DFT-FFT的应用之确定性信号谱分析
DFT在信号频谱分析中的应用

DFT在信号频谱分析中的应用目录Ⅰ.设计题目 (1)Ⅱ.设计目的 (1)Ⅲ.设计原理 (1)Ⅳ.实现方法 (1)Ⅴ.设计内容及结果 (5)Ⅵ.改进及建议 (11)Ⅶ.思考题及解答 (14)Ⅷ.设计体会及心得 (15)Ⅸ.参考文献 (16)Ⅰ.设计题目DFT 在信号频谱分析中的应用Ⅱ.设计目的掌握离散傅里叶变换的有关性质,利用Matlab 实现DFT 变换。
了解DFT 应用,用DFT 对序列进行频谱分析,了解DFT 算法存在的问题及改进方法。
学习并掌握FFT 的应用。
Ⅲ.设计原理所谓信号的频谱分析就是计算信号的傅里叶变换。
连续信号与系统的傅里叶分析显然不便于直接用计算机进行计算,使其应用受到限制,而DFT 是一种时域和频域均离散化的变换,适合数值运算,成为分析离散信号和系统的有力工具。
工程实际中,经常遇到的连续信号Xa(t),其频谱函数Xa(jW)也是连续函数。
数字计算机难于处理,因而我们采用DFT 来对连续时间信号的傅里叶变换进行逼近,进而分析连续时间信号的频谱。
Ⅳ.实现方法离散傅里叶变换是有限长序列的傅里叶变换,它相当于把信号的傅里叶变换进行等频率间隔采样,并且有限长序列的离散傅里叶变换和周期序列的离散傅里叶级数本质是一样的。
快速傅里叶变换(FFT )并不是一种新的变换,它是离散傅里叶变换的一种快速算法,并且主要是基于这样的思路而发展起来的:(1)把长度为N 的序列的DFT 逐次分解成长度较短的序列的DFT 来计算。
(2)利用WN(nk)的周期性和对称性,在DFT 运算中适当的分类,以提高运算速度。
(对称性nkNnk NW W N-=+2,12-=NN W ;周期性nkN nk N nrN N k rN n NW W W W ---==)(,r 为任意整数,1=nrNN W )离散傅里叶变换的推导:离散傅里叶级数定义为nk j N k p p ek x Nn x N21)(1)(π∑-==(1-1) 将上式两端乘以nm j Neπ2-并对n在0~N-1求和可得⎥⎦⎤⎢⎣⎡==∑∑∑∑∑-=---=-=-=---=-10)(110101)(1N2N2N2)()(1)(N n m k n j N N k p N n N k m k n j pN n nm j pe k X ek XNen xπππ 因为{m k 1mk 0)(N )(1)(N 2N2N2-1-1N 11=≠---=-==∑m k j m k j N n m k n je eeNπππ所以∑∑-=-=--=110)()()(N2N k p N n nm j p m k k X en x δπ 这样∑-=-=10N2)()(N n nm j p p en x m X π用k 代替m 得∑-=-=1N2)()(N n nk j p P en x k X π(1-2)令N2πj N eW -=则(1-2)成为DFS []∑-===10)()()(N n nkN p p p W n x k X n x (1-3)(1-1)成为IDFS []∑-=-==1)(1)()(N n nkN pp p W k XNn x k X (1-4)式(1-3)、(1-4)式构成周期序列傅里叶级数变换关系。
实验二FFT实现信号频谱分析

0
2
4
6
4
2
0
-2
-4
-6
-4
-20246四、试验环节
4. 试验内容2旳程序运营成果如下图所示:
60
30
40
20
20
10
0
0
-10 -5
0
5
10
-40 -20
0
20 40
30
80
60 20
40 10
20
0
-40 -20
0
20 40
0
-40 -20
0
20 40
四、试验环节
|X(k)| x(n)
5. 试验内容 3旳程序运营成果如下图所示:
fft 计算迅速离散傅立叶变换
fftshift
ifft
调整fft函数旳输出顺序,将零频 位置移到频谱旳中心
计算离散傅立叶反变换
fft函数:调用方式如下
y=fft(x):计算信号x旳迅速傅立叶变换y。当x旳长度为 2旳幂时,用基2算法,不然采用较慢旳分裂基算法。
y=fft(x,n):计算n点FFT。当length(x)>n时,截断x,不 然补零。
【例2-11】产生一种正弦信号频率为60Hz,并用fft函数 计算并绘出其幅度谱。
fftshift函数:调用方式如下 y=fftshift(x):假如x为向量,fftshift(x)直接将x旳左右两 部分互换;假如x为矩阵(多通道信号),将x旳左上、右 下和右上、左下四个部分两两互换。 【例2-12】产生一种正弦信号频率为60Hz,采样率为1000Hz, 用fftshift将其零频位置搬到频谱中心。
以上就是按时间抽取旳迅速傅立叶变换
实验二用DFT及FFT进行谱分析

实验二用DFT及FFT进行谱分析实验二将使用DFT(离散傅里叶变换)和FFT(快速傅里叶变换)进行谱分析。
