《平面向量》提高篇 复习卷带答案 教师版
高三数学提高题专题复习平面向量多选题练习题及答案

高三数学提高题专题复习平面向量多选题练习题及答案一、平面向量多选题1.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O 、G 、H 分别是ABC 的外心、重心、垂心,且M 为BC 的中点,则( )A .0GA GB GC ++= B .24AB AC HM MO +=- C .3AH OM =D .OA OB OC ==【答案】ABD 【分析】向量的线性运算结果仍为向量可判断选项A ;由12GO HG =可得23HG HO =,利用向量的线性运算()266AB AC AM GM HM HG +===-,再结合HO HM MO =+集合判断选项B ;利用222AH AG HG GM GO OM =-=-=故选项C 不正确,利用外心的性质可判断选项D ,即可得正确选项. 【详解】因为G 是ABC 的重心,O 是ABC 的外心,H 是ABC 的垂心, 且重心到外心的距离是重心到垂心距离的一半,所以12GO HG =, 对于选项A :因为G 是ABC 的重心,M 为BC 的中点,所以2AG GM =, 又因为2GB GC GM +=,所以GB GC AG +=,即0GA GB GC ++=,故选项A 正确;对于选项B :因为G 是ABC 的重心,M 为BC 的中点,所以2AG GM =,3AM GM =,因为12GO HG =,所以23HG HO =, ()226663AB AC AM GM HM HG HM HO ⎛⎫+===-=- ⎪⎝⎭()646424HM HO HM HM MO HM MO =-=-+=-,即24AB AC HM MO +=-,故选项B 正确;对于选项C :222AH AG HG GM GO OM =-=-=,故选项C 不正确; 对于选项D :设点O 是ABC 的外心,所以点O 到三个顶点距离相等,即OA OB OC ==,故选项D 正确;故选:ABD. 【点睛】关键点点睛:本题解题的关键是利用已知条件12GO HG =得23HG HO =,利用向量的线性运算结合2AG GM =可得出向量间的关系.2.如图,B 是AC 的中点,2BE OB =,P 是平行四边形BCDE 内(含边界)的一点,且(),OP xOA yOB x y R =+∈,则下列结论正确的为( )A .当0x =时,[]2,3y ∈B .当P 是线段CE 的中点时,12x =-,52y =C .若x y +为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段D .x y -的最大值为1- 【答案】BCD 【分析】利用向量共线的充要条件判断出A 错,C 对;利用向量的运算法则求出OP ,求出x ,y 判断出B 对,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N ,则OP ON OM =+,然后可判断出D 正确. 【详解】当0x =时,OP yOB =,则P 在线段BE 上,故13y ≤≤,故A 错 当P 是线段CE 的中点时,13()2OP OE EP OB EB BC =+=++1153(2)222OB OB AB OA OB =+-+=-+,故B 对x y +为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故C 对如图,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N ,则:OP ON OM =+;又OP xOA yOB =+;0x ∴,1y ;由图形看出,当P 与B 重合时:01OP OA OB =⋅+⋅;此时x 取最大值0,y 取最小值1;所以x y -取最大值1-,故D 正确 故选:BCD 【点睛】结论点睛:若OC xOA yOB =+,则,,A B C 三点共线1x y ⇔+=.3.