九年级数学教学案例
冀教版九年级上数学优秀教学案例:23.3.1方差

1.通过自主探究、合作交流的方式,引导学生发现方差的概念和计算方法,培养他们的发现问题和解决问题的能力。
2.设计多样化的教学活动,如小组讨论、实例分析等,帮助学生掌握方差的应用,提高他们的数据分析能力。
3.引导学生运用比较、归纳、概括等方法,总结方差与平均数、标准差之间的关系,培养他们的逻辑思维和总结能力。
本案例以问题为导向,引导学生主动思考、探究。通过设计一系列具有启发性的问题,让学生在解决问题的过程中掌握方差知识,培养他们的逻辑思维和数据分析能力。这种教学策略有助于提高学生的思维品质,培养他们解决问题的能力。
3.小组合作,提高学生合作交流能力
小组合作是本案例的一大亮点。学生在小组内进行讨论、交流和合作,共同完成方差计算、数据分析等任务。这种教学方式不仅有助于学生巩固所学知识,还能培养他们的团队协作精神和沟通能力。
(三)学生小组讨论
在学生小组讨论环节,我会将学生分成若干小组,布置以下任务:
1.各小组根据所学知识,共同讨论如何计算方差,并在小组内分享计算方法。
2.各小组选取一个实际问题,运用方差进行分析,讨论方差在解决问题中的作用。
3.各小组汇报讨论成果,其他小组进行评价和反馈。
(四)总结归纳
在总结归纳环节,我会引导学生从以下几个方面进行:
(二)问题导向
在教学过程中,我将以问题为导向,引导学生进行探究式学习。设计一系列具有启发性的问题,如:“如何衡量一组数据的波动大小?”“方差与平均数、标准差之间有何关系?”等,激发学生的思考。通过问题驱动,让学生在解决问题的过程中掌握方差的知识,提高他们的思维品质。
(三)小ห้องสมุดไป่ตู้合作
小组合作是本节课的重要教学策略。我将学生分成若干小组,让他们在组内进行讨论、交流和合作。在小组合作中,学生可以相互借鉴、取长补短,共同完成方差计算、数据分析等任务。此外,小组合作还能培养学生的团队协作能力和沟通能力,提高他们的综合素质。
九年级数学优秀教学设计范本5篇

九年级数学优秀教学设计范本5篇作为一名专为他人授业解惑的人民教师,时常需要准备好教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。
下面是小编为大家整理的关于九年级数学优秀教学设计范本,希望对您有所帮助!九年级数学优秀教学设计范本1【教学目标】:知识与能力:A组:计算折扣后的物品价格,运用规律快速比较选择价格相同,折扣不同的商品,并解决实际问题。
B组:计算折扣后的物品价格,利用辅助工具比较选择价格相同,折扣不同的商品,并解决实际问题。
过程与方法:通过运算,进行比较,找到规律,渗透类比的教学思想,收集数学信息,养成比较的意识。
情感态度价值观:感受折扣在生活中的应用价值,增进学好数学的信心和乐趣。
【教学重点】:计算折扣后的物品价格。
【教学难点】:提取数学信息,总结规律,会运用规律,快速选择低价商品。
【重难点确立依据】:在我们生活中常见到物品打折出售,计算折扣后的物品价格是学生所需要具有的生活技能之一,所以计算折扣后的物品价格是本节的重点。
而总结规律、运用规律解决实际问题对于学生学习起来比较困难,所以是本节的难点。
【教学准备】:课件【教学过程】:一、复习导入【设计意图:通过练习,帮助学生复习折扣与小数的换算,为学习计算打折的.物品价格做铺垫。
】3折=0.3 5折=0.5 8折=0.8 6折=0.62.5折=0.253.8折=0.38 7.2折=0.72AB组学生进行折扣与小数的转换。
二、折扣的计算【设计意图:通过设置购物的情境,帮助学生学习计算打折物品的价格,为学生学习比较选择价格相同、折扣不同的物品做铺垫。
】1、计算折扣棉鞋原价:650元,现4折出售,需要多少元钱?1折扣换算为小数:4折 = 0.42列算式:650×0.4=260 (元)2、练一练:《百科全书》原价150元,现7折出售,需要多少元钱?老师引导学生做练习。
预设生成:学生列算式时,容易直接列成150×7=1050 (元)解决措施:提示学生计算折扣的步骤:第一步折扣换算为小数。
初三数学教学案例集锦

初三数学教学案例集锦案例一:引导学生理解并运用等差数列的概念在初三的数学课堂上,教师需要通过案例引导学生理解并运用等差数列的概念。
以下是一个案例:在教学前,教师要事先准备一道适合初三学生的简单等差数列题目。
例如:有一个等差数列的首项是3,公差是4,求前5项的和。
教师可以通过投影仪或者黑板将题目展示给学生,并让学生尝试解答。
然后,教师可以选择一位学生上台将解题过程展示给全班。
学生可以先找出等差数列的通项公式,然后带入相应的值求解。
在解答完问题后,教师可以引导学生思考这个等差数列背后的规律和特点。
例如,等差数列的公差代表了数列中相邻两项之间的差值,逐差相等的特点可以通过查看相邻两项之间的差值是否相等来判断是否为等差数列。
