完整六年级数学比和比例应用题练习1

合集下载

(完整)六年级数学比和比的应用题

(完整)六年级数学比和比的应用题

一、比的意义1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

例如 15 :10 = 15÷10= 23(比值通常用分数表示,也可以用小数或整数表示)3、比可以表示两个相同量的关系,即倍数关系。

也可以表示两个不同量的比,得到一个新量。

例:路程÷速度=时间。

4、 比和除法、分数的联系:二、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

三、化简比与求比值的区别1、 求比值 (前项除以后项的商叫做比值。

比值是一个数) 方法:整数比或者小数比求比值,可以把它写成分数形式(后项前项),再把它约分,约成最简分数或整数。

这个结果就是比值。

练习:14:35 120:30 0.25:2 1.8:2.4 方法:分数比,可以把它看成分数除法来做,求得的结果就是比值。

58 ∶56 14:7152、 化简比 (最后结果是一个比,且是前项和后项只有公因数1,而不是一个数)方法:可以采用求比值的方法,先求比值,再把比值转化为最简整数比。

(比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

)练习: 14:35 120:30 0.25:2 1.8:2.4 58 ∶56练习一1、两个数( )又叫做两个数的( )。

2、 如果A ∶B=C ,那么A 是比的( ),B 是比的( ),C 是比的( )。

3、4÷5=( )∶( )=()()4、从A 地到B 地共180千米,客车要行2小时,货车要行3小时。

客车所行的路程与所用时间的比是( ),比值是( );客车所用的时间与货车所用的时间比是( ),比值是( );货车与客车的速度比是( ),比值是( );客车与货车所行的路程比是( ),比值是( )。

6年级比例应用题

6年级比例应用题

6年级比例应用题一、简单比例关系应用题(1 10题)1. 一辆汽车3小时行驶180千米,照这样的速度,5小时行驶多少千米?解析:首先根据速度 = 路程÷时间,求出汽车的速度。

汽车3小时行驶180千米,速度为公式千米/小时。

然后根据路程 = 速度×时间,5小时行驶的路程为公式千米。

设5小时行驶公式千米,根据速度一定,路程和时间成正比例关系,可得公式,解得公式。

2. 配制一种农药,药粉和水的比是1:500,现有水6000千克,配制这种农药需要药粉多少千克?解析:药粉和水的比是公式,即水是药粉的500倍。

现有水6000千克,那么药粉的重量为公式千克。

设需要药粉公式千克,根据比例关系公式,解得公式。

3. 学校图书馆科技书与故事书的比是3:5,科技书有180本,故事书有多少本?解析:因为科技书与故事书的比是公式,设故事书有公式本,则公式,交叉相乘得公式,公式本。

思路是根据两种书数量的比例关系列方程求解。

4. 一块长方形菜地长和宽的比是5:3,长是40米,宽是多少米?解析:设宽是公式米,因为长和宽的比是公式,所以公式,交叉相乘得公式,公式米。

利用长和宽的比例关系来建立方程求解宽的长度。

5. 某工厂男职工与女职工的人数比是4:3,男职工有320人,女职工有多少人?解析:设女职工有公式人,根据男职工与女职工人数比是公式,可得公式,交叉相乘得公式,公式人。

依据给定的人数比例关系列方程求解女职工人数。

6. 一种混凝土是由水泥、沙子和石子按2:3:5配制而成的。

现在要配制150吨这种混凝土,需要水泥、沙子和石子各多少吨?解析:水泥、沙子和石子的比例为公式,总份数为公式份。

水泥占公式,沙子占公式,石子占公式。

水泥的重量为公式吨,沙子的重量为公式吨,石子的重量为公式吨。

先求出各成分占总量的比例,再根据总量求出各成分的量。

7. 小明和小红的零花钱之比是7:5,如果小明有56元零花钱,小红有多少元零花钱?解析:设小红有公式元零花钱,因为小明和小红零花钱之比是公式,所以公式,交叉相乘得公式,公式元。

