电磁感应计算题偏难
【物理】物理法拉第电磁感应定律的专项培优 易错 难题练习题及答案

【物理】物理法拉第电磁感应定律的专项培优易错难题练习题及答案一、法拉第电磁感应定律1.如图所示,垂直于纸面的匀强磁场磁感应强度为B。
纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行。
从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下以速度v匀速运动,求:(1)拉力做功的功率P;(2)ab边产生的焦耳热Q.【答案】(1)P=222B L vR(2)Q=234B L vR【解析】【详解】(1)线圈中的感应电动势E=BLv 感应电流I=E R拉力大小等于安培力大小F=BIL 拉力的功率P=Fv=222 B L v R(2)线圈ab边电阻R ab=4R 运动时间t=L vab边产生的焦耳热Q=I2R ab t =23 4B L vR2.如图所示,在垂直纸面向里的磁感应强度为B的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd,线框平面垂直于磁感线。
线框以恒定的速度v沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求:(1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l vQ R=(3)43cd Blv U =【解析】 【详解】(1)线框离开磁场的过程中,则有:2E B lv =gE I R = q It =l t v=联立可得:22Bl q R=(2)线框中的产生的热量:2Q I Rt=解得:234B l vQ R=(3) cd 间的电压为:23cd U I R =g解得:43cd BlvU =3.如图所示,间距为l 的平行金属导轨与水平面间的夹角为α,导轨间接有一阻值为R 的电阻,一长为l 的金属杆置于导轨上,杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ,导轨处于匀强磁场中,磁感应强度大小为B ,方向垂直于斜面向上,当金属杆受到平行于斜面向上大小为F 的恒定拉力作用,可以使其匀速向上运动;当金属杆受到平行于斜面向下大小为2F的恒定拉力作用时,可以使其保持与向上运动时大小相同的速度向下匀速运动,重力加速度大小为g ,求:(1)金属杆的质量;(2)金属杆在磁场中匀速向上运动时速度的大小。
电磁感应现象压轴难题综合题附答案

电磁感应现象压轴难题综合题附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。
导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。
空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。
质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。
【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。
由平衡条件sin mg BId θ=①导体棒切割磁感线产生的电动势为E =Bdv ②由闭合电路欧姆定律得EI R r=+③ 联立①②③得v =20m/s ④由欧姆定律得U =IR ⑤联立①⑤得U =7V ⑥(2)由电流定义式得Q It =⑦由法拉第电磁感应定律得E t∆Φ=∆⑧B ld ∆Φ=⋅⑨由欧姆定律得EI R r=+⑩ 由⑦⑧⑨⑩得Q =0.02C ⑪2.如图所示,无限长平行金属导轨EF 、PQ 固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m ,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T 。
一质量m=2kg 的金属棒ab 与导轨接触良好,ab 与导轨间的动摩擦因数μ=0.5,ab 连入导轨间的电阻r=0.04Ω,电路中其余电阻不计。
现用一质量M=6kg 的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab 相连.由静止释放物体,当物体下落高度h=2.0m 时,ab 开始匀速运动,运动中ab 始终垂直导轨并与导轨接触良好。
高考物理法拉第电磁感应定律压轴难题综合题附答案解析

