分式 异分母分式的加减

合集下载

异分母分数加减法口诀

异分母分数加减法口诀

异分母分数加减法口诀
异分母分数加减法口诀主要包括以下几点:
1. 通分:要先将异分母的分数通分,使分母相同。

通分的方法是将各个分数的分子乘以一个相同的因子,使得分母相同。

2. 加法:同分母的分数相加,只需将分子相加,分母保持不变。

3. 减法:同分母的分数相减,只需将分子相减,分母保持不变。

4. 异分母相加减:先通分,然后按照同分母分数加减法的规则进行计算。

5. 混合运算:若有括号,先计算括号内的运算;若无括号,按照从左到右的顺序进行计算。

6. 结果:计算完成后,若结果为最简分数,需要进行约分。

需要注意的是,在进行异分母分数加减法时,关键是正确地通分,通分的方法是将各个分数的分子乘以一个相同的因子,使得分母相同。

在计算过程中,要保持分母不变,仅对分子进行加减运算。

此外,掌握分数的基本性质,如分子乘以一个因子,分母也要乘以相同的因子,以保持分数的大小不变,这对于解决异分母分数加减法问题非常关键。

专题25 分式的运算-重难点题型(举一反三)(学生版)

专题25 分式的运算-重难点题型(举一反三)(学生版)

专题5.2 分式的运算-重难点题型【知识点1 分式的加减】同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。

①同分母分式的加减:a b a bc c c±±=; ②异分母分式的加法:a c ad bc ad bcb d bd bd bd±±=±=。

注:不论是分式的哪种运算,都要先进行因式分解。

【题型1 分式的加减】【例1】(2021春•盐城月考)化简: (1)a a−b+b b−a; (2)x 2−4x 2−4x+4−4x x 2−2x.【变式1-1】当m >﹣3时,比较m+2m+3与m+3m+4的大小.【变式1-2】(2021•乐山)已知A x−1−B 2−x=2x−6(x−1)(x−2),求A 、B 的值.【变式1-3】(2021春•河南期末)若a >0,M =aa+1,N =a+1a+2 (1)当a =1时,M =12,N =23;当a =3时,M =34,N =45;(2)猜想M 与N 的大小关系,并证明你的猜想.【题型2 分式与整式的混合运算 】 【例2】(2021•嘉兴一模)计算x 2x+2−x +2时,两位同学的解法如下:解法一:x 2x+2−x +2=x 2x+2−x+21=x 2x+2−(x+2)2x+2解法二:x 2x+2−x +2=1x+2[x 2−(x −2)(x +2)] (1)判断:两位同学的解题过程有无计算错误?若有误,请在错误处打“×”. (2)请选择一种你喜欢的方法,完成解答.【变式2-1】(2021•梧州)计算:(x ﹣2)2﹣x (x ﹣1)+x 3−4x 2x 2.【变式2-2】(2021秋•昌平区期中)阅读下列材料,然后回答问题.我们知道,假分数可以化为整数与真分数的和的形式.例如:32=1+12,在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:x+1x−2,x 2x+2这样的分式是假分式;1x−2,xx 2−1这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:x+1x−2=(x−2)+3x−2=1+3x−2,x 2x+2=(x+2)(x−2)+4x+2=x −2+4x+2.解决下列问题: (1)将分式x−2x+3化为整式与真分式的和的形式;(2)如果分式x 2+2x x+3的值为整数,求x 的整数值.【变式2-3】(2021春•玄武区期中)著名数学教育家波利亚曾说:“对一个数学问题,改变它的形式,变换它的结构,直到发现有价值的东西,这是数学解题的一个重要原则.”《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂;从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法.阅读材料:在处理分数和分式的问题时,有时由于分子大于分母,或分子的次数高于分母的次数,在实际运算时难度较大,这时,我们可将分数(分式)拆分成一个整数(整式)与一个真分数(分式)的和(差)的形式,通过对它的简单分析来解决问题,我们称这种方法为分离常数法,此法在处理分式或整除问题时颇为有效. 将分式分离常数可类比假分数变形带分数的方法进行,如:x 2−2x+3x−1=x(x−1)+x−2x+3x−1=x +−(x−1)+2x−1=x ﹣1+2x−1,这样,分式就拆分成一个分式2x−1与一个整式x ﹣1的和的形式. 根据以上阅读材料,解答下列问题: (1)假分式x+6x+4可化为带分式 形式;(2)利用分离常数法,求分式2x 2+5x 2+1的取值范围;(3)若分式5x 2+9x−3x+2拆分成一个整式与一个分式(分子为整数)的和(差)的形式为:5m ﹣11+1n−6,则m 2+n 2+mn 的最小值为 .【知识点2 分式的混合运算】 1.乘法法则:db ca d cb a ⋅⋅=⋅。

2022年北师大版八下《异分母分式的加减》配套练习(附答案)

