反应堆热工分析课程设计全自动版

合集下载

反应堆课程设计

反应堆课程设计

反应堆课程设计一、课程目标知识目标:1. 了解核能反应堆的基本原理,掌握其组成部分及功能;2. 掌握核反应堆的热能转换过程,理解热效率的计算方法;3. 了解核反应堆的安全特性,掌握核安全的基本知识。

技能目标:1. 能够运用所学知识,分析核反应堆的运行原理,并进行简单的热能转换计算;2. 能够通过实例,解释核反应堆的安全措施,评估核事故的风险;3. 能够运用团队合作,设计并展示一个核反应堆模型。

情感态度价值观目标:1. 培养学生对核能的客观认识,提高对能源问题的关注和责任感;2. 增强学生的环保意识,认识到核能在可持续发展中的重要性;3. 培养学生严谨的科学态度,提高对核安全的重视。

本课程针对高年级学生,结合学科特点,注重理论联系实际,提高学生的分析、计算和创新能力。

在教学过程中,关注学生的个体差异,鼓励积极参与,培养团队合作精神。

通过本课程的学习,使学生能够掌握核反应堆的基本知识,具备初步的核能应用能力,并形成正确的能源观和安全观。

二、教学内容1. 核反应堆基本原理:包括核裂变与聚变的概念、链式反应的原理、中子慢化与扩散过程。

- 教材章节:第三章 核反应堆原理2. 核反应堆的组成部分及功能:重点介绍燃料元件、慢化剂、冷却剂、控制棒等。

- 教材章节:第四章 核反应堆的组成部分3. 热能转换过程:讲解核反应堆热能的产生、传递与转换,以及热效率的计算方法。

- 教材章节:第五章 热能转换4. 核反应堆安全特性:阐述核反应堆的安全措施、事故类型及预防措施。

- 教材章节:第六章 核反应堆安全5. 核反应堆模型设计与展示:结合所学知识,进行团队合作,设计并展示核反应堆模型。

- 教材章节:第七章 核反应堆设计与实践本教学内容根据课程目标,科学、系统地安排了核反应堆的基础知识、关键技术和安全特性。

在教学过程中,教师应按照教学大纲,逐步引导学生掌握核反应堆的相关知识,注重理论与实践相结合,提高学生的实际操作能力。

同时,鼓励学生进行团队合作,培养学生的创新意识和实践能力。

核反应堆工程课程设计

核反应堆工程课程设计

成绩评定标准
等级 评定标准 1. 全面完成设计任务,设计内容正确,设计图纸质量高 优秀 2. 设计说明书内容正确,文字精练、流畅、工整 3. 设计过程或答辩过程中,能准确回答与设计内容有关的问题 4. 工作态度认真、严谨、独立工作能力强,模范遵守纪律 1. 全面完成设计任务,设计内容正确 良好 2. 设计说明书内容正确,表达清楚,书写认真 3. 设计过程或答辩过程中,能较好的回答与设计内容有关的问题 4. 工作态度认真,独立完成设计任务,遵守纪律 1. 全面完成设计任务,设计内容正确,设计图纸基本正确 中等 2. 设计说明书内容正确,表达清楚,书写认真 3. 设计过程或答辩过程中,经提示基本回答相关的问题 4. 工作态度认真,具有一定的独立工作能力,遵守纪律 1. 能完成主要设计任务,质量较差或有较大错误,经启发能予纠正 及格 2. 设计说明书内容有个别错误,书写较草 3. 设计过程或答辩时,对有些问题的回答出现概念性的错误 4. 工作态度一般或独立工作能力较差,基本能遵守纪律 1. 未完成设计任务,或设计质量差并不加以改正 不及 格 2. 设计说明书内容有较大错误,或书写非常不认真 3. 设计过程或答辩时,回答问题出现严重的概念错误,或答不出 4. 工作态度不认真,或独立工作能力差,或不遵守纪律
完成日期 学 生