高考物理法拉第电磁感应定律压轴难题综合题附答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求:(1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R .【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】(1)由题意及图象可知,当0t =时刻ab 边的受力最大,为:10.02N F BIL ==可得:10.02A 0.2A 1.00.1F I BL ===⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒:Q W =安310.020.1J 2.010J F L -==⨯=⨯(2) 金属框拉出的过程中产生的热量:2Q I Rt=线框的电阻:3222.010Ω 1.0Ω0.20.05Q R I t -⨯===⨯2.如图所示,条形磁场组方向水平向里,磁场边界与地面平行,磁场区域宽度为L =0.1 m ,磁场间距为2L ,一正方形金属线框质量为m =0.1 kg ,边长也为L ,总电阻为R =0.02 Ω.现将金属线框置于磁场区域1上方某一高度h 处自由释放,线框在经过磁场区域时bc 边始终与磁场边界平行.当h =2L 时,bc 边进入磁场时金属线框刚好能做匀速运动.不计空气阻力,重力加速度g 取10 m/s 2.(1)求磁感应强度B 的大小;(2)若h >2L ,磁场不变,金属线框bc 边每次出磁场时都刚好做匀速运动,求此情形中金属线框释放的高度h ;(3)求在(2)情形中,金属线框经过前n 个磁场区域过程中线框中产生的总焦耳热. 【答案】(1)1 T (2)0.3 m (3)0.3n J 【解析】 【详解】(1)当h =2L 时,bc 进入磁场时线框的速度222m /s v gh gL ===此时金属框刚好做匀速运动,则有:mg =BIL又E BLv I R R== 联立解得1mgRB L v=代入数据得:1T B =(2)当h >2L 时,bc 边第一次进入磁场时金属线框的速度022v gh gL >即有0mg BI L <又已知金属框bc 边每次出磁场时都刚好做匀速运动,经过的位移为L ,设此时线框的速度为v′,则有'222v v gL =+解得:6m /s v '=根据题意可知,为保证金属框bc 边每次出磁场时都刚好做匀速运动,则应有2v v gh '==即有0.3m h =(3)设金属线框在每次经过一个条形磁场过程中产生的热量为Q 0,则根据能量守恒有:'2211(2)22mv mg L mv Q +=+ 代入解得:00.3J Q =则经过前n 个磁场区域时线框上产生的总的焦耳热Q =nQ 0=0.3n J 。
物理法拉第电磁感应定律的专项培优 易错 难题练习题含答案解析

物理法拉第电磁感应定律的专项培优易错难题练习题含答案解析一、法拉第电磁感应定律1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。
求:(1)线圈中的感应电流的大小和方向;(2)电阻R两端电压及消耗的功率;(3)前4s内通过R的电荷量。
【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。
4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。
【解析】【详解】(1)0﹣4s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:由楞次定律知感应电流方向沿逆时针方向。
4﹣6s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:,方向沿顺时针方向。
(2)0﹣4s内,R两端的电压为:消耗的功率为:4﹣6s内,R两端的电压为:消耗的功率为:故R消耗的总功率为:(3)前4s内通过R的电荷量为:2.如图所示,面积为0.2m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。
已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4Ω求:(1)磁通量变化率,回路的感应电动势。
(2)a 、b 两点间电压U ab 。
【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】(1)由B =(2+0.2t )T 得磁场的变化率为0.2T/s Bt∆=∆ 则磁通量的变化率为:0.04Wb/s BS t t∆Φ∆==∆∆ 根据E nt∆Φ=∆可知回路中的感应电动势为: 4V BE nnS t t∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知:1122.4V ab ER R R U =+=答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。
高考复习超经典电磁感应计算难题-含答案

