用样本的频率分布估计总体分布1

合集下载

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布频率分布是一种用于描述数据集中频次分布情况的统计工具,它描述了每个数值或数值范围出现的频率。

在样本中,我们可以利用频率分布来估计总体的频率分布,从而了解总体的特征。

为了确切估计总体的频率分布,我们需要采取一定的统计方法,下面将介绍一种常用的方法,直方图。

一、直方图的构建构建频率分布的首要任务是将数据分为不同的组或区间。

一般来说,我们会根据数据的特点选择合适的组距,然后根据不同的组距将数据分组。

例如,假设我们有一组数据代表了一些班级学生的测试成绩,我们选择了组距为10,那么我们可以将数据分为以下几个组:然后,我们统计每个组内数据出现的次数,即频次,得到每个组的频次数。

二、计算频率频率是频次的一个重要衍生指标,它反映的是不同数据值或数据范围在总体中的比例。

频率的计算公式为:频率=频次/总样本量在直方图中,我们通常将频率表示为每个组的相对频率。

这样可以更好地反映出组与组之间的差异。

三、绘制直方图绘制直方图是一种直观地表现频率分布的方法。

在直方图上,x轴表示不同的组或区间,y轴表示频率。

我们可以用矩形的高度来表示每个组的频率,矩形的宽度表示组距。

通过绘制多个矩形,可以将频率分布更直观地展示出来。

在绘制直方图时,需要注意以下几点:1.组距应该选择合适,既不过小也不过大,以保证直方图的直观性和准确性。

2.直方图的高度应该符合频率的大小,即高度越高表示频率越大。

3.直方图的矩形之间应该没有间隙,以保证数据的完整性。

四、利用样本频率分布估计总体频率分布样本的频率分布可以提供总体频率分布的一种估计方法。

我们可以基于样本数据构建直方图,并计算每个组的频率。

然后,我们可以将样本频率分布与总体的频率分布进行比较。

如果两个分布形状相似并且没有明显的偏差,那么我们可以认为样本的频率分布可以很好地估计总体的频率分布。

当然,在使用样本频率分布进行总体频率分布估计时,还需要注意以下几点:1.样本的选取应该具有代表性,以避免样本偏差对估计结果的影响。

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布



ቤተ መጻሕፍቲ ባይዱ
ii.组距:各组数据左右两各端点之间的距离。 (3)分组:各组数据所在区间取左闭右开区间,最后一个 区间取闭区间。 (4)填表:统计各组数据频数、计算频率,将频数和频率 填在表格相应空格内。 2、例题 (1)讲与练P36 类型一 画样本的频率分布直方图 (例1) (2 )讲与练P36 类型一 画样本的频率分布直方图 (变式训练1)
(2)将茎按由小到大的顺序排成一列,写在左侧或右侧; (3)将共茎的表示叶的数据按由小到大的顺序排成一行写 在茎的左侧。
3、注意 (1)对于重复出现的叶不能省略; (2)若有双叶则应对称,即左边的叶按由小到大的顺序排 列,则右边的叶则应按由大到小的顺序排列。 4、例题 (1)讲与练P37 类型三 茎叶图及其应用 (例3) (2)讲与练P37 类型三 茎叶图及其应用 (变式训练3) 四、课堂作业
三、频率分布直方图
1、概念:用直方图的形式来表示频率分布规律的方图叫频
率分布直方图
2、制作 (1)取一直角标架,将直角标架的横轴连续分成几段; (2)以各段为边做矩形,其中矩形的底表示组距,高表示
频率 组距
(3)在各矩形中的底和高所对应的轴相应位置标注相应数据。 3、意义
频率 (1)各矩形面积为频率与 组距
用样本的频率分布 估计总体的频率分布
一、基本概念
1、频数:将全部数据分成几组后,各组数据的个数叫这组数据的频数。
2、频率:各组数据的频数除以全部数据的商叫这组数据的频率。
二、频率分布表
1、画频率分布表的步骤 (1)求极差(极差是全部数据的最大值与最小值之差) (2)求组距和组数
极差 极差 极差 整数,则 组数 整数 ,则 组数 1 i.若 极差 ,若 组距 组距 组距 组距