给出下列结论,其中真命题为( ) A .若0a ≠,0a b ⋅=,则0b =B .向量a 、b 为不共线的非零向量,则22()a b a b ⋅=⋅ C .若非零向量a 、b 满足222a ba b +=+,则a 与b 垂直D .若向量a 、b 是两个互相垂直的单位向量,则向量a b +与a b -的夹角是2π【答案】CD 【分析】对于A 由条件推出0b =或a b ⊥,判断该命题是假命题;对于B 由条件推出()()()222a ba b ⋅≠⋅,判断该命题是假命题;对于C 由条件判断a 与b 垂直,判断该命题是真命题;对于D 由条件推出向量a b +与a b -的夹角是2π,所以该命题是真命题. 【详解】对于A ,若0a ≠,0a b ⋅=,则0b =或a b ⊥,所以该命题是假命题; 对于B ,()()22222cos cos a ba b a b αα⋅==,而()()2222a ba b ⋅=,由于a 、b 为不共线的非零向量,所以2cos 1α≠,所以()()()222a b a b ⋅≠⋅,所以该命题是假命题;对于C ,若非零向量a 、b 满足222a ba b +=+,22222a b a b a b ++⋅=+,所以0a b ⋅=,则a 与b 垂直,所以该命题是真命题;对于D ,以a 与b 为邻边作平行四边形是正方形,则a b +和a b -所在的对角线互相垂直,所以向量a b +与a b -的夹角是2π,所以该命题是真命题. 故选:CD. 【点睛】本题考查平面向量的线性运算与数量积运算、向量垂直的判断,是基础题.4.已知数列{a n },11a =,25a =,在平面四边形ABCD 中,对角线AC 与BD 交于点E ,且2AE EC =,当n ≥2时,恒有()()1123n n n n BD a a BA a a BC -+=-+-,则( ) A .数列{a n }为等差数列 B .1233BE BA BC =+ C .数列{a n }为等比数列 D .14nn n a a +-=【答案】BD 【分析】 证明1233BE BA BC =+,所以选项B 正确;设BD tBE =(0t >),易得()114n n n n a a a a +--=-,显然1n n a a --不是同一常数,所以选项A 错误;数列{1n n a a --}是以4为首项,4为公比的等比数列,所以14nn n a a +-=,所以选项D 正确,易得321a =,选项C 不正确.【详解】因为2AE EC =,所以23AE AC =, 所以2()3AB BE AB BC +=+, 所以1233BE BA BC =+,所以选项B 正确;设BD tBE =(0t >),则当n ≥2时,由()()1123n n n n BD tBE a a BA a a BC -+==-+-,所以()()111123n n n n BE a a BA a a BC t t-+=-+-, 所以()11123n n a a t --=,()11233n n a a t +-=, 所以()11322n n n n a a a a +--=-, 易得()114n n n n a a a a +--=-,显然1n n a a --不是同一常数,所以选项A 错误; 因为2a -1a =4,114n nn n a a a a +--=-,所以数列{1n n a a --}是以4为首项,4为公比的等比数列,所以14nn n a a +-=,所以选项D 正确,易得321a =,显然选项C 不正确. 故选:BD 【点睛】本题主要考查平面向量的线性运算,考查等比数列等差数列的判定,考查等比数列通项的求法,意在考查学生对这些知识的理解掌握水平.5.八卦是中国文化的基本哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八边形ABCDEFGH ,其中1OA =,则下列结论正确的有( )A .2OA OD ⋅=-B .2OB OH OE +=-C .AH HO BC BO ⋅=⋅D .AH 在AB 向量上的投影为【答案】AB 【分析】直接利用向量的数量积的应用,向量的夹角的应用求出结果. 