在谱分析中,我们将探索如何将时域信号转换为频域信号,并观察信号的频谱特征。
首先,我们需要了解DFT和FFT的基本概念。
DFT是一种将时域信号分解为频域信号的数学方法。
它将一个离散时间序列的N个样本转换为具有N个频率点的频率谱。
DFT在信号处理和谱分析中被广泛应用,但它的计算复杂度为O(N^2)。
为了解决DFT的计算复杂度问题,Cooley和Tukey提出了FFT算法,它是一种使用分治策略的快速计算DFT的方法。
FFT算法的计算复杂度为O(NlogN),使得谱分析在实际应用中更加可行。
在实验中,我们将使用Python编程语言和NumPy库来实现DFT和FFT,并进行信号的谱分析。
首先,我们需要生成一个具有不同频率成分的合成信号。
我们可以使用NumPy的arange函数生成一组时间点,然后使用sin函数生成不同频率的正弦波信号。
接下来,我们将实现DFT函数。
DFT将时域信号作为输入,并返回频域信号。
DFT的公式可以表示为:X(k) = Σ(x(n) * exp(-i*2πkn/N))其中,X(k)是频域信号的第k个频率点,x(n)是时域信号的第n个样本,N是信号的长度。
我们将使用循环计算DFT,但这种方法的计算复杂度为O(N^2)。
因此,我们将在实验过程中进行一些优化。
接下来,我们将实现FFT函数。
FFT函数将时域信号作为输入,并返回频域信号。
可以使用Cooley-Tukey的分治算法来快速计算FFT。
FFT的基本思想是将一个长度为N的信号分解为两个长度为N/2的子信号,然后逐步地将子信号分解为更小的子信号。
最后,将所有子信号重新组合以得到频域信号。
实验中,我们将使用递归的方式实现FFT算法。
首先,我们将信号分解为两个子信号,然后对每个子信号进行FFT计算。
最后,将两个子信号的FFT结果重新组合以得到频域信号。
实验二 确定性信号谱分析

实验报告课程名称: 数字信号处理 指导老师: 成绩:__________________实验名称:DFT 的应用之一 − 确定性信号谱分析一、实验目的和要求谱分析即求信号的频谱。
本实验采用DFT 技术对周期性信号进行谱分析。
通过实验,了解用X(k)近似地表示频谱X(e j ω)带来的栅栏效应、混叠现象和频谱泄漏,了解如何正确地选择参数(抽样间隔T 、抽样点数N )。
二、实验内容和步骤2-1 选用最简单的周期信号:单频正弦信号、频率f=50赫兹,进行谱分析。
2-2 谱分析参数可以从下表中任选一组(也可自定)。
对各组参数时的序列,计算:一个正弦周期是否对应整数个抽样间隔?观察区间是否对应整数个正弦周期?2-3 对以上几个正弦序列,依次进行以下过程。
2-3-1观察并记录一个正弦序列的图形(时域)、频谱(幅度谱、频谱实部、频谱虚部)形状、幅度谱的第一个峰的坐标(U ,V )。
2-3-2 分析抽样间隔T 、截断长度N (抽样个数)对谱分析结果的影响; 2-3-3 思考X(k)与X(e j ω)的关系;2-3-4 讨论用X(k)近似表示X(e j ω)时的栅栏效应、混叠现象、频谱泄漏。
专业:________________ 姓名: 陈斌斌学号: 3120104034 日期:________________ 地点:________________实验名称:_______________________________姓名:______________学号:__________________ P.三、主要仪器设备MATLAB编程。
四、操作方法和实验步骤(参见“二、实验内容和步骤”)五、实验数据记录和处理程序清单:t =linspace(0,0.04,16);xn = sin(100*pi*t);N=length(xn);WNnk=dftmtx(N);Xk=xn*WNnk;subplot(2,2,1),stem(1:N,xn),title('时域离散序列x(n)');subplot(2,2,2),stem(1:N,abs(Xk)),title('幅度谱');subplot(2,2,3),stem(1:N,real(Xk)),title('频谱实部');subplot(2,2,4),stem(1:N,imag(Xk)),title('频谱虚部');六、实验结果与分析本实验以第五组参数为基准:采样频率:400 Hz6-1 实验前预习有关概念,并根据上列参数来推测相应频谱的形状、谱峰所在频率(U)和谱峰的数值(V)、混叠现象和频谱泄漏的有无。
用DFT(FFT)对时域离散信号进行频谱分析报告

%以下为绘图部分
k=0:7;wk=2*k/8; %产生8点DFT对应的采样点频率(关于π归一化值)
subplot(2,1,1);stem(wk,abs(Xk8),'.'); %绘制8点DFT的幅频特性图
title('(a) 8点DFT的幅频特性图');xlabel('ω/π');ylabel('幅度');grid