高考复习超经典电磁感应计算难题-含答案(总9页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除1、如图所示,半径为a的圆形区域内有匀强磁场,磁感应强度B=0.2T,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,其中a=0.4m,b=0.6m.金属环上分别接有灯L1、L2,两灯的电阻均为R0=2Ω.一金属棒MN与金属环接触良好,棒与环的电阻均不计.(1)若棒以v0=5m/s的速率在环上向右匀速滑动,求棒滑过圆环直径OO′的瞬时,MN中的感应电动势和流过灯L1的电流;(2)撤去中间的金属棒MN,将右面的半圆环OL2O′以OO′为轴向上翻转90°,若此时磁场强度随时间均匀变化,其变化率为=T/s,求L1的功率.2、如图所示,两个端面半径同为R的圆柱形铁芯同轴水平放置,相对的端面之间有一缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场.一铜质细直棒ab水平置于缝隙中,且与圆柱轴线等高、垂直.让铜棒从静止开始自由下落,铜棒下落距离为0.2R时铜棒中电动势大小为,下落距离为0.8R时电动势大小为,忽略涡流损耗和边缘效应.关于、的大小和铜棒离开磁场前两端的极性,下列判断正确的是A、>,a端为正B、>,b端为正C、<,a端为正D、<,b端为正3、如图所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l、足够长且电阻忽略不计,导轨平面的倾角为,条形匀强磁场的宽度为d,磁感应强度大小为B、方向与导轨平面垂直。
长度为2d的绝缘杆将导体棒和正方形的单匝线框连接在一起组成“”型装置,总质量为m,置于导轨上。
导体棒中通以大小恒为I的电流(由外接恒流源产生,图中未图出)。
线框的边长为d(d < l),电阻为R,下边与磁场区域上边界重合。
将装置由静止释放,导体棒恰好运动到磁场区域下边界处返回,导体棒在整个运动过程中始终与导轨垂直。
法拉第电磁感应定律压轴难题综合题含答案

法拉第电磁感应定律压轴难题综合题含答案一、高中物理解题方法:法拉第电磁感应定律1.如图所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),求:(1) ab 棒1.5 s-2.1s 的速度大小及磁感应强度B 的大小; (2)金属棒ab 在开始运动的1.5 s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量。
【答案】(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J 【解析】 【详解】(1)金属棒在AB 段匀速运动,由题中图象得:v =xt∆∆=7 m/s 根据欧姆定律可得:I =BLvr R+ 根据平衡条件有mg =BIL解得:B =0.1T(2)根据电量公式:q =I Δt根据欧姆定律可得:I =()R r t∆Φ+∆ 磁通量变化量ΔΦ=S t∆∆B 解得:q =0.67 C(3)根据能量守恒有:Q =mgx -12mv 2 解得:Q =0.455 J所以Q R =Rr R+Q =0.26 J 答:(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J2.如图所示,两根相距为L 的光滑平行金属导轨CD 、EF 固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R 的定值电阻,将质量为m 、电阻可忽略不计的金属棒MN 垂直放置在导轨上,可以认为MN 棒的长度与导轨宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒MN 以恒定速度v 向右运动过程中,假设磁感应强度大小为B 且保持不变,为了方便,可认为导体棒中的自由电荷为正电荷.(1)请根据法拉第电磁感应定律,推导金属棒MN 中的感应电动势E ;(2)在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN 中的感应电动势E .(3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做功.那么,金属棒MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明.【答案】(1)E BLv =;(2)v E BL =(3)见解析 【解析】 【分析】(1)先求出金属棒MN 向右滑行的位移,得到回路磁通量的变化量∆Φ ,再由法拉第电磁感应定律求得E 的表达式;(2)棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力,1v f e B =,棒中电子在洛伦兹力的作用下,电子从M 移动到N 的过程中,非静电力做功v W e Bl =,根据电动势定义WE q=计算得出E. (3)可以从微观的角度求出水平和竖直方向上的洛伦兹力做功情况,在比较整个过程中做功的变化状况. 【详解】(1)如图所示,在一小段时间∆t 内,金属棒MN 的位移 x v t ∆=∆这个过程中线框的面积的变化量S L x Lv t ∆=∆=∆ 穿过闭合电路的磁通量的变化量B S BLv t ∆Φ=∆=∆根据法拉第电磁感应定律 E t∆Φ=∆ 解得 E BLv =(2)如图所示,棒向右运动时,正电荷具有向右的分速度,受到沿棒向上的洛伦兹力1v f e B =,f 1即非静电力在f 的作用下,电子从N 移动到M 的过程中,非静电力做功v W e BL =根据电动势定义 W E q= 解得 v E BL =(3)自由电荷受洛伦兹力如图所示.