1. 学院、专业、年级均填全称,如:动力工程学院、核工程与核技术、2007。 2. 本表除签名外均可采用计算机打印。本表不够,可另附页,但应在页脚添加页 码。 3. 本课程设计是动力工程学院核能系新开的课程设计,相应任务书需要在该课程 教学和实践中不断完善,因此指导书为修订版。
图目录
图 1 图 2 图 3 图 4 图 5 图 6 图 7 图 8 图 9 图 10 图 12 MCNP5 中对燃料栅元的建模.....................................................................3 keff 与水铀比的关系曲线图..........................................................................3 轴向归一化功率分布,kcode=5000 时...................................................... 4 kcode=50000 时的轴向归一化中子通量密度分布.................................... 6 全燃料组件范围内的中子能谱................................................................... 7 燃料组件内各栅元的相对功率分布........................................................... 8 燃料组件内各栅元的相对功率分布(3D 图像)..................................... 8 可燃毒物布置方案....................................................................................... 9 热管内温度分布......................................................................................... 25 热管内温度分布(不含芯块)............................................................... 25 堆芯内压降沿轴向变化示意图............................................................... 34

核反应堆热工水力分析课程设计

核反应堆热工水力分析课程设计

六.计算结果分析:计算结果误差分析:由于采用的是W-3公式,且该设计中的给出参数与该公式的适用范围有些偏差,但是其算出的结果还是能客观反映出热管中各量的变化趋势的。

热管的焓、包壳表面温度、芯块中心温度随轴向的分布如下:控制体为6个:表1 各温度的汇总表各种温度控制体流体出口温度单位(℃)流体出口比焓(kJ/kg)出口处的包壳外壁温度单位℃出口处的包壳内壁温度单位℃出口处的uo2芯块外表面温度单位℃燃料芯块的中心最高温度单位℃堆芯高度L/m第一控制体291.54 1292.1 303.25 303.95 372.25 550 0.61 第二控制体301.29 1343.9 325.71 327.21 472.35 953 1.22 第三控制体315.38 1424.5 348.32 350.42 563.86 1411 1.83 第四控制体330.13 1517.2 348.34 350.44 572.41 1469 2.44 第五控制体339.21 1582.1 348.11 349.41 486.01 939 3.05 第六控制体343.75 1618.8 347.83 348.43 416.73 605 3.66表2 临界热流与烧毁比的汇总表DNBR 控制体DNBR临界热流密度qDNB10^6 单位W/m2第一控制体15.6 5.3 第二控制体 6.5 4.7 第三控制体 3.7 3.9 第四控制体 2.7 3 第五控制体 3.5 2.4 第六控制体 6 22602803003203403600.611.221.832.443.053.66堆芯高度L(m)流体出口温度(℃)图1 流体出口温度(单位℃)分析:由图可知,流体出口温度随着堆芯高度由下到上逐渐上升,到最后一个控制体的末尾,也就是堆芯出口处,达到最大值。

200400600800100012001400160018000.611.221.832.443.053.66堆芯高度L/m流体出口比焓(k J /k g )图2 流体出口比焓(kJ/kg )分析:由图可知,流体出口比焓和流体出口温度一样随着堆芯高度由下到上逐渐上升,到最后一个控制体的末尾,也就是堆芯出口处,达到最大值。

反应堆热工分析课程设计全自动版

反应堆热工分析课程设计全自动版

压降的相 关计算 进口温度 tfin 出口温度tfout
287 #NAME?
进口密度ρin #NAME?
出口密度ρout #NAME?
tf #NAME? #NAME?
#NAME? #NAME?
#NAME? #NAME?
#NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?
#NAME?
#NAME?
Pr #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?
出口比容υout #NAME?
#NAME? #NAME? #NAME? #NAME? #NAME? #NAME?
ΔPin #NAME?
ΔPout #NAME?
ΔPgr #NAME?
动力粘度 μf1 μf2 μf3 μf4 μf5 μf6
15104.90559
hfs #NAME?
hgs #NAME?
G 2734.147628
32148.52582
K
Cp
Re
h
#NAME?
#NAME?
#NAME?
#NAME?
#NAME?
#NAME?
#NAME?
#NAME?
#NAME?
#NAME?
#NAME?
#NAME?
#NAME?
#NAME?
#NAME?
0.9
冷却剂总流量W 8916.666667 两个组件间的水隙
δ 0.0008 FΔHN=FRZ
1.35
堆芯高度L 3.66
ρUO2 95% Kin 0.75
入口温度 假设出口温度
tfin tfout