2022年北师大版八下《异分母分式的加减》配套练习(附答案)

5.3 分式的加减法第2课时 异分母分式的加减一、判断正误并改正: (每题4分,共16分) 1. ab a b a a b a a b a --+=--+=0〔 〕2.11)1(1)1(1)1()1(1)1(22222-=--=---=-+-x x x x x x x x x 〔 〕3.)(2121212222y x y x +=+〔 〕4.222b a c b a c b a c +=-++〔 〕二、认真选一选:(每题4分,共8分)1. 如果x >y >0,那么xy x y -++11的值是〔 〕 A.零B.正数C.负数2. 甲、乙两人分别从相距8千米的两地同时出发,假设同向而行,那么t 1小时后,快者追上慢者;假设相向而行,那么t 2小时后,两人相遇,那么快者速度是慢者速度的〔 〕 A.211t t t + B.121t t t + C.2121t t t t +- D.2121t t t t -+三、填一填:1. 异分母分式相加减,先________变为________分式,然后再加减.2. 分式xy 2,y x +3,y x -4的最简公分母是________.3. 计算:222321xyz z xy yz x +-=_____________.4. 计算:)11(1xx x x -+-=_____________. 5. 22y x M -=2222y x y xy --+yx y x +-,那么M=____________. 6. 假设〔3-a 〕2与|b -1|互为相反数,那么ba -2的值为____________. 7. 如果x <y <0,那么xx ||+xy xy ||化简结果为____________. 8. 假设0≠-=y x xy ,那么分式=-x y 11____________. 9. 计算22+-x x -22-+x x =____________.第1课时 三角形的全等和等腰三角形的性质一.选择题〔共8小题〕1.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,那么添加的条件不能为〔 〕A. BD=CE B. AD=AE C. DA=DE D. BE=CD2.等腰三角形的一个角是80°,那么它顶角的度数是〔 〕A. 80° B. 80°或20° C . 80°或50° D. 20°3.实数x,y满足,那么以x,y的值为两边长的等腰三角形的周长是〔 〕A. 20或16 B. 20 C. 16 D. 以上答案均不对4.如图,在△ABC中,AB=AC,∠A=40°,BD为∠ABC的平分线,那么∠BDC的度数是〔 〕A. 60° B. 70° C. 75° D. 80°5.等腰三角形的两边长分别是3和5,那么该三角形的周长是〔 〕A. 8 B. 9 C. 10或12 D. 11或136.如图,给出以下四组条件:①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,. 其中,能使ABC DEF △≌△的条件共有〔 〕A .1组B .2组C .3组D .4组7.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个局部, 那么这个等腰三角形的底边长为〔 〕A. 7 B. 11 C. 7或11 D. 7或108.等腰三角形一腰上的高与另一腰的夹角为30°,那么顶角的度数为〔 〕A. 60° B. 120° C. 60°或150° D. 60°或120°二.填空题〔共10小题〕9.等腰三角形的一个内角为80°,那么另两个角的度数是 _________ . 10.如图,AB∥CD,AB=AC,∠ABC=68°,那么∠ACD= _________ .第10题 第11题 第12题 第13题11.如图,在△ABC中,AB=AC,△ABC的外角∠DAC=130°,那么∠B= _________ °.12.如图,AB∥CD,AE=AF,CE交AB于点F,∠C=110°,那么∠A=________°.13.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,那么BD=_________ .14.如图,在△ABC中,AB=AD=DC,∠BAD=32°,那么∠BAC=_________ °.第14题 第15题 第16题 第17题 第18题15.如图,AB与CD交于点O,OA=OC,OD=OB ,∠A=50°,∠B=30°,那么∠D的度数为_____.16.如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,那么∠BDC的度数为_________.17.如图,在△ABC中,AB=AC,点D为BC边的中点,∠BAD=20°,那么∠C=_________ .18.如图,在△ABC中,AB=AC,∠A=80°,E,F,P分别是AB,AC,BC边上一点,且BE=BP ,CP=CF,那么∠EPF= _________ 度.三.解答题〔共5小题〕19.:如图,在等腰△ABC中,AB=AC,O是底边BC上的中点,OD⊥AB于D,OE⊥AC于E.求证:AD=AE.20.如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:〔1〕△ABD≌△ACD;〔2〕BE=CE.21.如下图,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB 的位置关系,并给出证明.22.如图,在△ABC中,D、E分别是AC和AB上的点,BD与CE相交于点O,给出以下四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.〔1〕上述四个条件中,由哪两个条件可以判定AB=AC?〔用序号写出所有的情形〕〔2〕选择〔1〕小题中的一种情形,说明AB=AC.23.〔1〕如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、A C于点D、E.判断DE=DB+EC是否成立?为什么?〔2〕如图,假设点F是∠ABC的平分线和外角∠ACG的平分线的交点,其他条件不变,请猜测线段DE、DB、EC之间有何数量关系?证明你的猜测.参考答案一、CBBCDCCD二、9、50°,50°或80°,20°;10、44;11、65;12、40;13、3;14、69;15、30°;16、72;17、70;18、50三、19、证明:∵AB=AC,∴∠B=∠C.∵OD⊥AB,OE⊥AC,∴∠ODB=∠OEC=90°.∵O是底边BC上的中点,∴OB=OC,在△OBD与△OCE中,∴△OBD≌△OCE〔AAS〕.∴BD=CE.∵AB=AC,∴AB﹣BD=AC﹣CE.即AD=AE.20、证明:〔1〕∵D是BC的中点,∴BD=CD,在△A BD和△ACD中,,∴△ABD≌△ACD〔SSS〕;…〔4分〕〔2〕由〔1〕知△ABD≌△ACD,∴∠BAD=∠CAD,即∠BAE=∠CAE,在△ABE和△ACE中,∴△ABE≌△ACE 〔SAS〕,∴BE=CE〔全等三角形的对应边相等〕.〔其他正确证法同样给分〕…〔4分〕21、解:OE⊥AB.证明:在△B A C和△ABD中,,∴△BAC≌△ABD〔SAS〕.∴∠OBA=∠OAB,∴OA=OB.又∵AE=BE,∴OE⊥AB.答:OE⊥AB.22、〔1〕答:有①③、①④、②③、②④共4种情形.〔2〕解:选择①④,证明如下:∵OB=OC,∴∠OBC=∠OCB,又∵∠EBO=∠DCO,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AC=AB.②④理由是:在△BEO和△CDO中∵,∴△BEO≌△CDO,∴∠EBO=∠DCO,∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC,23、解:〔1〕成立;∵△ABC中BF、CF平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠4.∵DE∥BC,∴∠2=∠3,∠4=∠6.∴∠1=∠3,∠6=∠5.根据在同一个三角形中,等角对等边的性质,可知:BD=DF,EF=CE.∴DE=DF+EF=BD+CE.故成立.〔2〕∵BF分∠ABC,∴∠DBF=∠FBC.∵DF∥BC,∴∠DFB=∠FBC.∴∠ABF=∠DFB,∴BD=DF.∵CF平分∠AC G,∴∠ACF=∠FCG.∵DF∥BC,∴∠DFC=∠FCG.∴∠ACF=∠DFC,∴CE=EF.∵EF+DE=DF,即DE+EC=BD.。