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布

通过抽样,我们获得了100位居民某年的月平均用水量 (单位:t) ,如下表:
条形图
饼状图
频数分布直方图
具体步骤: 1、求极差 即一组数据中最大值与最小值的差 2、决定组距与组数 组数:将数据分组 组距:指每个小组的两个端点的距离 3、 决定分点 分组时应保证将样本数据落在每一组的内部
具体步骤: 1、求极差 即一组数据中最大值与最小值的差 2、决定组距与组数 组数:将数据分组 组距:指每个小组的两个端点的距离 3、 决定分点 分组时应保证将样本数据落在每一组的内部
小结
画频率分布直方图的骤:
一、求极差:即数据中最大值与最小值的差 二、决定组距与组数 :组距=极差/组数 三、决定分点: 分组,通常对组内数值所在区间,
取左闭右开区间 , 最后一组取闭区间 四、列频率分布表
五、画出频率分布直方图(纵轴表示频率/组距)
作业: 请大家抽查我们年级同学每天数学作业的 用时,作出频率分布直方图,并对数据进 行分析,结合实际情况,向我们年级数学 备课组提出合理化建议。 要求:1、可以按班级小组进行合作调查 2、结果以电子文档形式呈现 3、下周三完成。谢谢
用样本的频曹付生
我国是世界上严重缺水的国家之一,城市缺 水问题较为突出,某市政府为了节约生活 用水,计划在本市试行居民生活用水定额 管理,即确定一个居民月用水量标准a,用 水量不超过a的部分按平价收费,超出a的 部分按议价收费。 (1)如果希望大部分居民的日常生活不受影 响,那么标准a定为多少比较合理呢 ? (2)你认为,为了较为合理地确定出这个标 准,需要做哪些工作?
4、 列频率分布表
100位居民月平均用水量的频数分布直方图
5、画频率分布直方图
频率/组距 0.50 0.40 0.30 0.20 0.10 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量/t

《用样本的频率分布估计总体分布》教学设计 (1)

《用样本的频率分布估计总体分布》教学设计 (1)

《用样本的频率分布估计总体分布》教学设计教学目标:1 知识与能力目标:(1).了解样本的频率分布与总体分布的关系,能用样本的频率分布去估计相应的总体分布。

(2).在表示样本数据的过程中,学会列出频率分布表、画频率分布直方图、频率折线图,体会它们各自的特点。

(3).通过学生应用所学知识解决实际问题,进一步提高学生理论联系实际的能力。

2 情感目标:(1)渗透数形结合思想。

(2)结合教学内容培养学生学习数学的兴趣及“用数学”的意识,激励学生勇于自我创新。

(3)培养学生普遍联系、数学来源于实践又指导实践的辩证唯物主义观点及勇于探索的创新精神。

教学重点:通过实例体会分布的意义和作用,能做出样本的频率分布表、画频率分布直方图和频率折线图。

教学方法:以教师为主导,学生为主体,以能力发展为目标,强化学生的注意力及新旧知识的联系,通过教师讲授、学生尝试练习,调动学生的积极性,发挥学生的主体作用。

教学环节教学内容师生互动设计意图复习统计的基本思想方法是用样本估计总体,即通过从总体中抽取一个样本,根据样本的情况去估计总体。

前面我们学习了哪些抽样方法?问题:抽取样本后怎样用样本来估计总体呢?即用什么方法来处理得到的样本数据,来估计、推测总体的特征、特性?理论证明,可以用样本的频率分布估计总体的分布,用样本数字特征估计总体的数字特征。