核反应堆热工分析课程设计报告书详细过程版本

核反应堆热工分析课程设计报告书详细过程版本

课程设计报告( 20 13 -- 2014 年度第二学期)名称:核反应堆热工分析课程设计题目:利用单通道模型进行反应堆稳态热工设计院系:核科学与工程学院班级:实践核1101班学号:1111440306学生:佳指导教师:王胜飞设计周数:1周成绩:日期:2014 年 6 月19 日一、课程设计的目的与要求反应堆热工设计的任务就是要设计一个既安全可靠又经济的堆芯输热系统。

对于反应堆热工设计,尤其是对动力堆,最基本的要安全。

要求在整个寿期能够长期稳定运行,并能适应启动、功率调节和停堆等功率变化,要保证在一般事故工况下堆芯不会遭到破坏,甚至在最严重的工况下,也要保证堆芯的放射性物质不扩散到周围环境中去。

在进行反应堆热工设计之前,首先要了解并确定的前提为:(1)根据所设计堆的用途和特殊要求(如尺寸、重量等的限制)选定堆型,确定所用的核燃料、冷却剂、慢化剂和结构材料等的种类;(2)反应堆的热功率、堆芯功率分布不均匀系数和水铀比允许的变化围;(3)燃料元件的形状、它在堆芯的分布方式以及栅距允许变化的围;(4)二回路对一回路冷却剂热工参数的要求;(5)冷却剂流过堆芯的流程以及堆芯进口处冷却剂流量的分配情况。

在设计反应堆冷却系统时,为了保证反应堆运行安全可靠,针对不同的堆型,预先规定了热工设计必须遵守的要求,这些要求通常就称为堆的热工设计准则。

目前压水动力堆设计中所规定的稳态热工设计准则,一般有以下几点:(1)燃料元件芯块最高应低于其他相应燃耗下的熔化温度;(2)燃料元件外表面不允许发生沸腾临界;(3)必须保证正常运行工况下燃料元件和堆构件得到充分冷却;在事故工况下能提供足够的冷却剂以排除堆芯余热;(4)在稳态额定工况和可预计的瞬态运行工况中,不发生流动不稳定性。

在热工设计中,通常是通过平均通道(平均管)可以估算堆芯的总功率,而热通道(热管)则是堆芯中轴向功率最高的通道,通过它确定堆芯功率的上限,热点是堆芯中温度最高的点,代表堆芯热量密度最大的点,通过这个点来确定DNBR。

核反应堆热工设计 6页word文档

核反应堆热工设计 6页word文档

课程设计报告( 2019 -- 2019 年度第二学期)名称:核反应堆热工分析题目:单通道模型反应堆稳态热工设计院系:核科学与工程学院班级:学号:学生姓名:指导教师:设计周数: 2成绩:日期:2019年 6 月26 日一、课程设计的目的与要求该课程设计的主要目的为:培养学生综合运用反应堆热工分析课程和其它先修课程的理论和实际知识,树立正确的设计思想,培养分析和解决实际问题的能力。

该课程设计的基本要求为:在堆型和为进行热工设计所必需的条件已经确定的前提下,利用单通道模型进行反应堆稳态热工设计,并对热工设计准则进行验证;二、设计正文已知压水反应堆的热功率N t=2895Mw;燃料元件包壳外径d cs=9.5mm,包壳内径d ci=8.36mm,芯块直径d u=8.19mm;燃料组件采用17*17正方形排列,共157组燃料组件;每个组件内有24个控制棒套管和一个中子通量测量管;燃料棒中心间栅距P=12.6mm,组件间水隙δw=1mm。

系统工作压力p=15.5Mpa,冷却剂平均温度t R=310℃,堆芯冷却剂平均温升∆t=34.6℃;冷却剂旁流系数ζ=6.5%;冷却剂设计总流量71370m3/h;DNBR=2.08;又设燃料元件内释热份额占总释热量的97.4%;堆芯高度取L=3.66m;并近似认为燃料元件表面最大热流密度、元件表面最高温度和元件中心最高温度都发生在元件半高度处;已知元件包壳的热导率k c=0.00547(1.8t cs+32)+13.8[W/(m·℃)]。

适用单通道模型求燃料元件中心温度。

(大亚湾)求解步骤:由题知F u=97.4% , W ef=1-6.5%=93.5%。

取,F∆H N=1.51, F∆H E=1.07,;F Z N=1.54;F q E=1.03 F q=2.39 F q N=F qF q E=2.32相应温压下,水的c p=5.816kJ/(kg.C)1、确定燃料元件的实际最大热流密度q max因为压水堆的安全限值首先是燃料元件表面的最小DNBR,其次才是燃料元件的中心温度,故q max值由热点处的q DNB值除以DNBR而得。