比的应用基础练习练习题复习(9份).doc

比的应用基础练习练习题复习(9份).doc

习题精品 文 档六年级数学比的应用练习题(一)一、填空1、甲数是16,乙数是20。

乙与甲的比是( ),甲与乙的比是( )。

2、甲是乙的53,甲与乙的比是( ),乙与甲的比是( )。

3、甲比乙多31,甲与乙的比是( ),乙与甲的比是( )。

4、乙比甲少81,甲与乙的比是( ),乙与甲的比是( )。

二、应用题:1、一个三角形三个内角度数的比是1:2:2。

这个三角形的三个角各是多少度?按角分是什么三角形?按边分是什么三角形?2、一个长方形的周长是30厘米,它长与宽的比是3:2。

这个长方形的面积是多少?3、果园里梨树与桃树的比是2:3,梨树与苹果树的比是5:9。

已知这三种树共有129棵。

桃树、苹果树、梨树各有多少棵?4、果园里梨树与桃树的比是3:5,已知梨树比桃树少204棵。

梨树与桃树各有多少棵?六年级数学比的应用练习题(二)一、填空1、甲与乙的比是2:3,甲是乙的( ),乙是甲的( )。

2、甲与乙的比是2:3,甲比乙少( ),乙比甲多( )。

3、一杯水,盐占盐水的101,盐和水的比是( )。

4、45分:35小时的最简整数比是( ),比值是( )。

5、某班男女人数比是8:5,若男生有40人,女生就有( )人。

二、应用题:1、一个长方体纸盒的棱长总和是60分米,长、宽、高的比是3:1:1。

这个纸盒的体积是多少?2、六年级三个班共有95人。

六(1)班有33人,六(2)班和六(3)班人数的比是16:15。

六(2)班和六(3)班各有多少人?3、六年级三个班共有86人,一班与二班人数的比是5:4,二班与三班人数的比是3:4。

三个班各有多少人?4、甲、乙、丙三个数的和是146,甲与乙的比是2:5,乙与丙的比是4:9。

求甲、乙、丙各是多少?六年级数学比的应用练习题(三)一、填空题:1、六(1)班有男生20人,女生30人,男生与女生人数的比是(),男生与总人数的比是()。

2、一辆汽车6小时行了360千米,这辆汽车行驶的路程和时间的比是(),比值是(),比值表示(),这辆汽车行驶的时间和路程的比是(),比值是(),比值表示()。

苏教版数学六年级下册应用题特训~比和比例(专项训练)【含答案】

苏教版数学六年级下册应用题特训~比和比例(专项训练)【含答案】

苏教版数学六年级下册应用题特训:比和比例(专项训练)1.在比例尺是1∶500的一幅地图上,量得一块长方形菜地的周长是28厘米,已知这块菜地的长和(1)第一天和第二天行驶的路程分别与时间的比能组成比例吗?为什么?如能组成比例,请写出来.(2)两天行驶路程的比和两天行驶时间的比能组成比例吗?为什么?如能,把组成的比例写出来.9.按要求完成问题.比例尺1:20000(1)如果要从小区修一条通向学校和医院之间的公路的小路,怎样修才能使小路最短?请在途中用线段画出来.(2)医院大约在学校的()方向,它们之间的实际距离约是()米.10.甲、乙、丙三人进行200米的赛跑,甲跑到终点时,乙还剩20米未跑完,丙还剩25米未跑完.问,当乙跑到终点时,丙还剩多少米未跑完?11.在1:1800000的地图上一段6cm长的公路,在另外一幅地图上同样的这条公路长8cm,求另外这幅地图的比例尺.12.张老师到京东文具店买28支同样的钢笔,要付448元.照这样计算,如果陈老师想再多买同样的钢笔30支,他一共带了900元,够吗?13.在比例尺是1∶25000000的地图上标出甲、乙两地.已知甲、乙两地的实际距离是4500千米,图上两地相距多少厘米?14.把左边的长方形按比放大后得到右边的长方形,请写出比例,并求出x的值。