【详解】图2中的正八边形ABCDEFGH ,其中||1OA =,对于3:11cos4A OA OD π=⨯⨯=;故正确. 对于:22B OB OH OA OE +==-,故正确.对于:||||C AH BC =,||||HO BO =,但对应向量的夹角不相等,所以不成立.故错误. 对于:D AH 在AB 向量上的投影32||cos ||4AH AH π=-,||1AH ≠,故错误. 故选:AB . 【点睛】本题考查的知识要点:向量的数量积的应用,向量的夹角的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.6.下列各式结果为零向量的有( ) A .AB BC AC ++ B .AB AC BD CD +++ C .OA OD AD -+ D .NQ QP MN MP ++-【答案】CD 【分析】对于选项A ,2AB BC AC AC ++=,所以该选项不正确;对于选项B ,2AB AC BD CD AD +++=,所以该选项不正确;对于选项C ,0OA OD AD -+=,所以该选项正确;对于选项D ,0NQ QP MN MP ++-=,所以该选项正确. 【详解】对于选项A ,2AB BC AC AC AC AC ++=+=,所以该选项不正确;对于选项B ,()()2AB AC BD CD AB BD AC CD AD AD AD +++=+++=+=,所以该选项不正确;对于选项C ,0OA OD AD DA AD -+=+=,所以该选项正确; 对于选项D ,0NQ QP MN MP NP PN ++-=+=,所以该选项正确.故选:CD 【点睛】本题主要考查平面向量的加法和减法法则,意在考查学生对这些知识的理解掌握水平.7.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )A .//PB CQ B .1233BP BA BC =+ C .0PA PC ⋅> D .4S =【答案】BD 【分析】利用向量的共线定义可判断A ;利用向量加法的三角形法则以及向量减法的几何意义即可判断B ;利用向量数量积的定义可判断C ;利用三角形的面积公式即可判断D. 【详解】由20PA PC +=,2QA QB =,可知点P 为AC 的三等分点,点Q 为AB 延长线的点, 且B 为AQ 的中点,如图所示:对于A ,点P 为AC 的三等分点,点B 为AQ 的中点, 所以PB 与CQ 不平行,故A 错误; 对于B ,()22123333BP BA AP BA AC BA BC BA BA BC =+=+=+-=+, 故B 正确;对于C ,cos 0PA PC PA PC PA PC π⋅==-<,故C 错误; 对于D ,设ABC 的高为h ,132ABCS AB h ==,即6AB h =, 则APQ 的面积1212226423233APQS AQ h AB h =⋅=⋅⋅=⨯=,故D 正确; 故选:BD 【点睛】本题考查了平面向量的共线定理、共线向量、向量的加法与减法、向量的数量积,属于基础题8.已知向量()1,3OA =-,()2,1OB =-,()3,8OC t t =+-,若点A ,B ,C 能构成三角形,则实数t 可以为( ) A .-2 B .12C .1D .-1【答案】ABD 【分析】若点A ,B ,C 能构成三角形,故A ,B ,C 三点不共线,即向量,AB BC 不共线,计算两个向量的坐标,由向量共线的坐标表示,即得解 【详解】若点A ,B ,C 能构成三角形,故A ,B ,C 三点不共线,则向量,AB BC 不共线, 由于向量()1,3OA =-,()2,1OB =-,()3,8OC t t =+-, 故(3,4)AB OB OA =-=-,(5,9)BC OC OB t t =-=+- 若A ,B ,C 三点不共线,则 3(9)4(5)01t t t ---+≠∴≠ 故选:ABD 【点睛】本题考查了向量共线的坐标表示,考查了学生转化划归,概念理解,数学运算能力,属于中档题.