核反应堆热工分析课设

目录一、设计任务 (1)二、课程设计要求 (2)三、计算过程 (2)四、程序设计框图 (8)五、代码说明书 (9)六、热工设计准则和出错矫正 (10)七、重要的核心程序代码 (11)八、计算结果及分析 (17)一、设计任务某压水反应堆的冷却剂及慢化剂都是水,用二氧化铀作燃料,用Zr-4作包壳材料。

燃料组件无盒壁,燃料元件为棒状,正方形排列。

已知下列参数:系统压力 15.8MPa堆芯输出功率 1820MW冷却剂总流量 32100t/h反应堆进口温度287℃堆芯高度 3.66m燃料组件数 121燃料组件形式17×17每个组件燃料棒数 265燃料包壳直径 9.5mm燃料包壳内径 8.36mm燃料包壳厚度 0.57mm燃料芯块直径 8.19mm燃料棒间距(栅距) 12.6mm芯块密度 95%理论密度旁流系数 5%燃料元件发热占总发热的份额 97.4%径向核热管因子 1.35轴向核热管因子 1.528局部峰核热管因子 1.11交混因子 0.95热流量工程热点因子 1.03焓升工程热管因子 1.085堆芯入口局部阻力系数 0.75堆芯出口局部阻力系数 1.0堆芯定位隔架局部阻力系数 1.05若将堆芯自上而下划分为5个控制体,则其轴向归一化功率分布如下表:堆芯轴向归一化功率分布(轴向等分5个控制体)通过计算,得出1. 堆芯出口温度;2. 燃料棒表面平均热流及最大热流密度,平均线功率,最大线功率;3. 热管的焓,包壳表面温度,芯块中心温度随轴向的分布;4. 包壳表面最高温度,芯块中心最高温度;5. DNBR在轴向上的变化;6. 计算堆芯压降;二、课程设计要求1.设计时间为两周;2.独立编制程序计算;3.迭代误差为0.1%;4.计算机绘图;5.设计报告写作认真,条理清楚,页面整洁;6.设计报告中要附源程序。

三、计算过程目前,压水核反应堆的稳态热工设计准则有:(1)燃料元件芯块内最高温度应低于其相应燃耗下的熔化温度。

核反应堆热工分析课程设计报告书详细过程版本汇总

课程设计报告( 20 13 -- 2014 年度第二学期)名称:核反应堆热工分析课程设计题目:利用单通道模型进行反应堆稳态热工设计院系:核科学与工程学院班级:实践核1101班学号:1111440306学生姓名:蒋佳指导教师:王胜飞设计周数:1周成绩:日期:2014 年 6 月19 日一、课程设计的目的与要求反应堆热工设计的任务就是要设计一个既安全可靠又经济的堆芯输热系统。

对于反应堆热工设计,尤其是对动力堆,最基本的要求是安全。

要求在整个寿期内能够长期稳定运行,并能适应启动、功率调节和停堆等功率变化,要保证在一般事故工况下堆芯不会遭到破坏,甚至在最严重的工况下,也要保证堆芯的放射性物质不扩散到周围环境中去。

在进行反应堆热工设计之前,首先要了解并确定的前提为:(1)根据所设计堆的用途和特殊要求(如尺寸、重量等的限制)选定堆型,确定所用的核燃料、冷却剂、慢化剂和结构材料等的种类;(2)反应堆的热功率、堆芯功率分布不均匀系数和水铀比允许的变化范围;(3)燃料元件的形状、它在堆芯内的分布方式以及栅距允许变化的范围;(4)二回路对一回路冷却剂热工参数的要求;(5)冷却剂流过堆芯的流程以及堆芯进口处冷却剂流量的分配情况。

在设计反应堆冷却系统时,为了保证反应堆运行安全可靠,针对不同的堆型,预先规定了热工设计必须遵守的要求,这些要求通常就称为堆的热工设计准则。

目前压水动力堆设计中所规定的稳态热工设计准则,一般有以下几点:(1)燃料元件芯块内最高应低于其他相应燃耗下的熔化温度;(2)燃料元件外表面不允许发生沸腾临界;(3)必须保证正常运行工况下燃料元件和堆内构件得到充分冷却;在事故工况下能提供足够的冷却剂以排除堆芯余热;(4)在稳态额定工况和可预计的瞬态运行工况中,不发生流动不稳定性。