人教版八年级数学上册 15.2 分式的运算(含答案)

人教版八年级数学上册 15.2 分式的运算(含答案)

15.2 分式的运算知识要点: 1.分式的乘除 ①乘法法则:db c a d c b a ⋅⋅=⋅。

分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

②除法法则:cb d acd b a d c b a ⋅⋅=⋅=÷。

分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

③分式的乘方:nn n a a b b ⎛⎫= ⎪⎝⎭。

分式乘方要把分子、分母分别乘方。

④整数负指数幂:1nna a -=。

2.分式的加减同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。

①同分母分式的加减:a b a b c c c±±=; ②异分母分式的加法:a c ad bc ad bcb d bd bd bd±±=±=一、单选题 1.化简a ÷b •1b的结果是( ) A .2a b B .aC .ab 2D .ab2.化简的结果是( )A.x +3B.x –9C.x -3D.x +93.计算的结果为( )A. B. C.D.4.下列计算正确的是( ) A.B.C.D.5.已知P=999999,Q= 990119,则P 、Q 的大小关系是( )A .P >QB .P =QC .P <QD .无法确定6.化简2m mn mnm n m n +÷--的结果是( ) A .m nn+B .2m m n-C .m nn- D .2m7.计算22m n m n n m+--的结果为( ) A.22m n + B.m n + C.m n - D.n m -8.化简的结果是( )A.x+1B.C.x-1D.9.若分式运算结果为 ,则在“□”中添加的运算符号为( )A.+B.—C.—或÷D.+或×10.清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示0.0000084( )A .68.410⨯B .78410-⨯C .50.8410-⨯D .68.410-⨯11.22--的值是( ) A.4 B.4-C.14-D.14二、填空题12.若3m =4,3n =2,则92m-n =________.13.某种生物孢子的直径为0.0000016cm ,把该数用科学记数法表示为________.14.计算:20191009142⎛⎫-⨯= ⎪⎝⎭______.15.()0201927318--⎛⎫-+-+-= ⎪⎝⎭__________________.16.老师设计了接力游戏,甲、乙、丙、丁四位同学用合作的方式完成分式化简规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简过程如图所示接力中,自己负责的一步出现错误的同学是_____.三、解答题 17.计算:(1)×3-21()2-+|1;(2)2m n mm n n m++--. 18.(1)计算:()1132π-⎛⎫-+ ⎪⎝⎭(2)化简:()()()32223x x y x y x yxy -++÷19.先化简,再求值:22923693x x x x x x -⎛⎫+-- ⎪+++⎝⎭,其中1x =-.20.阅读下面的解题过程已知2212374y y =++,求代数式21461y y +-的值. 解:由2212374y y =++,取倒数得,223742y y ++=,即2231y y +=, 所以()2246122312111y y y y +-=+-=⨯-=则可得211461y y =+-. 该题的解题方法叫做“倒数法”,请你利用“倒数法”解下面的题目:已知32321x x +=+++,求35--2242x x x x -⎛⎫÷ ⎪--⎝⎭的值.答案1.A 2.C 3.B 4.D 5.B6.A7.B8.A9.C10.D 11.C 12.64 13.-61.610⨯14.1 2 -15.1 9 -16.乙和丁17.(1) 225;(2) -1 18.(1)3;(2)25x;19.4x-;-5.2032+。

