小学数学奥数教程(五年级)--12

合集下载

五年级奥数主要知识点

五年级奥数主要知识点

五年级奥数主要知识点五年级奥数是小学数学竞赛的一个重要阶段,它不仅要求学生掌握基础数学知识,还要求学生具备一定的逻辑思维能力和解决问题的能力。

以下是五年级奥数的主要知识点:一、数论基础- 整数的奇偶性:理解奇数和偶数的概念,掌握奇偶数的基本性质。

- 质数与合数:区分质数和合数,了解它们的定义和特点。

- 最大公约数和最小公倍数:学会求两个或多个数的最大公约数和最小公倍数,理解其在数学中的应用。

二、分数和小数- 分数的加减乘除:掌握分数的四则运算,包括通分、约分等技巧。

- 分数的大小比较:学会比较分数的大小,理解分数的性质。

- 小数的运算:熟练进行小数的加减乘除运算,理解小数点的移动规律。

三、比例和比例关系- 比例的基本性质:理解比例的概念,掌握比例的基本性质。

- 正比例和反比例:区分正比例和反比例,理解它们在实际问题中的应用。

四、几何图形- 平面图形:学习三角形、四边形、圆等基本平面图形的性质和面积计算。

- 立体图形:了解长方体、正方体、圆柱、圆锥等立体图形的体积和表面积计算。

五、排列组合与计数原理- 排列组合:掌握排列和组合的基本概念,学会解决相关的数学问题。

- 计数原理:理解加法原理和乘法原理,学会应用这些原理解决实际问题。

六、逻辑推理- 条件逻辑:学会根据给定条件进行逻辑推理,解决数学问题。

- 数学证明:了解数学证明的基本方法,学会用逻辑推理来证明数学命题。

七、应用题- 行程问题:解决涉及速度、时间和距离的行程问题。

- 工程问题:理解工作效率和工作时间的关系,解决相关的工程问题。

- 经济问题:学习解决涉及价格、成本和利润的经济问题。

八、数学思维和解题技巧- 归纳推理:通过观察和分析,归纳出数学规律和模式。

- 逆向思维:学会从问题的结果出发,逆向推导出解决问题的方法。

- 转化思维:将复杂问题转化为简单问题,或将不同类型问题相互转化。

五年级奥数的学习不仅能够提高学生的数学素养,还能培养他们的逻辑思维和创新能力。

五年级奥数基础教程最大公约数与最小公倍数小学

五年级奥数基础教程最大公约数与最小公倍数小学

五年级奥数基础教程最大公约数与最小公倍数小学如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数。

如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。

在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数。

自然数a1,a2,…,a n的最大公约数通常用符号(a1,a2,…,a n)表示,例如,(8,12)=4,(6,9,15)=3。

如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数。

在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数。

自然数a1,a2,…,a n的最小公倍数通常用符号[a1,a2,…,a n]表示,例如[8,12]=24,[6,9,15]=90。

常用的求最大公约数和最小公倍数的方法是分解质因数法和短除法。

例1 用60元钱可以买一级茶叶144克,或买二级茶叶180克,或买三级茶叶240克。

现将这三种茶叶分别按整克数装袋,要求每袋的价格都相等,那么每袋的价格最低是多少元钱?分析与解:因为144克一级茶叶、180克二级茶叶、240克三级茶叶都是60元,分装后每袋的价格相等,所以144克一级茶叶、180克二级茶叶、240克三级茶叶,分装的袋数应相同,即分装的袋数应是144,180,240的公约数。

题目要求每袋的价格尽量低,所以分装的袋数应尽量多,应是144,180,240的最大公约数。

所以(144,180,240)=2×2×3=12,即每60元的茶叶分装成12袋,每袋的价格最低是60÷12=5(元)。

为节约篇幅,除必要时外,在求最大公约数和最小公倍数时,将不再写出短除式。

例2 用自然数a去除498,450,414,得到相同的余数,a最大是多少?分析与解:因为498,450,414除以a所得的余数相同,所以它们两两之差的公约数应能被a整除。

498-450=48,450-414=36,498-414=84。

小学奥数基础教程(五年级)目录

小学奥数基础教程(五年级)目录

小学奥数基础教程(五年级)目录
第1讲数字迷(一)
第2讲数字谜(二)
第3讲定义新运算(一)
第4讲定义新运算(二)
第5讲数的整除性(一)
第6讲数的整除性(二)
第7讲奇偶性(一)
第8讲奇偶性(二)
第9讲奇偶性(三)
第10讲质数与合数
第11讲分解质因数
第12讲最大公约数与最小公倍数(一)
第13讲最大公约数与最小公倍数(二)
第14讲余数问题
第15讲孙子问题与逐步约束法
第16讲巧算24
第17讲位置原则
第18讲最大最小
第19讲图形的分割与拼接
第20讲多边形的面积
第21讲用等量代换求面积第22 用割补法求面积
第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)
第30讲抽屉原理(二)。