在热工设计中,通常是通过平均通道(平均管)可以估算堆芯的总功率,而热通道(热管)则是堆芯中轴向功率最高的通道,通过它确定堆芯功率的上限,热点是堆芯中温度最高的点,代表堆芯热量密度最大的点,通过这个点来确定DNBR。

核反应堆热工分析课设解析

目录一、设计任务 (1)二、课程设计要求 (2)三、计算过程 (2)四、程序设计框图 (8)五、代码说明书 (9)六、热工设计准则和出错矫正 (10)七、重要的核心程序代码 (11)八、计算结果及分析 (17)一、设计任务某压水反应堆的冷却剂及慢化剂都是水,用二氧化铀作燃料,用Zr-4作包壳材料。

燃料组件无盒壁,燃料元件为棒状,正方形排列。

已知下列参数:系统压力 15.8MPa堆芯输出功率 1820MW冷却剂总流量 32100t/h反应堆进口温度287℃堆芯高度 3.66m燃料组件数 121燃料组件形式17×17每个组件燃料棒数 265燃料包壳直径 9.5mm燃料包壳内径 8.36mm燃料包壳厚度 0.57mm燃料芯块直径 8.19mm燃料棒间距(栅距) 12.6mm芯块密度 95%理论密度旁流系数 5%燃料元件发热占总发热的份额 97.4%径向核热管因子 1.35轴向核热管因子 1.528局部峰核热管因子 1.11交混因子 0.95热流量工程热点因子 1.03焓升工程热管因子 1.085堆芯入口局部阻力系数 0.75堆芯出口局部阻力系数 1.0堆芯定位隔架局部阻力系数 1.05若将堆芯自上而下划分为5个控制体,则其轴向归一化功率分布如下表:堆芯轴向归一化功率分布(轴向等分5个控制体)通过计算,得出1. 堆芯出口温度;2. 燃料棒表面平均热流及最大热流密度,平均线功率,最大线功率;3. 热管的焓,包壳表面温度,芯块中心温度随轴向的分布;4. 包壳表面最高温度,芯块中心最高温度;5. DNBR在轴向上的变化;6. 计算堆芯压降;二、课程设计要求1.设计时间为两周;2.独立编制程序计算;3.迭代误差为0.1%;4.计算机绘图;5.设计报告写作认真,条理清楚,页面整洁;6.设计报告中要附源程序。

三、计算过程目前,压水核反应堆的稳态热工设计准则有:(1)燃料元件芯块内最高温度应低于其相应燃耗下的熔化温度。

“核反应堆热工分析”课程教学大纲

“核反应堆热工分析”课程教学大纲“核反应堆热工分析”课程教学大纲英文名称:Nuclear Reactors Thermal-Hydraulics课程编号:NUCL0008学时:68(含课内实验4学时)学分:4适用对象:核工程与核技术四年级先修课程:传热学,流体力学,工程热力学使用教材及参考书:教材:1、于平安等,核反应堆热工分析,上海交通大学出版社,2002.2,ISBN7-313-02868-7参考书:1、连培生,原子能工业,原子能出版社,2002.5,ISBN7-5022-2453-X2、[美]汤良孙,J.韦斯曼,压水反应堆热工分析,原子能出版社,1983.3一、课程性质、目的和任务性质:《核反应堆热工分析》是核工程与核技术专业本科生和核能科学与工程学科硕士生和博士生的专业基础课。

目的:通过本课程的学习,学生应能获得有关核反应堆热工分析的基础知识,并为以后进行科学研究和工程实践打下一定的理论基础。

任务:重点讲述核反应堆热工水力分析的基本理论和一些分析、计算方法。

在内容的选择和安排上,力求体系完整、由浅入深、循序渐进。

二、教学基本要求1.了解各种核反应堆的发展的基本概况及其结构;2.掌握各种核反应堆的所有材料的基本热物理性质;3.掌握核反应堆热工分析中用到的堆芯释热、传热、流体力学等方面的基本知识和计算原理;4.掌握核反应堆稳态热工设计原理,清楚单通道模型和子通道模型热工设计的大致步骤和计算方法;5.了解核反应堆瞬态热工水力分析中的基本模型和方程,了解核反应堆瞬态热工水力分析的基本方法和典型的核反应堆系统的事故及其分析。