异分母分式的加减法

异分母分式的加减法

1、求下列各组分式的最简公分母:
(1)
y 4x2
,
5 6xy
,
x 9y2
7y (2) 8xy2 , 6x2
(3) 3x , 2y 2y(x y) 3x(x y)
(4)
x
2
1
xy
,y yx
2、把下列各组分式通分:
y5x (1) 4x2 , 6xy , 9 y2
(2)
x2
1
xy
,y yx
拓展探究
异分母分式的加减法
(一)
计算:
1 1 13 1 2 3 2 5 2 3 23 32 6 6 2 1 23 15 6 5 1 5 3 5 3 3 5 15 15
异分母分数相加减:先通分,把异 分母分数化为同分母的分数,然后再分 母不变,分子相加减。
如何计算:
y 4x2
5 6xy
1 1 3y 3y
2x 2x 3y 6xy 1 12x 2x 3y 3y 2x 6xy
例1:通分
(1)
x 3y
2
,
1 4xy
4a 3c 5b (2)5b2c , 4a2b , 2ac2
解(1)最简公分母是12xy2
x 3y2
x 4x 3y2 4x
4 12
x2 xy
2
1 4xy
13y 4xy 3y
y5x
你能计算:4x2 6xy 9 y2 吗
解:最简公分母是 36x2 y2
y5x 4x2 6xy 9 y2
y 9y2 4x2 9y2
5 6xy 6xy 6xy
x 4x2 y2
4x3
本节主要学习了: 1、如何确定最简公分母; 2、对异分母分式进行通分。