二、立体几何多选题9.如图,矩形ABCD 中, 22AB AD ==,E 为边AB 的中点.将ADE 沿直线DE 翻折成1A DE △(点1A 不落在底面BCDE 内),若M 在线段1A C 上(点M 与1A ,C 不重合),则在ADE 翻转过程中,以下命题正确的是( )A .存在某个位置,使1DE A C ⊥B .存在点M ,使得BM ⊥平面1A DC 成立 C .存在点M ,使得//MB 平面1A DE 成立D .四棱锥1A BCDE -体积最大值为24【答案】CD 【分析】利用反证法可得A 、B 错误,取M 为1A C 的中点,取1A D 的中点为I ,连接,MI IE ,可证明//MB 平面1A DE ,当平面1A DE ⊥平面BCDE 时,四棱锥1A BCDE -体积最大值,利用公式可求得此时体积为2. 【详解】如图(1),取DE 的中点为F ,连接1,A F CF , 则45CDF ∠=︒,22DF =,故212254222222CF =+-⨯⨯=, 故222DC DF CF ≠+即2CFD π∠≠.若1CA DE ⊥,因为11,A D A E DF FE ==,故1A F DE ⊥,而111A F A C A ⋂=, 故DE ⊥平面1A FC ,因为CF ⊂平面1A FC ,故DE CF ⊥,矛盾,故A 错. 若BM ⊥平面1A DC ,因为DC ⊂平面1A DC ,故BM DC ⊥, 因为DC CB ⊥,BM CB B ⋂=,故CD ⊥平面1A CB ,因为1AC ⊂平面1A CB ,故1CD A C ⊥,但1A D CD <,矛盾,故B 错. 当平面1A DE ⊥平面BCDE 时,四棱锥1A BCDE -体积最大值, 由前述证明可知1A F DE ⊥,而平面1A DE平面BCDE DE =,1A F ⊂平面1A DE ,故1A F ⊥平面BCDE ,因为1A DE △为等腰直角三角形,111A D A E ==,故122A F =,又四边形BCDE 的面积为13211122⨯-⨯⨯=, 故此时体积为13223224⨯⨯=,故D 正确. 对于C ,如图(2),取M 为1A C 的中点,取1A D 的中点为I ,连接,MI IE ,则1//,2IM CD IM CD =,而1//,2BE CD BE CD =, 故//,IM BE IM BE =即四边形IEBM 为平行四边形,故//IE BM ,因为IE ⊂平面1A DE ,BM ⊄平面1A DE ,故//MB 平面1A DE , 故C 正确. 故选:CD.【点睛】本题考查立体几何中的折叠问题,注意对于折叠后点线面的位置的判断,若命题的不成立,往往需要利用反证法来处理,本题属于难题.10.(多选题)在四面体P ABC -中,以上说法正确的有( )A .若1233AD AC AB =+,则可知3BC BD = B .若Q 为△ABC 的重心,则111333PQ PA PB PC =++C .若0PA BC =,0PC AB =,则0PB AC =D .若四面体P ABC -各棱长都为2,M N ,分别为,PA BC 的中点,则1MN = 【答案】ABC 【分析】作出四面体P ABC -直观图,在每个三角形中利用向量的线性运算可得. 【详解】对于A ,1233AD AC AB =+,32AD AC AB ∴=+,22AD AB AC AD ∴-=- , 2BD DC ∴=,3BD BD DC BC ∴=+=即3BD BC ∴=,故A 正确;对于B ,Q 为△ABC 的重心,则0QA QB QC ++=,33PQ QA QB QC PQ ∴+++=()()()3PQ QA PQ QB PQ QC PQ ∴+++++=,3PA PB PC PQ ∴++=即111333PQ PA PB PC ∴=++,故B 正确; 对于C ,若0PA BC =,0PC AB =,则0PA BC PC AB +=,()0PA BC