(单位:cm)15.淘气和笑笑收集的邮票张数的比是3∶5,淘气收集了36张邮票,笑笑收集了多少张邮票?【用比例解】16.学校图书馆科技书本数与故事书本数的比是3∶2,故事书有180本,科技书有多少本?(用比例方法解)17.在标有的地图上,量得甲、乙两地相距9厘米.一参考答案:9.(1);(2)18【详解】圆内正方形图上对角线表示6cm,则实际长度为6m,实际面积为18m2.19.2.5小时【详解】略20.12天【详解】解:设x天可以完成任务.10x=8×15解得x=12答:12天可以修完.。

六年级数学比应用题

六年级数学比应用题

六年级数学比应用题一、简单的比的计算应用题(1 - 5题)1. 已知甲、乙两数的比是3:5,甲数是12,求乙数。

- 解析:- 因为甲、乙两数的比是3:5,设乙数为x,则(甲)/(乙)=(3)/(5)。

- 已知甲数是12,即(12)/(x)=(3)/(5)。

- 根据比例的性质,内项之积等于外项之积,可得3x = 12×5。

- 解得x=(12×5)/(3)=20。

2. 某班男、女生人数比是4:3,男生有24人,女生有多少人?- 解析:- 设女生有x人,因为男、女生人数比是4:3,所以(24)/(x)=(4)/(3)。

- 由比例性质可得4x = 24×3。

- 解得x=(24×3)/(4)=18人。

3. 一种药水是把药粉和水按照1:100的比配成的。

要配制这种药水4040克,需要药粉多少克?- 解析:- 药粉和水的比是1:100,那么药水就是1 + 100=101份。

- 这种药水共4040克,那么一份就是4040÷101 = 40克。

- 药粉占1份,所以需要药粉40克。

4. 学校图书馆里科技书和故事书的比是3:4,科技书有180本,故事书有多少本?- 解析:- 设故事书有x本,因为科技书和故事书的比是3:4,所以(180)/(x)=(3)/(4)。

- 根据比例性质3x=180×4。

- 解得x=(180×4)/(3)=240本。

5. 甲、乙两个数的比是5:6,它们的和是66,求甲、乙两数。

- 解析:- 甲、乙两个数的比是5:6,设甲数是5x,乙数是6x。

- 它们的和是66,则5x + 6x=66。

- 即11x = 66,解得x = 6。

- 所以甲数5x = 5×6 = 30,乙数6x=6×6 = 36。

二、比在几何中的应用题(6 - 10题)6. 一个长方形的长和宽的比是5:3,长是25厘米,宽是多少厘米?- 解析:- 设宽是x厘米,因为长和宽的比是5:3,所以(25)/(x)=(5)/(3)。

比例的应用题六年级

比例的应用题六年级

比例的应用题六年级一、按比例分配问题。

1. 学校把栽70棵树的任务,按照六年级三个班的人数分配给各班,一班有46人,二班有44人,三班有50人。

三个班各应栽树多少棵?- 解析:首先求出三个班的总人数:46 + 44+50=140(人)。

然后计算各班人数占总人数的比例,一班:(46)/(140),二班:(44)/(140),三班:(50)/(140)。

最后用树的总数乘以各班所占比例得到各班应栽树的棵数。

- 一班应栽树:70×(46)/(140) = 23(棵);- 二班应栽树:70×(44)/(140)=22(棵);- 三班应栽树:70×(50)/(140)=25(棵)。

2. 一种混凝土是由水泥、沙子和石子按2:3:5的比例混合而成的。

如果要配制20吨这种混凝土,需要水泥、沙子和石子各多少吨?- 解析:首先求出总份数:2 + 3+5 = 10份。

然后计算每份的重量:20÷10 = 2吨。

最后根据各自的份数求出水泥、沙子和石子的重量。

- 水泥:2×2 = 4吨;- 沙子:2×3 = 6吨;- 石子:2×5 = 10吨。

3. 某工厂有三个车间,第一车间、第二车间、第三车间的人数比是8:12:21,第一车间比第二车间少80人,三个车间共有多少人?- 解析:设第一车间有8x人,第二车间有12x人。