本节我们学习用样本的频率分布估计总体的分布,教师提出问题,铺垫复习,学生思考、积极回答问题教师根据学生的回答、进一步提出问题,导入新课。

学生思考、讨论教学重难点新课前的复习即可加深对学过的知识的理解,又可为学习新知识埋下伏笔。

先设疑、激发学生的求知欲望、提高学生学习教学的兴趣让学生了解本节学生内容和学习的重难点,为学好本节做好知识和心理上的准备。

导入(1)为了了解中学生的身体发育情况,对某中学同年龄的60名女学生的身高进行了测量,结果如下(单位:厘米)167 154 159 166 169 159 156 166162 158 159 156 166 160 164 160 157 156 157 161 158 158153 158 164 158 163 158 153157 162 162 159 154 165 166157 151 146 151 158 160 165158 163 163 162 161 154 165162 162 159 157 159 149 164 168 159 153我们希望了解身高在哪个小范围内的学生多,在那个小范围内的学生少?(2)为了考察甲、乙两种小麦的长势,分别从中抽取了10株苗,测得苗高如下(单位:厘米)甲:12 13 14 15 10 16 13 11 15 11乙:11 16 17 14 13 19 6 8 1016问:那种小麦的10株苗高比较整齐?频率分布直方图如果样本容量较大,很难从一个个数字中直接看出样本所包含的信息。

221用样本的频率分布估计总体分布1

221用样本的频率分布估计总体分布1
(1)编制频率分布表;(2)绘制频率分布直方图;
(3)估计该片经济林中底部周长小于100cm的树木 约占多 少,周长不小于120cm的树木约占多少。
解: (1)从表中可以看出: 这组数据的最大值为135,最小值为80, 故极差为55, 可将其分为11组,组距为5。
从第1组[80,85)开始, 将各组的频数、频率和 频率/组距 填入表中
分组
频数
[80,85) [85,90) [90,95) [95,100) [100,105) [105,110) [110,115) [115,120) [120,125)
[125,130)
[130,135) 合计
频率
频数/组距
1
0.01 0.002
2
0.02 0.004
4
0.04 0.008
14
0.40 0.30 0.20 0.10
0
0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量/t
画一组数据的频率分布直方图,可以按以下的 步骤进行:
一、求极差,即数据中最大值与最小值的差 二、决定组距与组数 :组距=极差/组数 三、分组,通常对组内数值所在区间,
取左闭右开区间 , 最后一组取闭区间 四、登记频数,计算频率,列出频率分布表
三级品 13
0.43
次品
4
0.13
(2)此种产品为二级品或三级品的概率约为0.27+0.43=0.7.
2.有一个容量为50的样本,数据的分组及其 频数如下所示, 请将其制成频率直方图.
频率分布表如下:
分组 [25,30) [30,35) [35,40) [40,45)
[45,50) [50,55) [55,60]

用样本的频率分布估计总体的分布》教学设计

用样本的频率分布估计总体的分布》教学设计

必修3《2.2.1 用样本的频率分布估计总体的分布》教学设计北京师范大学附属实验中学曹付生一、教学内容分析1.教学主要内容:本节课选自人教B版必修三,第二章第二小节,《用样本的频率分布估计总体的分布》,需要2课时完成,本节课是第一课时。

主要是画出样本的频率分布直方图,并能通过频率分布直方图对总体进行简单的估计。

2.教材编写特点本节是本章教材的第二小节,前面研究了随机抽样的方法及数据收集。

本节课主要研究对收集样本如何进行处理,突出对数据描述、处理的方法,特别是频率分布直方图画法,后面接着研究总体密度曲线、用样本的数字特征估计总体的数字特征以及正态曲线等,可以说本节课内容承上启下,地位非常重要。

从教材编写的角度来看,也正是要体现这一特点。

教材编写,通过对样本分析和总体估计的过程,突出了统计的实用性,从实际出发,收集数据,进行分析整理,再回到实际问题,感受数学对实际生活的需要,体现了统计的思想及其在实际问题中的应用价值,真正体会数学知识与现实生活的联系。