五年级奥数小学数学培优 第12讲 巧解逻辑推理问题(一)

五年级奥数小学数学培优  第12讲 巧解逻辑推理问题(一)

五年级奥数小学数学培优第12讲巧解逻辑推理问题(一)五年级奥数小学数学培优第12讲巧解逻辑推理问题(一)第___讲巧解逻辑推理问题(一)方法和技巧:1.需要遵循逻辑思维的基本规律:同一律、矛盾律和排中律。

(1)“同一律”指的是在同一思维过程中,对同一对象的思维必须是确定的,在进行判断和推理的过程中,每一概念都必须在同一意义下使用。

(2)“矛盾律”指的是在同一思维过程中,对同一对象的思想不能自相矛盾。

(3)“排中律”指的是在同一思维过程中,一个思想或为真或为假,不能既不真也不假。

2.化解逻辑推理问题的方法通常存有:(1)列表画图法;(2)假设推理小说法;(3)枚举筛选法。

例1:有人为班上做了一件好事,老师猜想一定在a,b,c,d四人当中。

当老师问他们时,他们分别做了下面的回答。

a:“做好事的是b,c,d三人中之一。

”b:“我没做,是c 做的。

”c:“a,d中有一人做了这件事。

”d:“b说的是事实。

”经分析发现,两人说的都是事实,另两人说的不是事实,那么,究竟是谁做的好事呢?搞一搞1:a,b,c,d四名学生怨恨自己的数学成绩――a说道:“如果我得优,那么b 也得优。

”b说道:“如果我得优,那么c也得优。

”c说道:“如果我得优,那么d也得优。

”如果大家都没说错,但只有两人得优,问:谁得优?基准2:a,b,c三人中存有两种人,一种人只说道真话,另一种人只说道假话。

a说道b,c都说道了假话,b极力驳斥;但c说道b确认说道了假话。

问:a,b,c中存有几人说道了假话?做一做2:有三对夫妇在一次聚会上相遇,他们时x,y,z先生和a,b,c女士,其中x 先生的夫人和c女士的丈夫初次见面,b女士的丈夫和a女士也是初次见面,z先生认识所有的人。

问:哪位先生和哪位女士是夫妇?基准3:从1至10的十个整数中,挑选出5个数a,b,c,d,e满足用户下面6个条件:(1)d比6小;(2)d能够被c相乘;(3)a与d的和等同于b;(4)a,c,e三数之和等同于d;(5)a与c的和比e大;(6)a与e的和比c与5的和小。

小学奥数教程(最完美)

小学奥数教程(最完美)

1.和差倍问题【和差问题】【和倍问题】【差倍问题】已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题根据题目中的条件确定并求出单一量;4.植树问题基本类型①在直线或者不封闭的曲线上植树,两端都植树;②在直线或者不封闭的曲线上植树,两端都不植树;③在直线或者不封闭的曲线上植树,只有一端植树;④封闭曲线上植树。

基本公式棵数=段数+1 棵距×段数=总长棵数=段数-1 棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题找出总量的差与单位量的差。

新人教版五年级小学数学全册奥数(含答案)

新人教版五年级小学数学全册奥数(含答案)
【例题3】把20分米长的线段分成两段,并且在每一段上作一正方形,已知两个正方形的面积相差40平方分米,大正方形的面积是多少平方分米?
练习3:
1.一块正方形,一边划出1.5米,另一边划出10米搞绿化,剩下的面积比原来减少了1350平方米。这块地原来的面积是多少平方米?
2.一个正方形,如果它的边长增加5厘米,那么,面积就比原来增加95平方厘米。原来正方形的面积是多少平方厘米?
练习5:
1.小明去爬山,上山时每小时行3千米,原路返回时每小时行5千米。求小明往返的平均速度。
2.运动员进行长跑训练,他在前一半路程中每分钟跑150米,后一半路程中每分钟跑100米。求他在整个长跑中的平均速度。
3.把一份书稿平均分给甲、乙二人去打,甲每分钟打30个字,乙每分钟打20个字。打这份书稿平均每分钟打多少个字?
3.甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。三个小组各植树多少棵?
【例题2】一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分。求这个班男生有多少人?
练习2:
1.两组学生进行跳绳比赛,平均每人跳152下。甲组有6人,平均每人跳140下,乙组平均每人跳160下。乙组有多少人?
第3讲 长方形、正方形的周长
一、知识要点
同学们都知道,长方形的周长=(长+宽)×2.正方形的周长=边长×4。长方形、正方形的周长公式只能用来计算标准的长方形和正方形的周长。如何应用所学知识巧求表面上看起来不是长方形或正方形的图形的周长,还需同学们灵活应用已学知识,掌握转化的思考方法,把复杂的问题转化为标准的图形,以便计算它们的周长。
二、精讲精练