根据第一车间比第二车间少80人,可列方程12x-8x = 80,解得x = 20。

则三个车间总人数为(8 +12+21)×20=41×20 = 820人。

二、比例尺问题。

4. 在比例尺是1:6000000的地图上,量得A、B两地的距离是5厘米。

一辆汽车以每小时75千米的速度从A地开往B地,需要多少小时?- 解析:根据比例尺公式,实际距离=图上距离÷比例尺,所以A、B两地的实际距离为5÷(1)/(6000000)=5×6000000 = 30000000厘米=300千米。

六年级关于比例的应用题

六年级关于比例的应用题一、比例应用题。

1. 一辆汽车3小时行驶180千米,照这样的速度,行驶300千米需要几小时?- 解析:首先根据速度 = 路程÷时间,求出汽车的速度。

已知汽车3小时行驶180千米,那么速度为180÷3 = 60(千米/小时)。

设行驶300千米需要x小时,因为速度一定,路程和时间成正比例,所以可列出比例式180:3 = 300:x,即180x=300×3,180x = 900,解得x = 5小时。

2. 用同样的方砖铺地,铺20平方米要320块,如果铺42平方米,要用多少块方砖?- 解析:因为每块方砖的面积是一定的,所以方砖的块数和铺地的面积成正比例。

设铺42平方米要用x块方砖。

可列出比例式20:320 = 42:x,20x=320×42,20x = 13440,解得x = 672块。

3. 配制一种农药,药粉和水的比是1:500。

- 现有水6000千克,配制这种农药需要药粉多少千克?- 解析:药粉和水的比是1:500,设需要药粉x千克,可列出比例式1:500=x:6000,500x = 6000,解得x = 12千克。

- 现有药粉3.6千克,配制这种农药需要水多少千克?- 解析:设需要水y千克,根据比例1:500 = 3.6:y,y=3.6×500 = 1800千克。

4. 学校操场长120米,宽80米,画在比例尺为1:4000的图纸上,长和宽各应画多少厘米?- 解析:因为比例尺=图上距离:实际距离,所以图上距离 = 实际距离×比例尺。

操场长120米=12000厘米,宽80米=8000厘米。

长应画12000×(1)/(4000)=3厘米,宽应画8000×(1)/(4000) = 2厘米。

5. 一个机器零件长5毫米,画在图纸上是4厘米,求这幅图纸的比例尺。

- 解析:首先统一单位,4厘米= 40毫米。

比例尺=图上距离:实际距离=40:5 = 8:1。

六年级数学比和比例试题

六年级数学比和比例试题1.(1分)(2012•富源县)“一只青蛙四条腿,两只眼睛,一张嘴;两只青蛙八条腿,四只眼睛,两张嘴,三只青蛙…那么青蛙的只数与腿的条数成正比例关系”.(判断对错)【答案】正确【解析】判断两种量成不成比例,成什么比例,就看这两种量是否是①相关联;②一种量变化,另一种量也随着变化,变化方向相同或相反;③对应的比值或乘积一定;如果这两种量相关联的量都是变量,且对应的比值一定,就成正比例;如果两种量相关联的量都是变量,且对应的乘积一定,就成反比例;如果是其它的量一定或乘积、比值不一定,就不成比例.解:因为青蛙的腿的条数:只数=4:1=8:2=4(一定),是青蛙的腿的条数与只数对应的比值一定,所以青蛙的只数与腿的条数成正比例关系;故判断为:正确.点评:此题属于根据正、反比例的意义,辨识两种相关联的量成不成比例,成什么比例,就看这两种量是否都是变量,且对应的比值一定,或是对应的乘积一定,再做出判断.2.在下面各比中,能与:组成比例的是()。