3.教材内容的数学核心思想教材内容的数学核心思想是用样本的频率分布直方图估计总体的统计思想方法。

4.我的思考:本节课重在教会学生绘制频率分布直方图,引导学生通过频率分布直方图分析总体的分布,体会统计的思想、方法。

在通读了教材的基础上,与人教A版的相应内容作了比较,再结合学生的情况,最终选择A版内容,更利于完成教学目标。

(1)人教A版教材中的例子与学生关系紧密,提出的问题更切合学生实际。

背景的熟悉使学生易于课堂参与。

(2)教材中问题的设计利于学生统计思想的建立等。

统计思想方法是数学的一个重要的思想方法,中学学习统计,除了掌握必要的统计知识之处,关键是让学生建立统计在现实生活中具有重要的作用,具有统计意识,同时体会到统计结果随机性、科学性,能作为总体的分布的合理性,是生活中某些问题决策必不可少的依据。

统计教学的核心目标正是让学生体会统计思维的特点和作用。

因此在设计中,从实际问题出发,再回到实际问题的决策,前后呼应,使学生真正体会数据处理的全过程、统计应用于现实生活的全过程,突出统计的思想、方法。

2.2.1 用样本的频率分布估计总体分布(1)

2.2.1 用样本的频率分布估计总体分布(1)

0.020 0.053 0.060 0.073 0.067 0.033 0.027
频率分布直方图如下:
频率 组距 0.070 0.060 0.050
0.040
0.030 0.020 0.010
12.5 15.5
练习
1. 已知一组数据如下: 25 21 23 25 27 29 25 28 30 29 26 24 25 27 26 22 24 25 26 28 填写下面的频率分布表,绘出频率分布直方图. 组别 频数累计 频数 频率
率,你能用公式表示出样本容量、频数 和频率之间的关系吗?各组的频数和等 于几?各组的频率和呢?
(1) f i
ti n
(2)t1 t 2 ... t n n
(3) f 1 f 2 ... f n 1
小结
画频率分布直方图的步骤
1、求极差(即一组数据中最大值与最小值的差) 知道这组数据的变动范围4.3-0.2=4.1 2、决定组距与组数(将数据分组) 组距:指每个小组的两个端点的距离,组距 组数:将数据分组,当数据在100个以内时, 按数据多少常分5-12组。 组数= 极差 4.1 8.2 3、 将数据分组(8.2取整,分为9组)
例2 有一个容量为50的样本数据的分组的频数
如下: [12.5, 15.5) 3
[15.5, 18.5) [18.5, 21.5) 8 9
[24.5, 27.5) [27.5, 30.5)
10 5
[30.5, 33.5)
4
[21.5, 24.5) 11
(1)列出样本的频率分布表; (2)画出频率分布直方图; (3)根据频率分布直方图估计,数据落在[15.5, 24.5)的百分比是多少?

用样本的频率分布估计总体分布教案

用样本的频率分布估计总体分布教案

用样本的频率分布估计总体分布教案教案:用样本的频率分布估计总体分布一、教学目标:1.了解频率分布的概念和作用;2.学会使用频率分布来估计总体分布;3.掌握构建频率分布表的方法;4.能够利用频率分布表对总体进行估计。

二、教学内容:1.频率分布的概念和作用2.构建频率分布表的方法3.利用频率分布表对总体进行估计三、教学过程:一、频率分布的概念和作用(10分钟)1.频率分布是指对一组数据中各个数值出现的次数进行统计,从而得到数值的分布情况。