设自由电荷的电荷量为q ,沿导体棒定向移动的速率为u .如图所示,沿棒方向的洛伦兹力1f q B =v ,做正功11ΔΔW f u t q Bu t =⋅=v 垂直棒方向的洛伦兹力2f quB =,做负功22ΔΔW f v t quBv t =-⋅=-所以12+=0W W ,即导体棒中一个自由电荷所受的洛伦兹力做功为零.1f 做正功,将正电荷从N 端搬运到M 端,1f 相当于电源中的非静电力,宏观上表现为“电动势”,使电源的电能增加;2f 做负功,宏观上表现为安培力做负功,使机械能减少.大量自由电荷所受洛伦兹力做功的宏观表现是将机械能转化为等量的电能,在此过程中洛伦兹力通过两个分力做功起到“传递”能量的作用. 【点睛】本题较难,要从电动势定义的角度上去求电动势的大小,并学会从微观的角度分析带电粒子的受力及做功情况.3.如图1所示,水平面上有两根足够长的光滑平行金属导轨MN 和PQ ,两导轨间距为l ,电阻均可忽略不计。
【物理】物理法拉第电磁感应定律的专项培优 易错 难题练习题(含答案)含答案

;
当棒匀速运动后,棒因切割磁感线有电动势,所以电容器两端的电压能稳定在某个不为 0 的数值,即电容器的电量应稳定在某个不为 0 的数值(不会减少到 0),故 q-t 图像如图:
【答案】(1)加速度逐渐减小的变加速直线运动;P= m2 g 2R B 2l 2
(2)加速度逐渐减小的
加速;P= mgE - m2 g 2r Bl B2l2
【解析】
(3)a=
m
mg B2l
2C
(1)a、对 ab 杆下滑过程,由牛顿第二定律 mg B2l 2v ma ,可知随着速度的增大,加速 R
,方向沿顺时针方向。
2.如图所示,在垂直纸面向里的磁感应强度为 B 的有界矩形匀强磁场区域内,有一个由 均匀导线制成的单匝矩形线框 abcd,线框平面垂直于磁感线。线框以恒定的速度 v 沿垂直 磁场边界向左运动,运动中线框 dc 边始终与磁场右边界平行,线框边长 ad=l,cd=2l,线 框导线的总电阻为 R,则线框离开磁场的过程中,求:
【答案】图见解析. 【解析】 【详解】 开关 S 由 1 掷到 2,电容器放电后会在电路中产生电流。导体棒通有电流后会受到安培力 的作用,会产生加速度而加速运动。导体棒切割磁感线,速度增大,感应电动势 E=Blv,即 增大,则实际电流减小,安培力 F=BIL,即减小,加速度 a=F/m,即减小。因导轨光滑,所 以在有电流通过棒的过程中,棒是一直加速运动(变加速)。由于通过棒的电流是按指数 递减的,那么棒受到的安培力也是按指数递减的,由牛顿第二定律知,它的加速度是按指 数递减的,故 a-t 图像如图:
电磁感应现象压轴难题试卷附答案解析

电磁感应现象压轴难题试卷附答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= ,cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mv I Rt -=2.如图所示,质量为4m 的物块与边长为L 、质量为m 、阻值为R 的正方形金属线圈abcd 由绕过轻质光滑定滑轮的绝缘细线相连,已知细线与斜面平行,物块放在光滑且足够长的固定斜面上,斜面倾角为300。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.磁悬浮列车运行的原理是利用超导体的抗磁作用使列车向上浮起,同时通过周期性变换磁极方向而获得推进动力,其推进原理可简化为如图所示的模型,在水平面上相距L 的两根平行导轨间,有竖直方向且等距离分布的匀强磁场B 1和B 2,且B 1=B 2=B ,每个磁场的宽度都是l ,相间排列,所有这些磁场都以速度v 向右匀速运动,这时跨在两导轨间的长为L 宽为l 的金属框abcd (悬浮在导轨上方)在磁场力作用下也将会向右运动,设直导轨间距L = 0.4m ,B = 1T ,磁场运动速度为v = 5 m/s ,金属框的电阻R = 2Ω。
试问:(1)金属框为何会运动,若金属框不受阻力时金属框将如何运动?(2)当金属框始终受到f = 1N 阻力时,金属框最大速度是多少? (3)当金属框始终受到1N 阻力时,要使金属框维持最大速度,每秒钟需消耗多少能量?这些能量是谁提供的?
8.如图所示,一正方形平面导线框abcd ,经一条不可伸长的绝缘轻绳与另一正方形平面导线框a 1b 1c 1d 1相连,轻绳绕过两等高的轻滑轮,不计绳与滑轮间的摩擦.两线框位于同一竖直平面内,ad 边和a 1d 1边是水平的.两线框之间的空间有一匀强磁场区域,该区域的上、下边界MN 和PQ 均与ad 边及a 1d 1边平行,两边界间的距离为h =78.40 cm .磁场方向垂直线框平面向里.已知两线框的边长均为l = 40. 00 cm ,线框abcd 的质量为m 1 = 0. 40 kg ,电阻为R 1= 0. 80Ω。
线框a 1 b 1 c 1d 1的质量为m 2 = 0. 20 kg ,电阻为R 2 =0. 40Ω.现让两线框在磁场外某处开始释放,两线框恰好同时以速度v =1.20 m/s 匀速地进入磁场区域,不计空气阻力,重力加速度取g =10 m/s 2.