八年级数学下册异分母分式的加减教案

八年级数学下册异分母分式的加减教案

第2课时 异分母分式的加减1 .学会确定几个分式的最简公分母并 进行通分;(重点)2.能正确地运用分式的加、减、乘、除、乘方的运算法则进行混合运算. (重点,难点)一、情境导入小学我们学习过异分母分数的加减法,如 3 + 2=必+ “3=3 23 X 2 2X 2—呢? x + 1 x — 1二、合作探究 探究点一:分式的通分【类型一】最简公分母是 _________ .解析:■/ x 2— 3x = x(x — 3), x 2— 9 = (x +3)(x — 3) ,•••最简公分母为 x(x + 3)(x — 3).方法总结:最简公分母的确定:最简公分母的系数,取各个分母的系数的最小公倍 数;字母及式子取各分母中所有字母和式子 的最高次幕.“所有字母和式子的最高次幕”是指“凡出现的字母(或含字母的式子) 为底数的幕的因式选取指数最大的 ”;当分母是多项式时,一般应先因式分解.【类型二】 分母是单项式分式的通分母应当乘的单项式,分子也相应地乘以这个 单项式.解:⑴最简公分母是2b 2d , bi =, ac _ acd . 2^= 2b^d ;2 2 b3b 2c⑵最简公分母是6a bc , 20V 63bb?, 2a _ 4a 3 .3bc 2= 6a 2bc 2;(3)最简公分母是10xy 2z 2 ,壬九= 8xz 3 = 3z 25 _ — 25y 2 10xy 2z 2,10xy 2= 10xy 2z 2, — 2xz 2=— 10xy 2z 2.方法总结:通分时,先确定最简公分母, 然后根据分式的基本性质把各分式的分子、 分母同时乘以一个适当的整式, 使分母化为最简公分母.【类型三】 分母是多项式分式的通分2mn 3m⑵4m 2 — 9, 4m 2— 6m + 9.解析:先把分母因式分解,再确定最简 公分母,然后再通分.解:⑴最简公分母是2a(a + 1)(a — 1),a = _______ a 2 (a - 1) ______ 2 (a + 1) = 2a (a + 1)( a — 1), 1 = 2 (a + 1) . a 2 — a = 2a ( a + 1)( a — 1);⑵最简公分母是(2m + 3)(2m — 3)2,2mn = 2mn (2m — 3) 4m 2— 9 = (2m + 3)( 2m — 3) 2 ,3m = 3m (2m + 3) ______________ 4m 2 — 6m + 9 = ( 2m + 3)( 2m — 3) 2.方法总结:①确定最简公分母是通分的 关键,通分时,如果分母是多项式,一般应 先因式分解,再确定最简公分母;②在确定最简公分母后,还要确定分子、分母应乘的 因式,这个因式就是最简公分母除以原分母55,那么如何计算 6分式尢与悬的最简公分母a2 (a + 1)1 a 2— a ;c ac ; (1)bd ,2b 2; b 2a (2)2a 2c ,3bc 2;4 35 ⑶ 5y 2z ,10xy 2,— 2xz 2.解析:先确定最简公分母,找到各个分通分.(1)的商. 探究点二:异分母分式的加减法 【类型一】 计算: 异分母分式的加减法运算 ⑴x 2— 4 x 2+ 4x + 4, a 2 — 4 ⑵兀+汀2; m n 2mn (3) - + 一. m — n m + n m — n 解析:依据分式的加减法法则,(1)、(3) 中先找出最简公分母分别为 (x — 2)(x + 2)2、 (m + n )(m — n),再通分,然后运用同分母分 式加减法法则运算;(2)中把后面的加数a + 2看成分母为1的式子进行通分. 解:⑴原式=(x + 2)( x — 2) 2 x (x +2) (x + 2) ( x — 2) 2 (x — 2) (x + 2) 2 (x — 2) x (x + 2)— 2 (x — 2) (x + 2) 2( x — 2) /+ 4 ______ (x + 2) 2 (x — 2);a 2— 4 +( a + 2) 2 m (m + n ) n (m — n )2mn + (m + n )( m — n ) (m + n )(m — n ) m 2 + 2mn + n 2 —(m + n )( m — n ) m — n 方法总结:分母是多项式时,应先因式 分解,目的是为了找最简公分母以便通 分.对于整式与分式的加减运算,可以将整 式的每一项的分母看成 1,再通分,也可以 把整式的分母整体看成 1,再进行通分运算. 【类型二】 分式的混合运算计算:m + n x 2— 4x + 4 x x — 1(1)( x 2— 4 — x + 2)訐2;a — 516⑵ h r 三-a - 3).(x 一 2) 2解:⑴原式—[(x — 2)( x + 2)x — 1 x + 2] x + 2=(口-亠) x + 2 x + 空 x — 1 — 2 x + 2 x + 2 x +2 x —12 x — 1;a — 5(2)原式=(5 + a )( 5-a )(5 + a )( 5— a )——1 ——10+ 2a .方法总结:对于一般的分式混合运算来 讲,其运算顺序与整式混合运算一样,是先 乘方,再乘除,最后加减,如果遇到括号要 先算括号里面的.在此基础上,有时也应该根据具体问题的特点,灵活应变,注意方法.探究点三:分式运算的化简求值 【类型一】 先化简,再根据所给字母的值求分式的值0先化简,再求值:( 1+x — y12xx + 丿 x 2+ 2xy + y 2, 其中 x = 1, y =— 2.解析:化简时,先把括号内通分,把除 把多项式因式分解,再约分,法转化为乘法, 最后代值计算.解原式=(x + y ) 2_x + y2x — x — y ,当 x — 1,y —— 2 时,原式一1 +(_ j )1 —(— 2)2x(x — y )( x + y )1=—3.方法总结:分式的化简求值,其关键步 骤是分式的化简.要熟悉混合运算的计算顺数代入求值:22.x ii — 4x + 4 x 2 + 3x x — 2 解析:先把分式化简,再选数代入,可取除一3、0和2以外的任何数.2 (x + iii)iv v vi vii viii ix 2解:原式= 2 •—、(x — 2) 2 x (x + 3) x — 21x (x — 2) x — 21 x'探究点四:运用分式解决实际问题D 有一客轮往返于重庆和武汉之 间,第一次往返航行时,长江的水流速度为 a 千米/小时;第二次往返航行时, 正遇上长 江汛期,水流速度为b 千米/小时(b > a).已 知该船在两次航行中, 静水速度都为v 千米 /小时,问该船两次往返航行所花时间是否 相等,若你认为相等,请说明理由;若你认 为不相等,请分别表示出两次航行所花的时 间,并指出哪次时间更短些?解析:重庆和武汉之间的路程一定,可设其为s,所用时间=顺流时间+逆流时间, 注意顺流速度=静水速度+水流速度; 逆流速度=静水速度-水流速度, 把相关数值代入,比较即可.解:设两次航行的路程都为 s.当x = 1时,原式=—1.(x 取除一 3、0 和2以外的任何数)方法总结:取数代入求值时,要注意所 选择的值一定满足分式分母不为0,这包括原式及化简过程中的每一步的分式都有意 义.【类型三】 整体代入求值已知实数a 满足a 2+ 2a — 8 = 0,1 a + 3 a 2— 2a + 9求 一2--的值.a + 1 a 2 — 1(a + 1)( a + 3)解析:首先把分式分子、分母能因式分 解的先因式分解进行约分,然后进行减法运 算,最后整体代值计算.a 2- 2a + 1(a + 1) ( a + 3)1 a + 12vs第二次所用时间为亠+亠v + b v — b2vs(a — 1) 2(a +T a 2 + 2a — 8 = 0, — a 2+ 2a = 8,—原式 _ = 2=8 + 1 = 9.方法总结:利用“整体代入”思想化简 求值时,先把要求值的代数式化简, 然后将 已知条件变换成适合所求代数式的形式, 再 整体代入即可. iv 2— b 2,■/ b > a ,二 b 2>a 2, /• v 2 — b 2v v 2— a 2, 2vs 2vs"T —P>T —P.•••第一次的时间要短些.方法总结:①运用分式解决实际问题 时,用分式表示实际问题中的量是解决问题 的关键;②比较分子相同的两个分式的大 小,分母大的反而小.— 2_____________________________ a + 1 — (a + 1) 2— (a + 1) 2— a 2+ 2a + 1.1)( a - 1)序,式子化到最简再代值计算.【类型二】 先化简,再选择字母的值 求分式的值=先化简,再选择使原式有意义的2x + 6x — 21第一次所用时间为拦+S v — aa + 3(a + 1)( a + 3)三、板书设计1•分式的通分2 •异分母分式的加减法:先通分,化为同分母分式,再按同分母分式相加减的法则进行计算.3•分式的混合运算:先乘方,再乘除,最后算加减,如果遇到括号要先算括号里面的.对于异分母分式相加减,注意强调转化思想:通过通分,把异分母分式转化为同分母分式,再按同分母分式相加减的法则进行计算•对于分式混合运算,关键是要注意各种运算的先后顺序,最后结果要化为最简分式•在教学中,注意培养学生认真细致的学习态度,从运算符号到通分、约分,都应认真对待,一丝不苟•。