小学五年级下册基础奥数教程含答案(精品)

小学五年级下册基础奥数教程含答案(精品)

10.一只猴子每天都要吃桃子,如果它每天吃桃子的数量 Math-y
互不 2
IMO
相同,那么 100 个桃子最多够这只猴子吃多少天? 11.某同学把他最喜爱的书顺序编号为 1, 2,3,…,所有编号之和是 100 的倍数且小
于 1000,则他编号的最大数是多少?(2002 年小学数学奥林匹克预赛题) 12. 有若干人的年龄的和是 4476 岁, 其中年龄最大的不超过 79 岁, 最小的不低于
解法一:用大长方形的面积,减去阴影周围空白部分的面积。长方形的面积是 6×5= 30,左上角三角形的面积是 2×2÷2=2,左下角三角形的面积是 3×1÷2=1.5,右下角左 边三角形的面积是 2×1÷2=1,右边梯形的面积是(1+4)×3÷2=7.5,右上角左边三角形
Math-y
3
IMO
的面积是 2×1÷2=1,右边梯形的面积是(1+2)×3÷2=4.5,所以阴影部分的面积是 30-(2
1.计算:23.91+37.78+51.65+65.52+79.39+93.26+107.13=? 2.计算 1+2+3+2+4+6+3+6+9+…+100+200+300。 3.计算:1+3+4+6+7+9+10+12+13+…+66+67+69+70。 4.计算 100×95-95×90+90×85-85×80+80×75-75×70+…+20×15-15×10 +10×5。(吉林省第九届小学数学邀请赛试题) 5.计算(1994+1992+1990+…+4+2)-(1+3+5+…+1991+1993)。 6.计算 (2004-1)+(2003-2)+(2002-3)+…+(1003-1002)。(吉林省第 九届小学数学邀请赛试题) 7.如图,照这样摆下去,若摆到 80 层,一共需要□多少个?■多少个?

小学奥数教程(最完美)

小学奥数教程(最完美)

1.和差倍问题【和差问题】【和倍问题】【差倍问题】已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题根据题目中的条件确定并求出单一量;4.植树问题基本类型①在直线或者不封闭的曲线上植树,两端都植树;②在直线或者不封闭的曲线上植树,两端都不植树;③在直线或者不封闭的曲线上植树,只有一端植树;④封闭曲线上植树。

基本公式棵数=段数+1 棵距×段数=总长棵数=段数-1 棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题找出总量的差与单位量的差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学奥数基础教程(五年级)
本教程共30讲
最大公约数与最小公倍数(一)
如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a 的约数。

如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。

在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数。

自然数a1,a2,…,a n的最大公约数通常用符号(a1,a2,…,a n)表示,例如,(8,12)=4,(6,9,15)=3。

如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数。

在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数。

自然数a1,a2,…,a n的最小公倍数通常用符号[a1,a2,…,a n]表示,例如[8,12]=24,[6,9,15]=90。

常用的求最大公约数和最小公倍数的方法是分解质因数法和短除法。

例1 用60元钱可以买一级茶叶144克,或买二级茶叶180克,或买三级茶叶240克。

现将这三种茶叶分别按整克数装袋,要求每袋的价格都相等,那么每袋的价格最低是多少元钱?
分析与解:因为144克一级茶叶、180克二级茶叶、240克三级茶叶都是60元,分装后每袋的价格相等,所以144克一级茶叶、180克二级茶叶、240克三级茶叶,分装的袋数应相同,即分装的袋数应是144,180,240的公约数。

题目要求每袋的价格尽量低,所以分装的袋数应尽量多,应是144,180,240的最大公约数。

所以(144,180,240)=2×2×3=12,即每60元的茶叶分装成12袋,每袋的价格最低是60÷12=5(元)。

为节约篇幅,除必要时外,在求最大公约数和最小公倍数时,将不再写出短除式。

例2 用自然数a去除498,450,414,得到相同的余数,a最大是多少?
分析与解:因为498,450,414除以a所得的余数相同,所以它们两两之差的公约数应能被a整除。