三、教学内容及要求第一章:绪论1.核反应堆发展概况2.核反应堆堆型简介3.核反应堆热工分析的任务第二章:堆的热源及其分布1.核裂变产生的能量及其分布2.堆芯功率的分布及其影响因素3.控制棒、慢化剂和结构材料中热量的产生和分布4.停堆后的功率第三章:堆的传热过程1.导热2.单相对流换热3.流动沸腾传热4.燃料元件的型式、结构及设计要求5.燃料元件材料的热物性6.燃料元件的温度分布7.包壳与芯块间的间隙传热及其随燃耗的变化8.燃料元件温度场的数值解法9.固体慢化剂和结构部件的冷却第四章:堆内流体的流动过程及水力分析1.单相流体的流动压降2.两相流体的流动压降3.自然循环4.冷却剂的喷放5.流动不稳定性第五章:堆芯稳态热工分析1.热工设计准则2.堆芯冷却剂流量分配3.热管因子和热点因子4.典型的临界热流密度关系式5.单通道模型的堆芯稳态热工分析6.子通道模型的堆芯稳态热工分析第六章:堆芯瞬态热工分析1.燃料元件瞬态过程温度场分析2.守恒方程3.反应堆的安全问题4.负荷丧失瞬态5.失流事故6.压水堆冷却剂丧失事故四、实践环节1.通道内单相水流动换热系数测定,2学时2.通道内单相水摩擦系数测定,2学时五、学时分配章内容参考学时1绪论4 2堆的热源及其分布8 3堆的传热过程12 4堆内流体的流动过程及水力分析165堆芯稳态热工分析12 6堆芯瞬态热工分析12实践环节4大纲制定者:秋穗正(执笔)大纲校对者:苏光辉大纲审定者:×××大纲批准者:×××。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15.44
300
21.32
400
26.42
500
30.93
600
34.97
700
38.65
800
42.02
900
45.14
1000
48.06
1100
50.61
1200
53.41
1298
55.84
1405
58.4
1560
61.95
1738
66.871876 Nhomakorabea68.86
1990
71.31
2155
74.88
#NAME? #NAME? #NAME? #NAME? #NAME? #NAME?
线性拟合法
芯块中心温度to计算结果 #NAME?
进出口hf(z)比

xe含汽量 Fg修正因子 QDNBh
DNBR
#NAME? #NAME? 1.060474971 #NAME? #NAME?
#NAME?
#NAME? #NAME? 1.060474971 #NAME? #NAME?
Kgr 1.05
FRN
FZN
1.35
1.5
迭代误差e0(<0.001) F总总传热面积
tfout(结果)
tf_
#NAME? #NAME? #NAME?
3502.561747
#NAME?
#NAME?
De
ts
P
0.011777844
#NAME?
六个控制体的相关计算
hfin 15.8 #NAME?
误差 #NAME? #NAME?
插值法
tu
0
qn
qh
202443.8 273299.1648
to结果 #NAME?
0-tu积分 积分热导率
#NAME?
#NAME?
521292.9 703745.3493
#NAME? #NAME?
#NAME?
809775.3 1093196.659
#NAME? #NAME?
#NAME?
794592 1072699.222
内表面tci假设 平均值tc_
325 #NAME?
#NAME?
#NAME?
#NAME?
#NAME?
#NAME? #NAME?
355 #NAME?
#NAME?
#NAME?
#NAME?
#NAME?
#NAME? #NAME?
390 #NAME?
#NAME?
#NAME?
#NAME?
#NAME?
#NAME? #NAME?
320 #NAME? #NAME?
330 #NAME? #NAME?
335 #NAME?
#NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?
#NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?
2343
79.16
2432
81.07
2805
90
内附vb热参 数查询函 数,只能在 office Excel(非 wps)x86 (软件32 位)平台上 运行。
燃料组件数m 121
旁流系数ξ 4.50% Kout 1
燃料组件形式n0*n0 每个组件燃料棒数n dcs
17*17
265
0.0095
Fa 97.40%
#NAME?
μw1
#NAME?
μw2
#NAME?
μw3
#NAME?
μw4
#NAME?
μw5
#NAME?
μw6
dci
1L
0.00836
0.4
FqN=FRN*FZN 2.027
qmax燃料棒表面最 ql_燃料棒平均线功
q_平均热流密度 大热流密度