分式的加减法运算

分式的加减法运算分式是数学中的一种表示形式,常用于表示部分与整体之间的关系或比例关系。

在分式中,有时需要进行加减法运算,以求得分式的和或差。

下面将介绍分式的加减法运算方法,并给出一些例子进行解析。

一、同分母当两个分式的分母相同时,可以直接对分子进行加减运算,分母保持不变。

例如:计算3/4 + 1/4由于两个分式的分母相同,因此可以直接对分子进行加法运算,得到4/4。

答:3/4 + 1/4 = 4/4同样的道理,对于两个分式进行减法运算也是一样的。

例如:计算5/6 - 1/6由于两个分式的分母相同,因此可以直接对分子进行减法运算,得到4/6。

答:5/6 - 1/6 = 4/6二、异分母当两个分式的分母不同时,需要进行分母的通分操作,再进行加减法运算。

1. 分母为相同因数的情况如果两个分式的分母可以通过相同的因数相乘得到,那么可以直接进行通分操作,再进行加减法运算。

例如:计算1/3 + 1/6由于3和6可以通过乘以2得到相同的分母,所以先将两个分式的分母进行通分,得到2/6 + 1/6。

然后可以对分子进行加法运算,得到3/6,再约分得到1/2。

答:1/3 + 1/6 = 1/2同样的方法,可以进行异分母分式的减法运算。

例如:计算5/8 - 1/12由于8和12可以通过乘以3得到相同的分母,所以先将两个分式的分母进行通分,得到15/24 - 2/24。

然后可以对分子进行减法运算,得到13/24。

答:5/8 - 1/12 = 13/242. 分母为互质的情况如果两个分式的分母不能通过相同的因数相乘得到相同分母,那么需要使用辗转相除法来得到最小公倍数,并进行通分操作。