(1)求磁场的磁感应强度大小.
(2)求ad 边刚穿出磁场时,线框abcd 中电流的大小.
5、 (20分)如图所示间距为 L 、光滑的足够长的金属导轨(金属导轨的电阻不计)所在斜面倾角为α两根同材料、长度均为 L 、横截面均为圆形的金属棒CD 、 PQ 放在斜面导轨上.已知CD 棒的质量为m 、电阻为 R , PQ 棒的圆截面的半径是CD 棒圆截面的 2 倍。
磁感应强度为 B 的匀强磁场垂直于导轨所在平面向上两根劲度系数均为 k 、相同的弹簧一端固定在导轨的下端另一端连着金属棒CD 开始时金属棒CD 静止,现用一恒力平行于导轨所在平面向上拉金属棒 PQ .使金属棒 PQ 由静止开始运动当金属棒 PQ 达到稳定时弹簧的形变量与开始时相同,已知金属棒 PQ 开始运动到稳定的过程中通过CD 棒的电量为q,此过程可以认为CD 棒缓慢地移动,已知题设物理量符合
αsin 5
4
mg BL qRk =的关系式,求此过程中(l )CD 棒移动的距离; (2) PQ 棒移动的距离 (3) 恒力所做的功。
(要求三问结果均用与重力mg 相关的表达式来表示).
v
12、(16分)如图所示,倾角为370的光滑绝缘的斜面上放着M=1kg 的导轨abcd ,ab ∥cd 。
另有一质量m=1kg 的金属棒EF 平行bc 放在导轨上,EF 下侧有绝缘的垂直于斜面的立柱P 、S 、Q 挡住EF 使之不下滑,以OO′为界,斜面左边有一垂直于斜面向下的匀强磁场。
右边有平行于斜面向下的匀强磁场,两磁场的磁感应强度均为B=1T ,导轨bc 段长L=1m 。
金属棒EF 的电阻R=1.2Ω,其余电阻不计,金属棒与导轨间的动摩擦因数μ=0.4,开始时导轨bc 边用细线系在立柱S 上,导轨和斜面足够长,当剪断细线后,试求:
(1)求导轨abcd 运动的最大加速度(2)求导轨abcd 运动的最大速度;
(3)若导轨从开始运动到最大速度的过程中,流过金属棒EF 的电量q=5C ,则在此过程中,系统损失的机械能是多少?(sin370=0.6)
30、(16分)如图所示,空间等间距分布着水平方向的条形匀强磁场,竖直方向磁场区域足够长,磁感应强度B =1 T ,
每一条形磁场区域的宽度及相邻条形磁场区域的间距均为d =0.5 m ,现有一边长l =0.2 m 、质量m =0.1 kg 、电阻R =0.1 Ω的正方形线框MNOP 以v 0=7 m/s 的初速从左侧磁场边缘水平进入磁场,求: ⑴线框MN 边刚进入磁场时受到安培力的大小F ;
⑵线框从开始进入磁场到竖直下落的过程中产生的焦耳热Q ;
⑶线框能穿过的完整条形磁场区域的个数n 。
2如图,光滑的平行金属导轨水平放置,电阻不计,导轨间距为l ,左侧接一阻值为R 的电阻。
区域cdef
内存在垂直轨道平面向下的有界匀强磁场,磁场宽度为s 。
一质量为m ,电阻为r 的金属棒MN 置于导轨上,与导轨垂直且接触良好,受到F =0.5v +0.4(N )(v 为金属棒运动速度)的水平力作用,从磁场的左边界由静止开始运动,测得电阻两端电压随时间均匀增大。
(已知l =1m ,m =1kg ,R =0.3Ω,r =0.2Ω,s =1m )(1)分析并说明该金属棒在磁场中做何种运动;(2)求磁感应强度B 的大小;
(3)若撤去外力后棒的速度v 随位移x 的变化规律满足v =v 0-B 2l 2
m (R +r )
x ,且棒在运动到ef 处时恰好静止,则外力F 作用的时间为多少?
(4)若在棒未出磁场区域时撤去外力,画出棒在整个运动过程中速度随位移的变化所对应的各种可能的图线。