qlmax燃料棒最大线功率
506109.5644
1077178.291
#NAME? #NAME?
#NAME? #NAME?
305 #NAME?
#NAME? #NAME?
#NAME? #NAME?
#NAME? #NAME?
310 #NAME?
#NAME? #NAME?
#NAME? #NAME?
#NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?
#NAME? #NAME?
#NAME?
506109.6 683247.912
#NAME? #NAME?
#NAME?
202443.8 273299.1648
#NAME? #NAME?
#NAME?
各段流体出 口温度
tf tf1 tf2 tf3 tf4 tf5 tf6
#NAME? #NAME? #NAME? #NAME? #NAME? #NAME?
各段流体出口比 体积
287 υ0 υ1 υ2 υ3 υ4 υ5 υ6
#NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?
进口比容υin #NAME?
各段的摩 擦压降 ΔPf1 ΔPf2 ΔPf3 ΔPf4 ΔPf5 ΔPf6
#NAME? #NAME? #NAME? #NAME? #NAME? #NAME?
各段流体定性温度 tf1_ tf2_ tf3_ tf4_ tf5_ tf6_
#NAME? #NAME? #NAME? #NAME? #NAME? #NAME?
#NAME?
#NAME?
Pr #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?
出口比容υout #NAME?
#NAME? #NAME? #NAME? #NAME? #NAME? #NAME?
ΔPin #NAME?
ΔPout #NAME?
ΔPgr #NAME?
动力粘度 μf1 μf2 μf3 μf4 μf5 μf6
冷却剂流量t\h 32100
包壳导热率kc #NAME? #NAME?
内表面温度tci #NAME? #NAME?
误差
tci结果 芯块表面温度tu计算结果
#NAME? #NAME?
#NAME?
#NAME?
ql_*FRN *FqE*fa i*0.01/ 4/3.141 5926
6.8154
#NAME? #NAME?
仅需 改变 本框 内的 基本 数 据, 其他 数据 及函 数除 非有 错 误, 否则 不可 随便 改动
流体堆芯 进口温度
tfin 287
系统压力P 15800000
δc 0.00057
FqE 1.05
du 0.00819
FΔHE 1.142
反应堆主要参 数
堆芯输出热功率Nt 1820000000
栅距s 0.0126 FΔHmE
400 #NAME?
#NAME?
#NAME?
#NAME?
#NAME?
#NAME? #NAME?
377 #NAME?
#NAME?
#NAME?
#NAME?
#NAME?
#NAME? #NAME?
348 #NAME?
#NAME?
#NAME?
#NAME? #NAME? #NAME? #NAME? #NAME? #NAME?
各段壁面定性温 度 tw1 tw2 tw3 tw4 tw5 tw6
Δpel1 Δpel2 Δpel3 Δpel4 Δpel5 Δpel6
各段的提升压降 #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?
二氧化铀积分热导率
温度/t
积分热动率
50
4.48
100
8.49
200
#NAME? #NAME?
#NAME? #NAME?
#NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?
出口温度tf计算结果 #NAME?
μ #NAME?
#NAME?
#NAME?
#NAME?
#NAME?
#NAME?
#NAME?
#NAME?
#NAME?
#NAME? #NAME?
#NAME? #NAME? #NAME?
#NAME?
17.5496
#NAME? #NAME?
#NAME? #NAME?
#NAME? #NAME? #NAME?
#NAME?
27.2616
#NAME? #NAME?
#NAME? #NAME?
#NAME? #NAME? #NAME?
0.9
冷却剂总流量W 8916.666667 两个组件间的水隙
δ 0.0008 FΔHN=FRZ
1.35
堆芯高度L 3.66
ρUO2 95% Kin 0.75
入口温度 假设出口温度
tfin tfout
平均值  ̄t。
Cp
出口温度tfout
287
325
287 #NAME?
287 #NAME?
#NAME? #NAME?
#NAME?
#NAME?
#NAME?
#NAME? #NAME? #NAME? #NAME? #NAME? #NAME?
ΔPel #NAME?
摩擦压降ΔPf #NAME?
ΔP #NAME?
#NAME? #NAME? #NAME? #NAME? #NAME? #NAME?
相关文档
最新文档