例如:计算2/5 + 3/7由于5和7互质,没有相同的因数,所以需要找到最小公倍数。

7和5的最小公倍数为35,所以可以将两个分式的分母进行通分,得到14/35 + 15/35。

然后可以对分子进行加法运算,得到29/35,再约分得到 5/7。

答:2/5 + 3/7 = 5/7同样的方法,可以进行异分母分式的减法运算。

2.4.2 异分母分式的加、减法 第2课时

2
) (B) v1v2 千米
v1 +v2
(C)2v1v2 千米
v1 +v2
(D)无法确定
【温馨提示】总路程除以总时间是平均速度. 温馨提示】总路程除以总时间是平均速度.
小时, 【解析】选C.设这段路长为s千米,小明上坡用 s 小时,下 解析】 C.设这段路长为s千米, 设这段路长为
v1 s 小时,它走上、 坡用 小时,它走上、下坡的平均速度为 v2
2b2 3a2 2b2 +3a2 解: (1) 原式 = + = ; 6ab 6ab 6ab
( 2) 原式 =
1 2 1 2 + 2 = + a −1 a −1 a −1 ( a +1)( a −1) a+1 2 = + ( a+1)( a-1) ( a+1)( a-1)
= a+3 ( a+1)( a-1)
a +3 . 2 a −1
=
【解析】 解析】
【解析】 解析】
【解析】 解析】
1.(2010·包头中考) 1.(2010·包头中考)化简 包头中考 其结果是( 其结果是( )
【解析】 解析】
2.在一段坡路,小明骑自行车上坡时的速度为每小时v 2.在一段坡路,小明骑自行车上坡时的速度为每小时v1千 在一段坡路 米,下坡时的速度为每小时v2千米,则他在这段路上、下 下坡时的速度为每小时v 千米,则他在这段路上、 坡的平均速度是每小时( 坡的平均速度是每小时( (A) v1 +v2 千米
在如图的电路中,已测定CAD支路的电阻是R 欧姆, CAD支路的电阻是 例3 在如图的电路中,已测定CAD支路的电阻是R1欧姆, 又知CBD支路的电阻R 50欧姆 欧姆, 又知CBD支路的电阻R2比R1大50欧姆,根据电学有关定 CBD支路的电阻 律可知总电阻R与R1R2满足关系式 律可知总电阻R R1的式子表示总电阻R 的式子表示总电阻R

异分母分式的加减法 优秀教案

第五章分式与分式方程3.分式的加减法(二)一、学生起点分析学生知识技能基础:学生在上节课已经学习过同分母的分式相加减及分母互为相反式分式的加减运算。

在第四章又学习了因式分解,在本章的前面几节课中,回忆了分数的基本性质,学习了分式的基本性质、分式的约分及分式的乘除等。

对这节课异分母分式相加减内容的学习都有了充分的铺垫。

学生活动经验基础:从学习字母表示数开始,学生就经历过许多从实际问题建模的思想,用代数式去解决实际问题的经验。

同时在以前的学习中,学生也经历了很多合作交流的学习过程,具有了一定的活动的经验和合作与交流的能力。

二、教学任务分析分式的加减法是代数变形的基础之一,在学习完同分母分式的加减法法则后必将谈到异分母分式的加减法,教科书安排了三节课的教学,就是不让难度突然加大,而是循序渐进的去接受,允许学生经过一定时间的学习达到《标准》要求的目标,应把教学重点放在落实和理解上。

本节内容不多,教学时对异分母分式加减法法则的探索过程上,要使学生充分活动起来,在观察、类比、猜想、尝试等一系列思维活动中,发现法则、理解法则、应用法则。

本节课的教学目标为:1、会找最简公分母,能进行分式的通分;2、理解并掌握异分母分式加减法的法则;3、经历异分母分式的加减运算和通分的探讨过程,训练学生的分式运算能力。

4、培养学生在学习中转化未知问题为已知问题的能力和意识;进一步通过实例发展学生的符号感和用数学的意识。

三、教学过程设计本节课设计了6个教学环节:问题引入——学习新知——运用新知和小试牛刀——分式加减应用——课堂小结——拓展提高。

第一环节问题引入活动内容问题1:同分母分式是怎样进行加减运算的?问题2:异分母分数又是如何进行加减?问题3:那么?你是怎么做的?=+aa 413活动目的:通过回忆同分母分式的加减法法则、异分母分数的加减法运算,来引出本节课的内容,同时又对问题3点明了类比的思想方法,使进入新知识的学习顺理成章。

分式知识点总结与分式方程的应用

知识点1、分式概念重点:掌握分式的概念和分式有意义的条件难点:分式有意义、分式值为0的条件 分式的概念:形如B A ,其中分母B 中含有字母,分数是整式而不是分式. (1)分式无意义时,分母中的字母的取值使分母为零,即当B=0时分式无意义.(2)求分式的值为零时,必须在分式有意义的前提下进行,分式的值为零要同时满足分母的值不为零及分子的值为零,这两个条件缺一不可.(3)分式有意义,就是分式里的分母的值不为零.易错易混点(1) 对分式的定义理解不准确;(2)不注意分式的值为零的条件;知识点2、分式的基本性质重点:正确理解分式的基本性质.难点:运用分式的基本性质,将分式约分、通分分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,用式子表示是:AB=MB M A ⨯⨯,AB=M B M A ÷÷.(其中M 是不等于零的整式)分式中的A ,B ,M 三个字母都表示整式,其中B 必须含有字母,除A 可等于零外,B ,M 都不能等于零.因为若B=0,分式无意义;若M=0,那么不论乘或除以分式的分母,都将使分式无意义.分式的约分和通分(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.求几个分式的最简公分母的步骤:1.取各分式的分母中系数最小公倍数;2.各分式的分母中所有字母或因式都要取到;3.相同字母(或因式)的幂取指数最大的;4.所得的系数的最小公倍数与各字母(或因式)的最高次幂的积(其中系数都取正数)即为最简公分母。

