= °时,结论A n E n = E n F n 仍然成立?(直接写出答案,不需要证明)︒⨯-1802nn 变式6 如图,矩形ABCD 中(AB <BC ),E 是边BC 上的动点(不包括端点),作∠AEF = 90︒,使EF 交矩形的外角平分线CF 于点F .(1)试问边BC 上是否存在点E ,使得EF = AE ?说明理由;(2)试探究点E 在边BC 的何处时,使得1=-ABBCAE EF 成立?E α β DA B C HH C E D A B F FD BE C A AB C E FD3、原题:如图,在平面直角坐标系中,矩形OABC 的边OC 在x 轴上,边OA 在y 轴上,点D 在边OC 上,将△DBC 沿BD 所在的直线翻折,使点C 落在对角线OB 上的点E 处,直线BD 交y 轴于点F ,线段OA 的长是04822=-+x x 的一个根,且53=∠ABO Sin . 请解答下列问题: (1)求点B 的坐标;(2)求直线BD 的解析式; (3)在x 轴上是否存在一点P ,使△APO 与△AOB 相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由。
初二数学上册考试重点及练习题(含答案)

初二数学上册考试重点及练习题(含答案)第十一章三角形1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。
4、三角形的特性与表示三角形有下面三个特性:(1)三角形有三条线段(2)三条线段不在同一直线上三角形是封闭图形(3)首尾顺次相接三角形用符号“∆”表示,顶点是A、B、C的三角形记作“∆ABC”,读作“三角形ABC”。
5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
它是两条直角边相等的直角三角形。
6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
推论:①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
初二数学练习题

初二数学练习题题一:简单方程解题1. 解方程:2x + 5 = 17。
2. 解方程:3(x + 4) = 36。
3. 解方程:4(x - 8) = 12。
题二:百分数转换问题1. 将0.25转换成百分数。
2. 将60%转换成小数。
3. 将3/5转换成百分数。
题三:平行线和转角问题1. 如果两条平行线的角度分别是90度和70度,求它们的转角。
2. 如果两条平行线的转角是120度,求它们之间的角度。
3. 如果两条平行线之间的角度是40度,求它们的转角。
题四:多项式计算问题1. 计算多项式的值:3x^2 + 4x - 5,当x = 2时。
2. 计算多项式的值:2x^3 - 5x^2 + 3x + 6,当x = -1时。
3. 计算多项式的值:4x^2 + 2x + 7,当x = 0时。
题五:比例和比例方程问题1. 在一个长方形中,长和宽的比是3∶2,如果长是15cm,求宽的长度。
2. 在一个三角形中,两条边的比是4∶5,如果第一条边长是16cm,求第二条边的长度。
3. 在一个比例方程中,已知x∶5=3∶8,求x的值。
题六:平行四边形问题1. 如果一个平行四边形的一边的长度是6cm,高度是4cm,求它的面积。
2. 如果一个平行四边形的面积是24cm²,高度是3cm,求它的底边长度。
3. 如果一个平行四边形的一边长度是10cm,高度是8cm,求它的面积。
题七:统计和概率问题1. 一个班级有40名学生,男生和女生的比例是3∶2,男生的人数是多少?2. 一副扑克牌共有52张牌,其中红桃牌有13张,随机抽取一张牌,它是红桃的概率是多少?3. 有4个红球和6个黑球放在一个袋子里,从中随机抽取一个球,它是红球的概率是多少?题八:图形的面积和周长问题1. 一个正方形的边长是8cm,求它的面积和周长。
2. 一个矩形的长和宽分别是5cm和10cm,求它的面积和周长。
3. 一个圆的半径是6cm,求它的面积和周长。
以上是初二数学练习题,希望能帮助你巩固数学知识。
二年级变式题10道