498-450=48,450-414=36,498-414=84。

所求数是(48,36,84)=12。

例3 现有三个自然数,它们的和是1111,这样的三个自然数的公约数中,最大的可以是多少?
分析与解:只知道三个自然数的和,不知道三个自然数具体是几,似乎无法求最大公约数。

只能从唯一的条件“它们的和是1111”入手分析。

三个数的和是1111,它们的公约数一定是1111的约数。

因为1111=101×11,它的约数只能是1,11,101和1111,由于三个自然数的和是1111,所以三个自然数都小于1111,1111不可能是三个自然数的公约数,而101是可能的,比如取三个数为101,101和909。

所以所求数是101。

例4 在一个30×24的方格纸上画一条对角线(见下页上图),这条对角线除两个端点外,共经过多少个格点(横线与竖线的交叉点)?
分析与解:(30,24)=6,说明如果将方格纸横、竖都分成6份,即分成6×6个相同的矩形,那么每个矩形是由(30÷6)×(24÷6)=5×4(个)
小方格组成。

在6×6的简化图中,对角线也是它所经过的每一个矩形的对角线,所以经过5个格点(见左下图)。

在对角线所经过的每一个矩形的5×4个小方格中,对角线不经过任何格点(见右下图)。

所以,对角线共经过格点(30,24)-1=5(个)。

例5 甲、乙、丙三人绕操场竞走,他们走一圈分别需要1分、1分15秒和1分30秒。

三人同时从起点出发,最少需多长时间才能再次在起点相会?
分析与解:甲、乙、丙走一圈分别需60秒、75秒和90秒,因为要在起点相会,即三人都要走整圈数,所以需要的时间应是60,75,90的公倍数。

所求时间为[60,75,90]=900(秒)=15(分)。

例6 爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。

”你知道爷爷和小明现在的年龄吗?
分析与解:爷爷和小明的年龄随着时间的推移都在变化,但他们的年龄差是保持不变的。

爷爷的年龄现在是小明的7倍,说明他们的年龄差是6的倍数;同理,他们的年龄差也是5,4,3,2,1的倍数。

由此推知,他们的年龄差是6,5,4,3,2的公倍数。

[6,5,4,3,2]=60,
爷爷和小明的年龄差是60的整数倍。

考虑到年龄的实际情况,爷爷与小明的年龄差应是60岁。

所以现在
小明的年龄=60÷(7-1)=10(岁),
爷爷的年龄=10×7=70(岁)。

练习12
1.有三根钢管,分别长200厘米、240厘米、360厘米。

现要把这三根钢管截成尽可能长而且相等的小段,一共能截成多少段?
2.两个小于150的数的积是2028,它们的最大公约数是13,求这两个数。

3.用1~9这九个数码可以组成362880个没有重复数字的九位数,求这些数的最大公约数?
4.大雪后的一天,亮亮和爸爸从同一点出发沿同一方向分别步测一个圆形花圃的周长。

亮亮每步长54厘米,爸爸每步长72厘米,由于两个人的脚印有重合,所以雪地上只留下60个脚印。

问:这个花圃的周长是多少米?
5.有一堆桔子,按每4个一堆分少1个,按每5个一堆分也少1个,按每6个一堆分还是少1个。

这堆桔子至少有多少个?
6.某公共汽车站有三条线路的公共汽车。

第一条线路每隔5分钟发车一次,第二、三条线路每隔6分钟和8分钟发车一次。

9点时三条线路同时发车,下一次同时发车是什么时间?
7.四个连续奇数的最小公倍数是6435,求这四个数。

练习12
1.20段。

解:(200,240,360)=40,
(200+240+360)÷40=20(段)。

2.39和52。

解:这两个数分别除以13后得到两个互质数,这两个互质数的乘积是2028÷13÷13=12=1×12=3×4,因为13×12=156>150,所以这两个数分别是13×3=39和13×4=52。

3.9。

提示:每个九位数都由1~9组成,1+2+…+9=45,由能被9整除的数的特征知,9是这些数的公约数。

又因为123456789与123456798相差9,这两个数的最大公约数是9,所以9是这些数的最大公约数。

4.21.6米。

解:(54,72)=18,54÷18=3,72÷18=4,说明小亮走4步等于爸爸走3步,其中脚印重合一次,留下4+3-1=6(个)脚印。

所以花圃周长54×4×(60÷6)=2160(厘米)=21.6(米)。

5.59个。

提示:增加1个桔子后,桔子数是4,5,6的公倍数。

6.11点。

提示:[5,6,8]=120(分)=2(时)。

7.9,11,13,15。

解:6435=32×5×11×13=9×11×13×5,因为[9,11,13,5]=[9,11,13,15],
所以这四个连续奇数是9,11,13和15。

相关文档
最新文档