A.4:3B.3:4C.:3D.:【答案】A【解析】像这种判断两个比能否组成比例的题目,可以用求比值的方法,先把:化简,然后再看看四个选项中哪个比值和它相等。

也可以根据比例的基本性质,分别假设四个选项都可以和它组成比例,看看内项积是不是等于外项积。

通过计算可知,正确答案为A。

3.下图中,A城到C城的实际距离是180千米,量一量,算一算,这幅图的比例尺是多少?根据这个比例尺你能算出A城到B城的实际距离吗?【答案】1:9000000,270千米【解析】先测量A城到C城的图上距离是2厘米,根据比例尺的定义,图上距离:图上距离=2厘米:180千米=1:9000000,再测量AB两城之间的图上距离是3厘米,3×9000000=27000000(厘米),换算之后得到270千米。

4.聪聪在同一时刻测量了直立在太阳下的四根竹竿的影长,结果如下:(1)竹竿的高度与影长之间成()关系。

六年级 比与比例练习(8套)

比和比例(一)一、 精学精用1、 填空(1) 两个数相除,又叫做( );( )叫做比值。

(2) 比号前面的数叫做比的( ),比号后面的数叫做比的( )。

(3) 比的前项和比的后项同时( ),( )不变,这就是比的基本性质。

(4) 把比化简成最简单的整数比,通常叫做( )。

(5) 填写下面比与除法、分数之间的关系表:(6) 甲正方体的棱长是5分米,乙正方体的棱长是甲正方体的4倍:① 甲乙两个正方体的棱长的比是( ); ② 甲乙两个正方体底面周长的比是( ); ③ 甲乙两个正方体的底面积的比是( ); ④ 甲乙两个正方体的表面积的比是( ); ⑤ 甲乙两个正方体的体积的比是( )。

2、求下列各比的比值105:35 2.4:8 70:0.5 12:48 105:51:二、 活学活用1、 求比的未知项X:18.4=141 1255:x=0.26 x:531212= 158542=X :2、 化简下列各比 8:0.5 69232.5:23.1:18.6 51:173、 求下列各比的比值3:45 18:4 0.25:12 6:61 3192:4、 配制一种糖水,在150克的水中,放了25克的糖。

(1)写出糖和水的质量的比,并化简。

(2)写出糖和糖水的质量的比,并化简。

(3)写出水喝糖水的质量的比,并化简。

比和比例(二)3、精学精练(3)填空 (1)()211530÷==( )÷( )=()35(2) 一辆汽车3小时行了195千米,汽车所行的路程和所用的时间的比是( )。

(3) 某班有男生18人,女生22人,男生和全班人数的比是( )。

(4) 甲数是乙数的1.5倍,甲数和乙数的比是( )。

(5) 直角三角形的两个锐角的比是2:3,它的两个锐角分别是( )度和( )度。

(6) 男生占全班人数的60%,女生人数和男生人数的比是( )。

(7) 大圆与小圆的半径的比是2:1,小圆与大圆的面积的比是( )。

六年级比和比的应用练习题1

比和比的应用练习题一、填空题:1、六(1)班有男生20人,女生30人,男生及女生人数的比是(),男生及总人数的比是()。

2、一辆汽车6小时行了360千米,这辆汽车行驶的路程和时间的比是(),比值是(),比值表示(),这辆汽车行驶的时间和路程的比是(),比值是(),比值表示()。

3、3:8=()÷24=24÷()=()%4、甲、乙、丙三个数的平均数是60。

甲、乙、丙三个数的比是3∶2∶1。

甲、乙、丙三个数分别是()、()、()。

5、一个直角三角形的两个锐角度数的比是2∶1,这两个锐角分别是()度,()度。

6、甲数除以乙数的商是0.35,甲乙两数的最简整数比是()。

7、两个连续的偶数的和是74,这两个偶数的最简比是()。

4,甲数及乙数的比是()。

8、甲数是乙数的55,看了的及没看的比是()。

9、一本书,看了1710、五角人民币及贰角人民币的张数比为12∶35,那么伍角及贰角的总钱数比为()。

11、甲、乙、丙三个人的速度的比为:甲∶乙=4∶5,乙∶丙=6∶7。

从A地到B地,甲走了20分钟,丙要走()分钟。

12、大、小两瓶油共重2.7千克,大瓶的油用去0.2千克后,剩下的油及小瓶内油的重量比是3∶2。

求大、小瓶里分别装油()千克,()千克。

二、求比值(12分)24∶32 56∶1.4 0.15∶2.5 15∶25 0.8 ∶41三、化简比(12分)128∶34 0.54∶2.7 0.4米∶60厘米83∶65 1.42∶7125 四、判断(10分)1、50米:5米=10米……………………………………………… ( )2、4:3的后项加上6,要想比值不变,前项也要加上6。