通过这个案例,学生不仅能够理解等差数列的概念,还能够掌握等差数列的求和公式以及解题方法。
这样的案例教学能够提高学生的主动学习能力,培养学生的解决问题的能力。
案例二:应用数学知识解决实际问题初三数学教学中,教师可以通过应用数学知识解决实际问题的案例,激发学生的学习兴趣,并加深对数学知识的理解。
以下是一个案例:题目:某商场进行促销活动,购买同一品牌电视机,第一台优惠10%,第二台优惠15%,第三台和以后每台都优惠20%。
现有一顾客购买了五台同一品牌的电视机,原价均为6000元,请计算这位顾客总共花费了多少钱?解题过程:第一台电视机花费:6000元 * 10% = 600元第二台电视机花费:6000元 * 15% = 900元第三台电视机花费:6000元 * 20% = 1200元第四台电视机花费:6000元 * 20% = 1200元第五台电视机花费:6000元 * 20% = 1200元总花费:600元 + 900元 + 1200元 + 1200元 + 1200元 = 5100元通过这个案例,学生可以运用百分比的概念,理解不同优惠折扣的计算方法,并且能够运用数学知识解决实际问题。
案例三:巩固三角形的相似性质在初三的数学教学中,巩固三角形的相似性质是很重要的一步。
初中数学教学设计案例(热门18篇)

初中数学教学设计案例(热门18篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、述职报告、心得体会、工作计划、演讲稿、教案大全、作文大全、合同范文、活动方案、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as work summaries, job reports, insights, work plans, speeches, lesson plans, essays, contract samples, activity plans, and other materials. If you want to learn about different data formats and writing methods, please pay attention!初中数学教学设计案例(热门18篇)范文范本可以帮助我们发现和分析自己写作中的问题和不足,促进我们的自我评价和提高。
初中数学教学案例3篇

初中数学教学案例第一篇:初中数学教学案例——整数的加减法教学一、教学目标:1.了解整数的概念及其在实际生活中的运用。
2.掌握整数的加减法运算规律。
3.能够解决整数加减法运算实际问题。
二、教学内容:1.整数的概念及运用。
2.整数的加减法运算规律。
3.整数加减法运算实际问题的解决。
三、教学方法:1.概念讲解法。
2.板书法。
3.示范演示法。
4.课堂练习方法。
四、教学步骤:1.导入。
教师通过巧妙的导入,介绍整数是数学中的一种运算类型,从而激发学生的兴趣,让学生主动参与。
2.讲解整数基本概念。
通过生动的例子,引导学生了解整数的基本概念及其符号表示法。
3.掌握整数的加减法运算规律。
介绍整数加减法运算规律,由浅入深地讲解各类运算方法,同时涉及一些特殊情况的处理方法。
4.例题解析和举一反三。
通过逐步解析典型例题、变化多端的例题,让学生逐渐掌握整数加减法运算的方法和技巧,并通过举一反三的方法,培养学生发散思维。
5.课堂练习。
练习题目与教材内容相结合,使学生通过课内课后的集中、分散练习逐步掌握整数加减法运算能力。
6.总结点拨。
通过引导学生对课后练习的检查,发现和分析错误,总结提炼法则,加深认识,巩固知识。
五、教学评估:通过考试、作业、课堂表现等方式,对学生实施模拟和评估,评定学生对整数的掌握程度。
六、教学后记:本课教学过程中,教师要注重学生思维方法、技能和思维复合能力的发展,立足于问题解决,使学生掌握数学核心思想,运用数学技能和工具解决实际问题。
初三数学教学教案七篇

初三数学教学教案七篇初三数学教学教案七篇初三数学教学教案都有哪些?教案要成为一篇独具特色“课堂教学散文”或者是课本剧。
所以,开头、经过、结尾要层层递进,扣人心弦,达到立体教学效果。
下面是小编为大家带来的初三数学教学教案七篇,希望大家能够喜欢!初三数学教学教案教学内容一元二次方程概念及一元二次方程一般式及有关概念. 教学目标2了解一元二次方程的概念;一般式ax+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目.1.通过设臵问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情. 重难点关键1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念. 教学过程一、复习引入学生活动:列方程. 问题(1)古算趣题:“执竿进屋”笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。