2.频率分布的作用是可以帮助我们了解数据的分布规律,从而对总体进行估计。

二、构建频率分布表的方法(30分钟)1.确定数据的分组区间:首先需要确定分组的宽度,即把数据分为若干个区间。

常用的方法有等宽分组和等频分组。

2.计算各个分组的频数:统计每个区间内数据的个数。

3.计算各个分组的频率:将各个分组的频数除以总样本数量,得到各个分组的频率。

4.制作频率分布表:将各个分组的上界、下界、频数和频率列成表格。

三、利用频率分布表对总体进行估计(40分钟)1.利用频率分布表进行估计的方法有两种:直接估计和间接估计。

2.直接估计是通过频率分布表直接读取各个分组的频率来估计总体分布。

3.间接估计是通过频率分布表的图形化表示来估计总体分布,常用的图形有直方图和折线图。

4.对于直方图,可以通过观察分布的形状和峰值来估计总体的分布情况。

5.对于折线图,可以通过观察分布曲线的形状来估计总体的分布情况。

四、练习和小结(20分钟)1.让学生根据给定的数据,完成频率分布表的构建。

2.让学生根据给定的频率分布表,进行总体分布的估计。

3.对学生进行小结和概念回顾,检查他们对于频率分布和总体估计的理解程度。

四、教学反思:通过本节课的教学,学生能够了解频率分布的概念和作用,掌握构建频率分布表的方法,以及利用频率分布表对总体进行估计的方法。

在教学过程中,可以利用实际案例和练习来加深学生对于频率分布和总体估计的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
根据这些数据 你能得出用水 量其他信息吗?
2
画频率分布直方图的步骤
1、求极差(即一组数据中最大值与最小值的差) 知道这组数据的变动范围4.3-0.2=4.1 2、决定组距与组数(将数据分组) 组距:指每个小组的两个端点的距离,组距 组数:将数据分组,当数据在100个以内时, 按数据多少常分5-12组。 组数= 极差 4.1 8.2 3、 将数据分组(8.2取整,分为9组)
19
茎叶图的制作方法
制作茎叶图的方法是:将所有两位数的十位数字 作为“茎”,个位数字作为“叶”,茎相同者共 用一个茎,茎按从小到大的顺序从上向下列出, 共茎的叶一般按从大到小(或从小到大)的顺序 同行列出.
注意:在制作茎叶图时,重复出现的数据要重复 记录,不能遗漏,特别是“叶”部分;同一数据 出现几次,就要在图中体现几次.
18
2.茎叶图的特征:
1)用茎叶图表示数据有两个优点:一是从统计图 上没有原始数据信息的损失,所有数据信息都可以 从茎叶图中得到;二是茎叶图中的数据可以随时记 录,随时添加,方便记录与表示; (2)茎叶图只便于表示两位(或一位)有效数字 的数据,对位数多的数据不太容易操作;而且茎叶 图只方便记录两组的数据,两个以上的数据虽然能 够记录,但是没有表示两个记录那么直观,清晰; (3)茎叶图对重复出现的数据要重复记录,不能 遗漏.
(3)当样本容量无限增大,组距无限缩小, 那么频率分布直方图就会无限接近于一条光滑 曲线——总体密度曲线。
12
2.2 总体分布的估计
当样本容量无限增大,分组的组距无限缩小,那么频率分 布直方图就会无限接近一条光滑曲线——总体密度曲线.
频率 组距
总体在区间(a , b)内取值的概率
S
a b
月均用水量 (mm)
13
总体密度曲线
频率 组距
月均用 水量/t
a
b
(图中阴影部分的面积,表示总体在 某个区间 (a, b) 内取值的百分比)。
14
总体密度曲线
总体密度曲线反映了总体在各个范围内取值的 百分比,精确地反映了总体的分布规律。是研究总 体分布的工具. 用样本分布直方图去估计相应的总体分布时, 一般样本容量越大,频率分布直方图就会无限接 近总体密度曲线,就越精确地反映了总体的分布 规律,即越精确地反映了总体在各个范围内取值 百分比。
15