subplot(3,2,5);stem(wk,abs(Xk16), '.'); %绘制16点DFT的幅频特性图
title('(e) 16点DFT的幅频特性图');xlabel('ω/π');ylabel('幅度');grid
四、结论与心得
成绩
教师签名
批改时间
年月日
2.掌握DFT(FFT)对时域离散信号进行频谱分析的方法。
二、实验原理简介
1.DFT和FFT原理:
长度为N的序列x(n)的离散傅里叶变换为X(k):
首先按n的奇偶把时间序列x(n)分解为两个长为N/2点的序列
x1(n)=x(2r) r=0.1,….,N/2-1
x2(n)=x(2r+1) r=0,1,…..,N/2-1
三、实验内容和数据记录
(1)复习DFT的定义,性质和用DFT作频谱分析的有关内容。
(2)用MATLAB编制程序产生以下典型信号供谱分析用:
x1(n)=R4(n)
x4(n)=cos(πn/4)
x5(n)=10*0.8n
(3)分别以变换区间N=8,,16,32对x1(n)=R4(n)进行DFT(FFT),画出相应的幅频特性曲线;
DFT-FFT的应用之确定性信号谱分析

实验报告课程名称:数字信号处理指导老师:成绩:__________________实验名称:DFT/FFT的应用之一确定性信号谱分析实验类型:__验证_ 同组学生姓名:—一、实验目的和要求谱分析即求信号的频谱。
本实验采用DFT/FFT技术对周期性信号进行谱分析。
通过实验,了解用X(k)近似地表示频谱X(ejω)带来的栅栏效应、混叠现象和频谱泄漏,了解如何正确地选择参数(抽样间隔T、抽样点数N)。
二、实验内容和步骤2-1 选用最简单的周期信号:单频正弦信号、频率f=50赫兹,进行谱分析。
2-2 谱分析参数可以从下表中任选一组(也可自定)。
对各组参数时的序列,计算:一个正弦周期是否对应整数个抽样间隔?观察区间是否对应整数个正弦周期?信号频率f(赫兹)谱分析参数抽样间隔T(秒)截断长度N (抽样个数)50 第一组参数0.000625 3250 第二组参数0.005 3250 第三组参数0.0046875 3250 第四组参数0.004 3250 第五组参数0.0025 162-3 对以上几个正弦序列,依次进行以下过程。
2-3-1 观察并记录一个正弦序列的图形(时域)、频谱(幅度谱、频谱实部、频谱虚部)形状、幅度谱的第一个峰的坐标(U,V)。
2-3-2 分析抽样间隔T、截断长度N(抽样个数)对谱分析结果的影响;2-3-3 思考X(k)与X(e jω)的关系;2-3-4 讨论用X(k)近似表示X(ejω)时的栅栏效应、混叠现象、频谱泄漏。
三、主要仪器设备MATLAB编程。
四、操作方法和实验步骤(参见“二、实验内容和步骤”)五、实验数据记录和处理%program 2-2-1clear;clf;clc;%清楚缓存length=32;T=0.000625;t=0:0.001:31;%设置区间以及步长n=0:length-1;xt=sin(2*pi*50*t);xn=sin(2*pi*50*T*n);figure(1);subplot(2,1,1);plot(t,xt);xlabel('t');ylabel('x(t)');axis([0 0.1 -1 1]);title('原序列');subplot(2,1,2);stem(n,xn);xlabel('n');ylabel('xn)');title('抽样后序列');axis([0 length -1 1]);figure(2); %画出序列的实部、虚部、模、相角subplot(2,2,1);stem(n,real(xn));xlabel('n');ylabel('real(xn)');title('序列的实部');axis([0 length -1 1]); subplot(2,2,2);stem(n,imag(xn));xlabel('n');ylabel('imag(xn)');title('序列的虚部');axis([0 length -1 1]); subplot(2,2,3);stem(n,abs(xn));xlabel('n');ylabel('abs(xn)');title('序列的模');axis([0 length -1 1]); subplot(2,2,4);stem(n,angle(xn));xlabel('n');ylabel('angle(xn)');title('序列的相角');axis([0 length -1 1]); F=fft(xn,length); %计算DFTfigure(3); %画出DFT的的幅度,实部和虚部subplot(3,1,1);stem(n,abs(F));xlabel('k');ylabel('abs(F)');title('DFT幅度谱');subplot(3,1,2);stem(n,real(F));xlabel('k');ylabel('real(F)');title('dft 