PC AC CB ∴++=,0PA BC PC AC PC CB ∴++=0PA BC PC AC PC BC ∴+-=,()0PA PC BC PC AC ∴-+=0CA BC PC AC ∴+=,0AC CB PC AC ∴+= ()0AC PC CB ∴+=,0AC PB ∴=,故C 正确;对于D ,111()()222MN PN PM PB PC PA PB PC PA ∴=-=+-=+- 1122MN PB PC PA PA PB PC ∴=+-=-- 222222PA PB PC PA PB PC PA PB PA PC PC PB --=++--+22211122222222222222222=++-⨯⨯⨯-⨯⨯⨯+⨯⨯⨯=∴=,故D错误.MN2故选:ABC【点睛】用已知向量表示某一向量的三个关键点(1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键.(2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量.(3)在立体几何中三角形法则、平行四边形法则仍然成立.。
高中数学专项训练(平面向量提升版)(含答案)

高中数学专项训练(平面向量提升版)(含详细解答)1. 若向量a ⃗=(−2,0),b ⃗⃗=(2,1),c ⃗=(x,1)满足条件3a ⃗⃗+b⃗⃗与c ⃗⃗共线,则x 的值为( ) A. −2 B. −4 C. 2 D. 42. 正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC ⃗⃗⃗⃗⃗⃗=λAM ⃗⃗⃗⃗⃗⃗⃗+μBN ⃗⃗⃗⃗⃗⃗⃗,则λ+μ=( )A. 2B. 83C. 65D. 853. 如图,在平行四边形ABCD 中,M 、N 分别为AB 、AD上的点,且AM ⃗⃗⃗⃗⃗⃗⃗=45AB ⃗⃗⃗⃗⃗⃗,AN ⃗⃗⃗⃗⃗⃗⃗=23AD ⃗⃗⃗⃗⃗⃗,连接AC 、MN 交于P 点,若AP ⃗⃗⃗⃗⃗⃗=λAC ⃗⃗⃗⃗⃗⃗,则λ的值为( )A. 35B. 37C. 411D. 4134. 如图,已知△OAB ,若点C 满足,则1λ+1μ=( )A. 13B. 23C. 29D. 925. 已知平面向量a ⃗,b ⃗⃗是非零向量,|a ⃗|=2,a ⃗⊥(a ⃗+2b ⃗⃗),则向量b ⃗⃗在向量a⃗⃗方向上的投影为( ) A. 1 B. −1 C. 2 D. −26. 若向量a ⃗⃗=(1,0),b ⃗⃗=(2,1),c ⃗⃗=(x,1)满足条件3a ⃗⃗−b ⃗⃗与c ⃗⃗共线,则x 的值( ) A. 1 B. −3 C. −2 D. −17. 已知向量BA⃗⃗⃗⃗⃗⃗=(1,−3),向量BC ⃗⃗⃗⃗⃗⃗=(4,−2),则△ABC 的形状为( ) A. 等腰直角三角形 B. 等边三角形 C. 直角非等腰三角形 D. 等腰非直角三角形 8. 设D 为△ABC 所在平面内一点,AD ⃗⃗⃗⃗⃗⃗=−13AB ⃗⃗⃗⃗⃗⃗+43AC ⃗⃗⃗⃗⃗⃗,若BC ⃗⃗⃗⃗⃗⃗=λDC ⃗⃗⃗⃗⃗⃗(λ∈R),则λ=( ) A. 2 B. 3 C. -2 D. −39. 已知边长为2的正方形ABCD 中,E 为AD 中点,连BE ,则BE ⃗⃗⃗⃗⃗⃗⋅EA⃗⃗⃗⃗⃗⃗=( ) A. −2 B. −1 C. 1 D. 210. 已知单位向量a ⃗⃗,b ⃗⃗满足|a ⃗+3b ⃗⃗|=√13,则a ⃗⃗与b ⃗⃗的夹角为( )A. π6B. π4C. π3D. π211. 设向量a ⃗=(2,1),b ⃗⃗=(0,−2).则与a ⃗+2b⃗⃗垂直的向量可以是( ) A. (3,2) B. (3,−2) C. (4,6) D. (4,−6)A. 25B. −25 C. 35D. −3513. 已知向量m⃗⃗⃗⃗=(1,2),n ⃗⃗=(2,3),则m ⃗⃗⃗⃗在n ⃗⃗方向上的投影为( ) A. √13B. 8C. 8√55D. 8√131314. 