有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。
借问竿长多少数,谁人算出我佩服。
如果假设门的高为x尺,那么,这个门的宽为_______尺,长为_______尺,根据题意,得________. 整理、化简,得:__________. 二、探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数(2)按照整式中的多项式的规定,它们次数是几次 (3)有等号吗还是与多项式一样只有式子老师点评:(1)都只含一个未知数x;(2)它们的次数都是2次的;(3)都有等号,是方程. 因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程.2一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.2一个一元二次方程经过整理化成ax+bx+c=0(a≠0)后,其中ax是二次项,a 是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.2分析:一元二次方程的一般形式是ax+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.解:略注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.2例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.22分析:通过完全平方公式和平方差公式把(x+1)+(x-2)(x+2)=1化成ax+bx+c=0(a≠0)的形式. 解:略三、巩固练习教材练习1、2补充练习:判断下列方程是否为一元二次方程(1)3x+2=5y-3 (2) x=4 (3) 3x-222252 2 2=0 (4) x-4=(x+2) (5) ax+bx+c=0 x四、应用拓展22例3.求证:关于x的方程(m-8m+17)x+2mx+1=0,不论m取何值,该方程都是一元二次方程.2分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m-8m+17≠0即可.22证明:m-8m+17=(m-4)+12∵(m-4)≥022∴(m-4)+1 0,即(m-4)+1≠0∴不论m取何值,该方程都是一元二次方程.2练习: 1.方程(2a—4)x—2bx+a=0, 在什么条件下此方程为一元二次方程在什么条件下此方程为一元一次方程/4m/-42.当m为何值时,方程(m+1)x+27mx+5=0是关于的一元二次方程五、归纳小结(学生总结,老师点评) 本节课要掌握:2(1)一元二次方程的概念;(2)一元二次方程的一般形式ax+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.初三数学教学教案【篇7】1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解. 重点通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题. 难点一元二次方程及其二次项系数、一次项系数和常数项的识别.活动1 复习旧知1.什么是方程你能举一个方程的例子吗2.下列哪些方程是一元一次方程并给出一元一次方程的概念和一般形式.(1)2x-1 (2)mx+n=0 (3)1x+1=0 (4)x2=13.下列哪个实数是方程2x-1=3的解并给出方程的解的概念.A.0B.1C.2D.3活动2 探究新知根据题意列方程.1.教材第2页问题1.提出问题:(1)正方形的大小由什么量决定本题应该设哪个量为未知数(2)本题中有什么数量关系能利用这个数量关系列方程吗怎么列方程(3)这个方程能整理为比较简单的形式吗请说出整理之后的方程.2.教材第2页问题2.提出问题:(1)本题中有哪些量由这些量可以得到什么(2)比赛队伍的数量与比赛的场次有什么关系如果有5个队参赛,每个队比赛几场一共有20场比赛吗如果不是20场比赛,那么究竟比赛多少场(3)如果有x个队参赛,一共比赛多少场呢3.一个数比另一个数大3,且两个数之积为0,求这两个数.提出问题:本题需要设两个未知数吗如果可以设一个未知数,那么方程应该怎么列4.一个正方形的面积的2倍等于25,这个正方形的边长是多少活动3 归纳概念提出问题:(1)上述方程与一元一次方程有什么相同点和不同点(2)类比一元一次方程,我们可以给这一类方程取一个什么名字(3)归纳一元二次方程的概念.1.