各个分式的分母都是多项式,并且可以分解因式。

这时,可先把各分式的分母中的多项式分解因式,再确定各分式的最简公分母,最后通分。

易错易混点分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,注意系数也要约分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学练优八年级数学上(XJ) 教学课件
第1章 分

1.4 分式的加法和减法
第3课时 异分母分式的加减
导入新课 讲授新课 当堂练习 课堂小结
学习目标
1.掌握异分母分式的加减法;(重点) 2.理解分式的混合运算的顺序,并会熟练进行分式的混合运 算.(难点)
导入新课
回顾与思考
b bh 1.分式的基本性质: a ah
二 分式的混合运算
例2 计算:
4a 2 8a a 1 a 1 (1) 2 ; a a 2 a 1 a 1
4a a 2 a 1 a 1 解: (1)原式= a 2 a 1 a 1 a 1

x 2 x 2
4
x 2 x 2 x
4 x
分式的混合运算顺序:先乘方,再乘除,最后算加减,有括号 要先算括号里面的.
例3 计算:
2 2 x y x y (1) x y ; x 3 x x y 3x
x ( 4) 1- 1 = _________ 1- x . 1- x
x 3 5 x 2 2.(2016· 苏州模拟)化简: . x2 x2
x3 5 解: x 2 x2 x2 x 3 x2 4 5 x2 x2 x2 x3 x2 x 2 x 3 x 3 1 x3
x 3 x 3 (2)原式 = x 3 x 3 x 3 x 3
2 2
x 3 x 2 x 9
注意:先确定公分母(各个分式的分母变成相同),通分 后,再计算.
a 2b ab (3) 2 2 ; 2 2 a 4ab 4b a 2ab b
2 2 x y x 解:原式 = x y x y 3x x y 3x
2 1 x 2 1 3x x y 3x x 2 x y 2x x y
巧 用 分 配 律
当堂练习
1.
计算:
2x (1) 1 1 =_______________ ; x 2 -4 x2 x -2
(2)
x- y y x xy = ______________ ; y( x y) x( x y)
(3)
1 2 1 = ____________ 2(x 2) ; 2 x -4 4-2x -
2.分式的乘除(约分):
a c ac b d bd
a c a d ad b d b c bc
a n an ( ) n 3.分式的乘方: b b
a c ac 4.同分母的分式加减法则: b b b
5.计算:
3 12 15 3 12 15 (1) 0 a a a a 2a 1 a 3 5 2a 1 a 3 5 (2) 1 a 1 1 a a 1 a 1
3b 2 a ab 2b 2
整式加减法则 最简分式
注意:计算时,先将分式化简再通分。整式与分式相加减,
把整式看作为分母是“1”的分式.
1 (4)x 1 . 1 x x 1 1 解:原式= 1 1 x x 11 x 1 1 x 1 x 1 x2 1 1 x 2 x2 1 x
x 2 xy x 2 xy 2 xy (3) 2 xy xy xy 异分母分式应 x y x y 如何加减? (4) x y yx x y
讲授新课
一 异分母分式的加减法
异分母分数相加减,要先通分,化成同分母的分数,
然后再加减. 类似地,异分母的分式的加、减法运算法则是: 异分母的分式相加减,先通分,化成同分母的分式, 然后再加减.

a c ad bc ad bc b d bd bd bd
例1 计算:
1 1 ( 1 ) ; x 1 x 1
x3 x3 (2) ; x 3 x 3
x 1 x 1 解: (1)原式= x 1 x 1 x 1 x 1
x 1 x 1 x 1 x 1 2 2 x 1 2 2 x 1
a 2b ab 解:原式= 2 (a 2b) (a b) 2
因式分解
1 1 先化简,再确定 最简公分母 a 2b a b ab a 2b 通分 (a 2b)(a b) (a 2b)(a b)
a b a 2b (a 2b)(a b)
2
2
4a a 2 a 1 a 1 4a a 2 a 1 a 1
x 4 x2 (2) 2 2 x . x x 4 x 4 x 2 x
1 x4 1 解:原式 = x 2 x 2 x
1 1 1 1 (2) . 2 2 a b a b a b a b

1 ab

1 看成整体,题目的实质是平方差公式的应 ab
用.换元可以使复杂问题的形式简化. 解:原式
1 1 1 1 1 1 a b a b a b a b a b a b 1 1 a b a b 巧用平方差 2a 2 2 公式 a b
相关文档
最新文档