已知平面向量a ⃗=(−2,x),b ⃗⃗=(1,√3),且(a ⃗⃗−b⃗⃗)⊥b ⃗⃗,则实数x 的值为( ) A. −2√3 B. 2√3 C. 4√3 D. 6√315. 已知向量a ⃗⃗,b ⃗⃗满足a ⃗⋅b ⃗⃗=1,|a ⃗⃗|=2,|b ⃗⃗|=3,则|a ⃗−b⃗⃗|=( ) A. √13 B. 6 C. √11 D. 516. 向量a ⃗⃗=(2,−1),b ⃗⃗=(−1,2),则(2a ⃗+b ⃗⃗)⋅a ⃗=( )A. 6B. 5C. 1D. −617. 已知向量a ⃗=(−√3,1),b⃗⃗=(√3,λ).若a ⃗⃗与b ⃗⃗共线,则实数λ=( ) A. −1 B. 1 C. −3 D. 318. 已知OA ⃗⃗⃗⃗⃗⃗=(cos15°,sin15°),OB ⃗⃗⃗⃗⃗⃗=(cos75°,sin75°),则|AB ⃗⃗⃗⃗⃗⃗|=( ) A. 2 B. √3 C. √2 D. 1 19. 已知向量a ⃗⃗,b ⃗⃗满足|a ⃗⃗|=1,|b ⃗⃗|=2√3,a ⃗⃗与b ⃗⃗的夹角的余弦值为sin17π3,则b ⃗⃗⋅(2a ⃗−b ⃗⃗)等于( ) A. 2 B. −1 C. −6 D. −1820. 已知向量a ⃗⃗,b ⃗⃗满足|a ⃗⃗|=1,|b ⃗⃗|=2,a ⃗⃗⋅b ⃗⃗=1,那么向量a ⃗⃗,b ⃗⃗的夹角为( )A. 30°B. 60°C. 120°D. 150°21. 已知向量a →,b →满足|a ⃗⃗|=1,|b ⃗⃗|=2,|a ⃗⃗−2b ⃗⃗|=√13,则a ⃗⃗与b ⃗⃗的夹角为______.22. 已知向量a ⃗=(cos θ,sin θ),b ⃗⃗=(√3,−1),则|2a ⃗−b ⇀|的最大值为________. 23. 已知a ⃗=(1,2sinθ),b ⃗⃗=(cosθ,−1),且a ⃗⃗⊥b ⃗⃗,则tanθ=______. 24. 设x ∈R ,向量a⃗⃗=(x,1),,且a ⃗⃗⊥b ⃗⃗,则______ .25. 已知向量a ⃗=(sinθ,1),b ⃗⃗=(−sinθ,0),c ⃗=(cosθ,−1),且(2a ⃗⃗−b ⃗⃗)//c ⃗⃗,则sin2θ等于______ . 26. 已知单位向量e 1⃗⃗⃗⃗,e 2⃗⃗⃗⃗的夹角为θ,且cosθ=14,若向量a ⃗=e 1⃗⃗⃗⃗+2e 2⃗⃗⃗⃗,则|a ⃗|=______. 27. 已知向量a ⃗⃗与b ⃗⃗的夹角为2π3,|a ⃗⃗|=√2,则a ⃗⃗在b ⃗⃗方向上的投影为______. 28. 设θ∈(0,π2),向量a ⃗=(cosθ,2),b ⃗⃗=(−1,sinθ),若a ⃗⃗⊥b ⃗⃗,则tanθ=______. 29. 在△ABC 中,已知∠ACB =90°,CA =3,CB =4,点E 是边AB 的中点,则CE⃗⃗⃗⃗⃗⃗⋅AB ⃗⃗⃗⃗⃗⃗= ______ .30. 平行四边形ABCD 中,M 为BC 的中点,若AB ⃗⃗⃗⃗⃗⃗=λAM ⃗⃗⃗⃗⃗⃗⃗+μDB ⃗⃗⃗⃗⃗⃗⃗,则λμ= ______ .31.已知a⃗=(√3sinx,cosx+sinx),b⃗⃗=(2cosx,sinx−cosx),f(x)=a⃗⋅b⃗⃗.(1)求函数f(x)的单调区间;(2)当x∈[5π24,5π12]时,对任意的t∈R,不等式mt2+mt+3≥f(x)恒成立,求实数m的取值范围.32.已知向量a⃗=(sinx,34),b⃗⃗=(cosx,−1).(1)当a⃗//b⃗⃗时,求cos2x−sin2x的值;(2)设函数f(x)=2(a⃗+b⃗⃗)⋅b⃗⃗,已知f(α2)=34,α∈(π2,π),求sinα的值.33.已知a⃗=(sinx,−cosx),b⃗⃗=(√3cosx,−cosx),f(x)=2a⃗⋅b⃗⃗.(1)求f(x)的解析式;(2)在△ABC中,a,b,c分别是内角A,B,C的对边,若f(A)=2,b=1,△ABC的面积为√32,求a的值.34.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos A2=2√55,AB⃗⃗⃗⃗⃗⃗⋅AC⃗⃗⃗⃗⃗⃗=3.