一元二次方程:只含有________个未知数,并且未知数的次数是________,这样的________方程,叫做一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.提出问题:(1)一元二次方程的一般形式有什么特点等号的左、右分别是什么(2)为什么要限制a≠0,b,c可以为0吗(3)2x2-x+1=0的一次项系数是1吗为什么3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).活动4 例题与练习例1 在下列方程中,属于一元二次方程的是________.(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;(4)2x2-2x(x+7)=0.总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.例2 教材第3页例题.例3 以-2为根的一元二次方程是( )A.x2+2x-1=0B.x2-x-2=0C.x2+x+2=0D.x2+x-2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.练习:1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.(1)4x2=81;(2)(3x-2)(x+1)=8x-3.3.教材第4页练习第2题.4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.答案:1.a≠1;2.略;3.略;4.k=4.活动5 课堂小结与作业布置课堂小结我们学习了一元二次方程的哪些知识一元二次方程的一般形式是什么一般形式中有什么限制你能解一元二次方程吗作业布置教材第4页习题21.1第1~7题.。
关于初三数学教案5篇

关于初三数学教案5篇教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
这里给大家分享一些关于初三数学教案,方便大家学习。
关于初三数学教案篇1一、教学目标1.了解推理、证明的格式,理解判定定理的证法.2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证.3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力.4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育.二、学法引导1.教师教法:启发式引导发现法.2.学生学法:积极参与、主动发现、发展思维.三、重点•难点及解决办法(一)重点判定定理的推导和例题的解答.(二)难点使用符号语言进行推理.(三)解决办法1.通过教师正确引导,学生积极思维,发现定理,解决重点.2.通过教师指导,学生自行完成推理过程,解决难点及疑点.四、课时安排1课时五、教具学具准备三角板、投影仪、自制胶片.六、师生互动活动设计1.通过设计练习,复习基础,创造情境,引入新课.2.通过教师指导,学生探索新知,练习巩固,完成新授.3.通过学生自己总结完成小结.七、教学步骤(一)明确目标掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力.(二)整体感知以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知.(三)教学过程创设情境,复习引入师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影).学生活动:学生口答第1、2题.师:你能说出有什么条件,就可以判定两条直线平行呢?学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行.教师将第3题图形画在黑板上.学生活动:学生口答理由,同角的补角相等.师:要求学生写出符号推理过程,并板书.【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点.师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?学生活动:同分内角.师:它们有什么关系.学生活动:互补.师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题.关于初三数学教案篇2教学目标1、使学生理解弦、弧、弓形、同心圆、等圆、等孤的概念;初步会运用这些概念判断真假命题。
初中数学教学案例50篇