实部'); subplot(3,1,3);stem(n,imag(F));xlabel('k');ylabel('imag(F)');title('DFT的虚部'); 六、实验结果与分析 实验结果: 第一组参数:tx (t )原序列nx n )nr e a l (x n )ni m a g (x n )na b s(x n )na n g l e (x n )k a b s (F )-15kr e a l (F )dft 实部ki m a g (F )第二组参数:tx (t )nx n )nr e a l (x n )ni m a g (x n )na b s (x n )na n g l e (x n )k a b s (F )DFT 幅度谱-14kr e a l (F )dft 实部ki m a g (F )第三组参数:tx (t )原序列nx n )nr e a l (x n )ni m a g (x n )序列的虚部na b s(x n )na n g l e (x n )序列的相角k a b s (F )DFT 幅度谱kr e a l (F )dft 实部-14ki m a g (F )DFT的虚部第四组参数;tx (t )原序列nx n )抽样后序列nr e a l (x n )ni m a g (x n )na b s (x n )na n g l e (x n )k a b s (F )DFT 幅度谱kr e a l (F )dft 实部ki m a g (F )第五组数据:tx (t )原序列nx n )nr e a l (x n )ni m a g (x n )序列的虚部na b s (x n )na n g l e (x n )k a b s (F )DFT 幅度谱-15kr e a l (F )dft 实部ki m a g (F )实验数据分析6-1 实验前预习有关概念,并根据上列参数来推测相应频谱的形状、谱峰所在频率(U )和谱峰的数值(V )、混叠现象和频谱泄漏的有无:奈奎斯特定律的时候不会出现频率的混叠现象。
实验一 利用DFT分析信号频谱

实验一 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。
2.应用DFT 分析信号的频谱。
3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境计算机、MATLAB 软件环境。
三、实验基础理论 1.DFT 与DTFT 的关系DFT 实际上是DTFT 在单位圆上以k Njezπ2=的抽样,数学公式表示为:∑-=-===102)(|)()(2N n k Njez en x z X k X k Njππ ,1,..1,0-=N k(2—1) 2、利用DFT 求DTFT方法一:利用下列公式:)2()()(1∑-==-=N k k j Nkk X e X πωφω(2—2)其中21)2/sin()2/sin()(--=N j eN N ωωωωφ为内插函数方法二:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。
由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为Nπ2,所以如果我们增加数据的长度N ,使得到的 DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。
如果没有更多的数据,可以通过补零来增加数据长度。
3、利用DFT 分析连续时间函数利用DFT 分析连续时间函数是,主要有两个处理:①抽样,②截断 对连续时间信号)(t x a 一时间T 进行抽样,截取长度为M ,则 nT j M n a tj a a e nT x T dt et x j X Ω--=+∞∞-Ω-∑⎰==Ω)()()(10 (2—3)再进行频域抽样可得 )()(|)(122k TX enT x T j X M M n n Nk ja NTk a ==Ω∑-=-=Ωππ (2—4)因此,利用DFT 分析连续时间信号的步骤如下: (1)、确定时间间隔,抽样得到离散时间序列)(n x .(2)、选择合适的窗函数和合适长度M ,得到M 点离散序列)()()(n w n x n x M =. (3)、确定频域采样点数N ,要求N ≥M 。
用DFT对时域离散信号进行频谱分析

用DFT对时域离散信号进行频谱分析DFT(离散傅里叶变换)和FFT(快速傅里叶变换)是用于对时域离散信号进行频谱分析的常用方法之一、在本文中,我将介绍DFT和FFT的原理和应用,并探讨它们的优势和劣势。
频谱分析是一种研究信号频率成分的方法。
它可以用于分析信号的频域特征,例如信号频谱的幅度和相位信息。