Hale Waihona Puke 茎叶图情境:某赛季甲、乙两名篮球运动员每场比赛得
分的原始记录如下:
(1)甲运动员得分:
13,51,23,8,26,38,16,33,14,28,39
(2)乙运动员得分:
49,24,12,31,50,31,44,36,15,37,25,36,39
• 问题:如何有条理地列出这些数据,分析该运
动员的整体水平及发挥的稳定程度?
5
0.5
1 1.5 2 2.5 3
3.5 4
频率分布直方图如下:
频率
组距
月均用水量最 多的在那个区 间?
0.50 0.40 0.30 0.20 0.10
0.5
1 1.5 2 2.5 3
3.5 4
月均用水量 /t 4.5
6
频率分布直方图如下:
频率
组距
0.50 0.40 0.30 0.20 0.10
组距 0.5
4、列出频率分布表.(学生填写频率/组距一栏) 5、画出频率分布直方图。
3
频率分布直方图如下:
频率
组距
小长方形的面 积=? 0.50 0.40 0.30 0.20 0.10 月均用水量 /t 4.5
4
0.5
1 1.5 2 2.5 3
3.5 4
频率分布直方图如下:
频率
组距
小长方形的面 积总和=? 0.50 0.40 0.30 0.20 0.10 月均用水量 /t 4.5
[21.5, 24.5) 11 (1)列出样本的频率分布表; (2)画出频率分布直方图; (3)根据频率分布直方图估计,数据落在[15.5, 24.5)的 百分比是多少?
8
解:组距为3
分组 频数
3
频率
频率/ 组距
[12.5, 15.5)
[15.5, 18.5) 8 [18.5, 21.5) 9 [21.5, 24.5) 11 [24.5, 27.5) 10 [27.5, 30.5) [30.5, 33.5) 5 4
0.010 12.5 15.5
10
频率分布直方图如下:
频率
组距
连接频率分布直方图 中各小长方形上端的 中点,得到频率分布折 线图
0.50 0.40 0.30 0.20 0.10 月均用水量 /t 4.5
11
0.5
1 1.5 2 2.5 3
3.5 4
利用样本频分布对总体分布进行相应估计
(1)上例的样本容量为100,如果增至1000, 其频率分布直方图的情况会有什么变化?假如增 至10000呢? (2)样本容量越大,这种估计越精确。
请大家阅读第 69页,直方图有 那些优点和缺 点?
0.5
1 1.5 2 2.5 3
3.5 4
月均用水量 /t 4.5
7
练习
1.有一个容量为50的样本数据的分组的频数如下: [12.5, 15.5) 3
[15.5, 18.5) [18.5, 21.5) 8 9 [24.5, 27.5) [27.5, 30.5) [30.5, 33.5) 10 5 4
20
用茎叶图表示数据有两个突出的优点: 一.是所有的信息都可以从这个茎叶图 上得到; 二.是茎叶图便于记录和表示.
用茎叶图表示数据有一个突出的缺点:
16
茎叶图
甲 乙
8
0 1
4 6 3
3 6 8
2 5
5 4
2
3
3 8 9
1 6 1 6 7 9
4 9
4 1
5
0
17
1.茎叶图的概念:
一般地:当数据是一位和两位有效数字时,用中 间的数字表示十位数,即第一个有效数字,两边的数 字表示个位数,即第二个有效数字,它的中间部分像 植物的茎,两边部分像植物茎上长出来的叶子,因此 通常把这样的图叫做茎叶图。茎按从小到大的顺序从 上向下列出,共茎的叶一般按从大到小(或从小到大) 的顺序同行列出。
0.06 0.16 0.18 0.22 0.20 0.10 0.08
0.020 0.053 0.060 0.073 0.067 0.033 0.027
注意:
第几组频数 (2)纵坐标为: (1)第几组频率 样本容量
频率 组距
9
频率分布直方图如下:
频率
组距
0.070 0.060 0.050 0.040 0.030 0.020
相关文档
最新文档