初中数学教学案例50篇1. 关于整数的加减乘除运算整数是初中数学中的重要内容,通过本教学案例,学生可以学习整数的加减乘除运算。
首先,教师可以通过具体的例子,如-5+3、-7-4、-2×6、-12÷3等,让学生掌握整数加减乘除的规律和方法。
然后,通过综合运算的练习题,让学生巩固和运用所学知识,提高整数运算的能力。
2. 解一元一次方程的基本步骤一元一次方程是初中数学中的基础内容,通过本教学案例,学生可以学习解一元一次方程的基本步骤。
首先,教师可以通过具体的例子,如2x+3=7、4x-5=11等,让学生掌握解一元一次方程的基本方法。
然后,通过练习题,让学生熟练运用所学知识,提高解方程的能力。
3. 计算平方根的方法和应用平方根是初中数学中的重要内容,通过本教学案例,学生可以学习计算平方根的方法和应用。
首先,教师可以通过具体的例子,如√9、√16、√25等,让学生掌握计算平方根的基本步骤。
然后,通过实际问题的应用,如求直角三角形的斜边长等,让学生理解平方根的意义和作用,提高解决实际问题的能力。
4. 理解和应用百分数的概念百分数是初中数学中的重要内容,通过本教学案例,学生可以学习理解和应用百分数的概念。
首先,教师可以通过具体的例子,如30%、50%、75%等,让学生掌握百分数的意义和计算方法。
然后,通过实际问题的应用,如计算打折优惠、计算增长率等,让学生应用百分数解决实际问题,提高数学运算能力。
5. 掌握正比例和反比例的关系正比例和反比例是初中数学中的重要内容,通过本教学案例,学生可以学习掌握正比例和反比例的关系。
首先,教师可以通过具体的例子,如y=2x、y=3/x等,让学生理解正比例和反比例的定义和特点。
然后,通过练习题,让学生熟练应用正比例和反比例的关系,提高数学解题的能力。
6. 计算三角形的面积和周长三角形是初中数学中的常见几何图形,通过本教学案例,学生可以学习计算三角形的面积和周长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学教学案例
——“直线与圆的位置关系”
一、教学设计
本节课是在学习了点和圆的位置关系的基础上,进行的为后面的圆与圆的位置关系作铺垫的一节课。
它体现了运动几何的观点,通过直线与圆的相对运动,揭示直线与圆的位置关系,对它的学习和研究,可以拓展学生的思维空间,培养学生的观察、分析、归纳能力,并向学生渗透"数形结合"、"类比"、"转化"的数学思想,培养学生运动变化的辨证唯物主义观点;通过对研究过程的反思,进一步强化对分类和化归思想的认识。
“直线与圆的位置关系”地探索要通过学生动手实践和合作探究来完成,这有利于激发学生学习数学的兴趣,让学生积极主动地参与数学教学的全过程,使每个学生都在原有的基础上得到发展,获得成功的体验,树立学好数学的自信心。
二、教学过程
1、教学目标
(1)从具体的事例理解直线与圆的三种位置关系,并会判断直线与圆的位置关系;(2)探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系;
(3)通过直线与圆的位置关系的探究,向学生渗透分类、数形结合的思想,培养学生观察、分析、概括和合作交流的能力;
(4)使学生从运动的观点来观察直线与圆相交、相切、相离的关系,培养学生的辩证唯物主义观点。
2、重点、难点分析
(1)教学重点:经历探索直线与圆的位置关系的过程,理解直线与圆有三种位置关系,了解切线的概念;
(2)教学难点: 探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。
3、教学过程:
1、在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,为下节课探索切线的性质打好基础。
2、在教学过程中注重知识的获得过程,为学生提供探索知识的机会,让学生参与到问题的探究中去,给学生思考,动手的时间和空间,让学生在探究中学习,在学习中探究,让学生摸着石头过河,这样加深了学生的记忆,激发了学生的学习兴趣和求知欲,让他们觉得这些知识不是我教给他们的,而是他们自己探索发现的。
着既使得每个学生在原有的基础上得到了发展,又让每个学生获得了成功的体验。
3、在教学活动中,让学生经历观察操作,实践验证等活动,在合作与交流中获得了良好的情感体验,体会数学的作用。
4、我认为美中不足之处是,练习没设计与实际生活相关的问题,另外作业设计过于传统,如果适当的分层会更些。
总之,新课程的课堂教学要让学生作为课堂教学的主体参与到课堂教学过程中来,充分展现自己的个性,施展自己的才华,使学生在参与和体验的过程中真正成为学习的主人,养成勇于探索、敢于实践的个性品质。
与此同时,教师还要为学生的学习创造探究的环境,营造探究的氛围,促进探究的开展,把握探究的深度,评价探究的效果。