频谱分析广泛应用于通信、声学、图像处理、金融等领域。
DFT是傅里叶变换在时域离散信号上的一种离散形式。
傅里叶变换将信号从时域转换到频域,使我们能够分析信号包含的不同频率的成分。
DFT计算离散信号的系数,这些系数表示了信号在不同频率上的幅度和相位信息。
DFT的计算复杂度为O(N^2),其中N是信号的长度。
这意味着DFT对于长时间序列的计算是非常昂贵的。
为了解决DFT计算复杂度高的问题,人们引入了FFT算法。
FFT是一种基于DFT的快速算法,可以大大提高计算效率。
FFT的计算复杂度为O(NlogN)。
当信号的长度是2的幂次时,FFT的计算速度尤为快速。
FFT算法利用了傅里叶变换中的对称和周期性特性,通过分治法将DFT计算分解成多个小规模的DFT计算,从而加快了计算速度。
FFT算法有多种变体,包括Cooley-Tukey算法、Gentleman-Sande算法等。
使用DFT和FFT进行频谱分析有很多应用。
其中一种常见的应用是信号滤波。
通过分析信号的频谱,我们可以确定信号中所包含的不同频率的成分,从而选择性地滤除或增强一些频率的信号成分。
另一种应用是频谱分析可用于频率识别。
通过观察信号频谱的峰值和分布情况,我们可以确定信号的主要频率成分,从而进行信号的识别和辨别。
尽管DFT和FFT在频谱分析中非常有用,但它们也存在一些局限性。
首先,这些方法假设信号是离散、周期且稳定的。
对于非周期信号和突发信号,DFT和FFT的结果可能会产生混淆或误导。
其次,DFT和FFT的分辨率取决于采样率和信号长度,这可能会导致频域分辨率较低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
课程名称:数字信号处理指导老师:成绩:__________________
实验名称:DFT/FFT的应用之一确定性信号谱分析实验类型:__验证_ 同组学生姓名:—
一、实验目的和要求
谱分析即求信号的频谱。
本实验采用DFT/FFT技术对周期性信号进行谱分析。
通过实验,了解用X(k)近似地表示频谱X(ejω)带来的栅栏效应、混叠现象和频谱泄漏,了解如何正确地选择参数(抽样间隔T、抽样点数N)。
二、实验内容和步骤
2-1 选用最简单的周期信号:单频正弦信号、频率f=50赫兹,进行谱分析。
2-2 谱分析参数可以从下表中任选一组(也可自定)。
对各组参数时的序列,计算:一个正弦周期是否对应整数个抽样间隔?观察区间是否对应整数个正弦周期?
信号频率f(赫兹)谱分析参数抽样间隔T
(秒)
截断长度N (抽样个数)
50 第一组参数0.000625 32
50 第二组参数0.005 32
50 第三组参数0.0046875 32
50 第四组参数0.004 32
50 第五组参数0.0025 16
2-3 对以上几个正弦序列,依次进行以下过程。
2-3-1 观察并记录一个正弦序列的图形(时域)、频谱(幅度谱、频谱实部、频谱虚部)形状、幅度谱的第一个峰的坐标(U,V)。
2-3-2 分析抽样间隔T、截断长度N(抽样个数)对谱分析结果的影响;
2-3-3 思考X(k)与X(e jω)的关系;
2-3-4 讨论用X(k)近似表示X(ejω)时的栅栏效应、混叠现象、频谱泄漏。
三、主要仪器设备
MATLAB编程。
四、操作方法和实验步骤
(参见“二、实验内容和步骤”)
五、实验数据记录和处理
%program 2-2-1
clear;clf;clc;%清楚缓存
length=32;
T=0.000625;
t=0:0.001:31;%设置区间以及步长
n=0:length-1;
xt=sin(2*pi*50*t);
xn=sin(2*pi*50*T*n);
figure(1);
subplot(2,1,1);plot(t,xt);
xlabel('t');ylabel('x(t)');
axis([0 0.1 -1 1]);title('原序列');
subplot(2,1,2);
stem(n,xn);xlabel('n');ylabel('xn)');
title('抽样后序列');axis([0 length -1 1]);
figure(2); %画出序列的实部、虚部、模、相角
subplot(2,2,1);stem(n,real(xn));
xlabel('n');ylabel('real(xn)');title('序列的实部');axis([0 length -1 1]); subplot(2,2,2);stem(n,imag(xn));
xlabel('n');ylabel('imag(xn)');title('序列的虚部');axis([0 length -1 1]); subplot(2,2,3);stem(n,abs(xn));