以下是10道适合二年级学生的数学变式题:
1. 小明有5个苹果,小红有3个苹果,小华有10个苹果。
小明给小华多少个苹果后,小华的苹果数量是小明的两倍?
2. 小明和小强一起跳绳,小明跳了30下,小强跳的是小明的两倍少10下,小强跳了多少下?
3. 小华和小丽一起做手工,小华做了8朵花,小丽做的花是小华的两倍,小丽做了多少朵花?
4. 一根绳子长20米,剪去一半后,再剪去一半,还剩多少米?
5. 小明有10个球,小红有20个球,小红给小明多少个球后,两人的球一样多?
6. 小明和小华一起画图,小明画了3个正方形,小华画的正方形是小明的两倍,小华画了多少个正方形?
7. 小明有5支铅笔,小华有10支铅笔,小华给小明多少支铅笔后,两人的铅笔一样多?
8. 小明和小丽一起做数学题,小明做了10道题,小丽做的题数是小明的两倍少5道,小丽做了多少道题?
9. 小明和小强一起做手工,小明做了8个纸鹤,小强做的纸鹤是小明的两倍,小强做了多少个纸鹤?
10. 一块巧克力蛋糕重50克,小明吃了半块后,还剩下多少克?
这些题目旨在提高学生的数学思维和问题解决能力。
通过变式题的形式,学生可以在不同的情境中理解和运用数学概念和方法。
八年级数学下册二次根式的混合运算练习题及解析

第十六章二次根式
例2 甲、乙两个城市间计划修建一条城际铁路, 其中有一段路基的横断面设计为
上底宽4
2m ,下底宽 62m ,高6m 的梯形,这段路基长 500 m ,那么这段路基的
土石方 (即路基的体积,其中路基的体积=路基横断面面积×路基的长度)为多少立方米呢?
针对训练 计算:
(3 1 6 2 2 2 + 2 1 28⎝⨯() ; () .
--
探究点2:利用乘法公式进行二次根式的运算
问题1 整式乘法运算中的乘法公式有哪些?
问题2 整式的乘法公式对于二次根式的运算也适用吗? 典例精析
例3(教材P14例4变式题)计算:
21(32)();((2)32481843;⨯32a a b a ab a b --+
方法总结:进行二次根式的混合运算时,一般先将二次根式转化为最简二次根式,再根
据题目的特点确定合适的运算方法,同时要灵活运用乘法公式,因式分解等来简化运算.
【变式题】计算:
20182018
1223223;()()()⨯201720193
223232.2
()
()()-⨯
教学备注
配套PPT 讲授
3.探究点2新知讲授
(见幻灯片11-15)
计算:(
)
)))
2
(1)1(2).
;
探究点3:求代数式的值
n b 的式子,构
1.下列计算中正确的是()
3
=1
=-
2=
2.计算2.
=
3.设,3
10
,
3
10
1
-
=
+
=b
a则a b(填“>”“< ”或“=”).
4.计算:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学变式练习题
(注意:以下是一个示范性的回答,实际的练习题内容应根据题目
给出的要求进行回答。
)
一、填空题
1. 某数的 5 倍是40,那么这个数是______。
2. 从一个整数的9倍中减去5,结果是31,那么这个整数是______。
3. 一个与负数的乘积为正数的数是______。
4. 若一个数的六倍比该数多7,那么这个数是______。
5. 一本书原价100元,打折之后的价格是原来的25%,打完折之后
的价格是______元。
二、选择题
1. 原来一道数学题有5个选项,答错的同学有3个。
在改成只有3
个选项的题目后,每个同学都答对了,那么新的选项有几个?
A. 1个
B. 2个
C. 3个
D. 4个
2. 如果将原来一本书的价格减少30%,再减少30%,最后加上20%,结果相当于原来的价格是多少?
A. 64%
B. 72%
C. 78%
D. 84%
3. 已知 a:b = 2:3,b:c = 4:5,求 a:b:c 的比值。
A. 2:3:4
B. 4:5:6
C. 3:4:5
D. 6:8:10
三、解答题
1. 已知等腰梯形的上底长为40cm,下底长为60cm,高为15cm,求面积。
解答:
面积 = [(上底 + 下底) * 高] / 2
= [(40 + 60) * 15] / 2
= (100 * 15) / 2
= 1500 / 2
= 750 (平方厘米)
2. 某学校有800名学生,其中男生比例为3:5,女生比例为2:5,请问该校男生和女生各有多少人?
解答:
男生人数 = (3 / 8) * 800 = 300
女生人数 = (5 / 8) * 800 = 500
以上是初二数学变式练习题的一些示例,希望能对你的学习有所帮助。
请根据具体的题目要求,按照上述格式进行回答。