………… ( )3、六一班有男生25人,女生24人,女生和全班人数的比是24∶25( )4、如果甲数及乙数的比是1∶2 ,那么乙数∶甲数=5∶2………… ( )5、一杯盐水,盐占盐水的91 ,盐和水的比是1∶9……………… ( )6、比的后项不能是0………………………………………………… ( )五、解决问题 (35分)1、沙、石共36吨,沙及石的比是1∶8,沙、石各是多少吨?2、一个长方形周长是88cm,长及宽的比是4∶7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
比和比例应用题厘米,1、在比例尺是1:2500000的地图上,量得两城市间的距离是8 的地图上,图上距离是多少厘米?:8000000如画在比例尺是1拌:2吨,用水泥、石子、黄沙按5:32、水泥、石子、黄沙各有5 制成混凝土,若用完石子,水泥缺几吨?黄沙多几吨?,如:3、一个车间有两个小组,第一小组和第二小组人数的比是53人到第二小组时,第一小组与第二小组人数的比14果第一小组有,两个小组原来各有多少人?是1:2,长、宽、1,宽与高的比是2:、一块长方体砖,长与宽的比是42:1 厘米,这块砖的体积是多少?高共35克,共3。

现在加入锌6、有一块铜锌合金,其中铜与锌的比是52:得新合金36克,求在新合金内铜与锌的比。

43角,乙种铅笔每支支,甲种铅笔每支6、买甲、乙两种铅笔共210 角,两种铅笔用去的钱相同,问甲种铅笔买了几支?、第一小学六年级学生分三组参加植树,第一组和第二组人数的比7,已知第一组人数比二、是5:4,第二组和第三组人数的比是:23 三组人数总和少15人。

六年级参加植树的共多少人?18、车过河交过渡费3
元,马过河交过渡费2元,人过河交过渡费,,马和人数目的比为37::元。

某天过河的车和马数目的比是29 共收得过渡费945元,求这天过渡的车、马和人的数目各是多少?、有两个相同的瓶子装满酒精溶液,一个瓶子中酒精与水的体积之9 1,,而另一个瓶中酒精与水的比是3:14:比是若把两瓶酒精溶液混合,混合液中酒精和水的体积之比是多少?
10、小明买了一件上衣和两条裤子,小华也买了一件上衣,但只买了。

已2:3一条裤子,结果他们用去的钱数之比是
知一件上衣的价钱是3.5元,那么一条裤子的价钱是多少元?克放入乙包1,如果从甲包取出10:11、甲、乙两包糖的重量比是4 :5,那么两包糖后,甲、乙两包糖的重量比为7 的重量总和是多少克?两地同时A、B712、甲、乙两人步行速度之比是:5,甲、乙分别由小时后相遇,如果他们同向而行,那么0.5出发,如果相向而行,甲追上乙需要多少时间?
比和比例应用题(二)
1、一个圆柱体的容器内,放有一个长方体铁块。

现在打开一个水龙头往容器中注水,3分钟时,水恰好没过长方体的
顶面,又过了18分钟,水灌满容器。

已知容器的高度是50厘米,长方体的高度是20厘米,那么,长方体底面积与容
器底面积的比是多少?
2、自然数A、B满足1/A─1/B=1/182,且A:B=7:13,那么,A+B=?
3、甲、乙两数的和是1.98,如果乙数的小数点向右移动一位,这两个数的比是1:1,原来甲数是几?乙数是几?
4、小军行走的路程比小红多1/4,而小红行走的时间却比小军多1/10,小军与小红速度比是多少?
5、这里有一个圆柱体和一个圆锥体。