xlabel('n');ylabel('abs(xn)');title('序列的模');axis([0 length -1 1]); subplot(2,2,4);stem(n,angle(xn));
xlabel('n');ylabel('angle(xn)');title('序列的相角');axis([0 length -1 1]); F=fft(xn,length); %计算DFT
figure(3); %画出DFT的的幅度,实部和虚部
subplot(3,1,1);stem(n,abs(F));
xlabel('k');ylabel('abs(F)');title('DFT幅度谱');
subplot(3,1,2);stem(n,real(F));
xlabel('k');ylabel('real(F)');title('dft 实部'); subplot(3,1,3);stem(n,imag(F));
xlabel('k');ylabel('imag(F)');title('DFT的虚部'); 六、实验结果与分析 实验结果: 第一组参数:
t
x (t )
原序列
n
x n )
n
r e a l (x n )
n
i m a g (x n )
n
a b s
(x n )
n
a n g l e (x n )
k a b s (F )
-15
k
r e a l (F )
dft 实
部
k
i m a g (F )
第二组参数:
t
x (t )
n
x n )
n
r e a l (x n )
n
i m a g (x n )
n
a b s (x n )
n
a n g l e (x n )
k a b s (F )
DFT 幅度谱
-14
k
r e a l (F )
dft 实部
k
i m a g (F )
第三组参数:
t
x (t )
原序列
n
x n )
n
r e a l (x n )
n
i m a g (x n )
序列的虚
部
n
a b s
(x n )
n
a n g l e (x n )
序列的相角
k a b s (F )
DFT 幅度
谱
k
r e a l (F )
dft 实
部
-14
k
i m a g (F )
DFT的虚部
第四组参数;
t
x (t )
原序列
n
x n )
抽样后序
列
n
r e a l (x n )
n
i m a g (x n )
n
a b s (x n )
n
a n g l e (x n )
k a b s (F )
DFT 幅度
谱
k
r e a l (F )
dft 实
部
k
i m a g (F )
第五组数据:
t
x (t )
原序
列
n
x n )
n
r e a l (x n )
n
i m a g (x n )
序列的虚部
n
a b s (x n )
n
a n g l e (x n )
k a b s (F )
DFT 幅度谱
-15
k
r e a l (F )
dft 实部
k
i m a g (F )
实验数据分析
6-1 实验前预习有关概念,并根据上列参数来推测相应频谱的形状、谱峰所在频率(U )和谱峰的数值(V )、
混叠现象和频谱泄漏的有无:
奈奎斯特定律的时候不会出现频率的混叠现象。
由于采样后,信号的频谱在频域上周期上延拓,而且截断后,相当于频谱在频域上与sinc 函数进行卷积,因此采样后的信号总是存在高频分量,因此总是存在频域混叠的现象,也会存在频域泄露的现象。
6-2 观察实验结果(数据及图形)的特征,做必要的记录。
1、 抽样间隔不同会影响谱峰所在位置以及峰值 2、 混叠现象
k a b s (F )
k
r e a l (F )
k
i m a g (F )
可以很清晰看到左右两个之间产生了混叠,是由于不满足采样定律造成的。
3、 泄露现象
k a b s (F )
DFT 幅度谱
k
r e a l (F )
dft 实部
-14
k
i m a g (F )
DFT的虚部
由于混叠和泄露现象不能完全区分清楚,但是这张图上可以看出,在峰值左右同样产生了较高峰值的频率
5-2 用基本理论、基本概念来解释各种现象。
(1) 混叠
序列的频谱是被采样信号频谱的周期延拓,当采样速率不满足Nyquist 定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。
避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解。
在一般情况下,为了保证不出现频谱混叠,在采样前,先进行抗混叠滤波。
(2) 泄漏
用截短的序列来近似很长的甚至是无限长的序列,这样可以使用较短的DFT 来对信号进行频谱分析, 这种截短等价于给原信号序列乘以一个矩形窗函数,也相当于在频域将信号的频谱和矩形窗函数的频谱卷积,所得的频谱是原序列频谱的扩展。
泄漏不能与混叠完全分开,因为泄漏导致频谱的扩展,从而造成混叠。
为了减少泄漏的影响,可以选择适当的窗函数使频谱的扩散减至最小。