圆柱体的底面直径和高都是8厘米,圆锥体的底面直径和高都是4厘米,求圆锥体和圆柱体体积的比是多少?
6、光明小学有三个年级,一年级学生人数占全校学生总人数的25%,二年级与三年级人数之比是3:4。

已知一年级学生比三年级学生少人,一年级有学生多少人?40.
7、甲、乙两人同时从A、B两地相向而行,甲行完全程要6小时。

两人相遇时,所行距离之比是3:2,
这时,甲比乙
多行18千米,求乙的速度。

8、有一根圆柱形木材,它的底面半径是30厘米,高3米,按4:5:6将木材分锯成三段,其中最大的一段体积是多
少立方米?
9、一个比例式,两个外项的和是37,差是13,比值是二又五分之二,写出这个比例式。

10、加工一个零件,甲需3分钟,乙需3.5分钟,丙需4分钟。

现在有1825个零件要加工。

如果规定三人用同样的时
间完成任务,那么各应加工多少个零件?
11 王师傅制造一种机器零件,制每个零件的时间,由过去的9分钟减少到5分钟。

过去每天制造80个零件,现在每
天制造多少个机器零件?
12 某校原有跳绳40根,其中短绳根数与长绳根数的比是5:3,又买进一批跳绳,这时短绳的根数占总数的75%,买
进短跳绳多少根?
13 小明读一本书,已读页数和未读页数之比是1:5,如果再读30页,则已读页数和未读页数之比是
3:5,这本书共
有多少页?
14 甲、乙两厂今年总产值的比为5:7,已知甲厂的总产值比乙厂少480万元,求甲、乙两厂今年总产值各是多少万元?
15 五年级举行数学竞赛,一班占参加比赛总人数的1/3,二班与三班参加比赛人数的比是11:13,二班比三班少8人,
三个班各有多少人参加比赛?
16 一段路程分成上坡、平路、下坡三段,各段路程长之比依次是1:2:3,某人走各段路程所用时间之比依次是4:5:
6。

已知他上坡时速度为每小时3千米,路程全长50千米。

问此人走完全程用了多少时间?
17 生产一批零件,甲每小时做18个,乙单独做要12小时完成,现在甲、乙两人合做完成任务时,甲、乙生产零件数
量之比是3:5,甲一共生产了零件多少个?
18 A、B、C是三个互相咬合的齿轮,若A轮旋转7圈,C轮就旋转6圈,若B轮旋转7圈,C轮就旋转1圈。

如果A
轮有42个齿,则B轮就有多少个齿?
比和比例应用题(三)
1、三个分数的和是二又四分之一,它们的分母相同,分子的比为3:5:7,这三个最简分数是多少?
2、五年级甲、乙两班人数的比是5:4,在义务劳动中,如果从甲班调21人到乙班后,甲、乙两班人数的比是2:3,
甲、乙两班原来各有多少人?
3、一个长方体所有棱长和是108厘米,它的长、宽、高的比是3:4:5,这个长方体的体积是多少?
4、甲、乙两厂生产的产品数量相等,甲厂产品中正品的数量是乙厂次品数的3倍,乙厂正品的数量是甲厂次品数量的
4倍,那么,甲、乙两厂生产的正品的数量之比是多少?
5、甲、乙、丙三人共得奖金620元,乙所得的是甲的2/3,乙、丙二人所得的比是一又三分之一比五分之四,问三人
各得奖金多少元?
6、一个长方形与一个正方形周长之比是6:5,长方形的长是宽的一又五分之二倍,求这个长方形与正方形的面积之比。

7、在编号为1、2、3的三个相同的杯子里,分别盛着半杯水。

一号杯中溶有100克糖,3号杯中溶有100克盐。

先将1号杯中液体的一半及3号杯中液体的四分之一倒入2号杯,然后搅匀,再从2号杯倒出所盛液体的2/7到1号杯,接着倒出所余液体的1/7到3号杯。

问:这时每个杯中含盐量与含糖量之比各是多少?。

相关文档
最新文档