(1)求△ABC的面积;(2)若b+c=6,求a的值.35.已知向量a⃗=(3,−1),|b⃗⃗|=√5,a⃗⋅b⃗⃗=−5,c⃗=xa⃗+(1−x)b⃗⃗.(Ⅰ)若a⃗⊥c⃗,求实数x的值;(Ⅱ)当|c⃗|取最小值时,求b⃗⃗与c⃗⃗的夹角的余弦值.答案和解析1.【答案】B【解析】【分析】本题考查了平面向量的坐标运算和平面向量共线的条件,属于基础题. 先利用平面向量运算法则求出3a ⃗⃗+b ⃗⃗,再由向量共线的条件能求出x . 【解答】解:∵向量a ⃗=(−2,0),b ⃗⃗=(2,1),c ⃗=(x,1),∴3a ⃗+b⃗⃗=(−6,0)+(2,1)=(−4,1), ∵3a ⃗⃗+b ⃗⃗与c⃗⃗共线, ∴x −1×(−4)=0,解得x =−4. 故选B . 2.【答案】D【解析】【分析】本题考查了平面向量的基本定理,坐标运算和几何应用,属于中档题. 建立平面直角坐标系,使用坐标进行计算,列方程组解出λ,μ. 【解答】解:以AB ,AD 为坐标轴建立平面直角坐标系,如图:设正方形边长为1,则A(0,0),B(1,0),C(1,1),M(1,12),N(12,1),所以AM ⃗⃗⃗⃗⃗⃗⃗=(1,12), BN⃗⃗⃗⃗⃗⃗⃗=(−12,1),AC ⃗⃗⃗⃗⃗⃗=(1,1). ∵AC⃗⃗⃗⃗⃗⃗=λAM ⃗⃗⃗⃗⃗⃗⃗+μBN ⃗⃗⃗⃗⃗⃗⃗, ∴{λ−12μ=112λ+μ=1,解得{λ=65μ=25.∴λ+μ=85,故选D . 3.【答案】C【解析】【分析】本题考查了平面向量的线性运算,共线定理,及三点共线的充要条件,属于中档题. 根据向量加减的运算法则和向量共线的充要条件及三点共线的充要条件即可求出答案.解:∵AM ⃗⃗⃗⃗⃗⃗⃗=45AB ⃗⃗⃗⃗⃗⃗,AN ⃗⃗⃗⃗⃗⃗⃗=23AD ⃗⃗⃗⃗⃗⃗, ∴AP ⃗⃗⃗⃗⃗⃗=λAC ⃗⃗⃗⃗⃗⃗=λ(AB ⃗⃗⃗⃗⃗⃗+AD ⃗⃗⃗⃗⃗⃗)=λ(54AM ⃗⃗⃗⃗⃗⃗⃗+32AN⃗⃗⃗⃗⃗⃗⃗) =54λAM ⃗⃗⃗⃗⃗⃗⃗+32λAN ⃗⃗⃗⃗⃗⃗⃗, ∵M 、N 、P 三点共线. ∴54λ+32λ=1, ∴λ=411,故选C . 4.【答案】D【解析】【分析】本题考查向量的运算以及平面向量基本定理,属于基础题.根据向量的三角形法则和向量的数乘运算用向量OA ⃗⃗⃗⃗⃗⃗、OB ⃗⃗⃗⃗⃗⃗⃗表示出向量OC ⃗⃗⃗⃗⃗⃗,从而求出λ=13,μ=23,再代值计算即可.【解答】解:∵OC⃗⃗⃗⃗⃗⃗=OA ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗=OA ⃗⃗⃗⃗⃗⃗+23AB ⃗⃗⃗⃗⃗⃗ =OA⃗⃗⃗⃗⃗⃗+23(OB ⃗⃗⃗⃗⃗⃗−OA ⃗⃗⃗⃗⃗⃗) =13OA ⃗⃗⃗⃗⃗⃗+23OB ⃗⃗⃗⃗⃗⃗, ∴λ=13,μ=23, ∴1λ+1μ=3+32=92.故选D . 5.【答案】B【解析】【分析】本题主要考查向量投影的定义及求解的方法,属基础题.先根据向量垂直,得到a ⃗⋅b⃗⃗=−2,再根据投影公式即可求出. 【解答】解:∵平面向量a ⃗⃗,b ⃗⃗是非零向量,|a ⃗⃗|=2,a ⃗⊥(a ⃗+2b⃗⃗), ∴a ⃗⃗⋅(a ⃗⃗+2b ⃗⃗)=0,即a ⃗2+2a ⃗⋅b ⃗⃗=0,即a ⃗⋅b ⃗⃗=−2, ∴向量b ⃗⃗在向量a ⃗⃗方向上的投影为a⃗⃗·b ⃗⃗|a ⃗⃗|=−22=−1.故选B .【解析】【分析】本题考查了平面向量的坐标表示与共线定理的应用问题,是基础题目. 根据平面向量的坐标运算与共线定理,列出方程即可求出x 的值. 【解答】解:∵向量a⃗=(1,0),b ⃗⃗=(2,1),c ⃗=(x,1), ∴3a ⃗−b ⃗⃗=(1,−1), 又3a ⃗−b⃗⃗与c ⃗⃗共线, ∴x ×(−1)−1×1=0, 解得x =−1. 故选D . 7.【答案】A【解析】【分析】本题考查平面向量的数量积运算,考查向量垂直与数量积的关系,属基础题.由已知向量的坐标求得AC ⃗⃗⃗⃗⃗⃗的坐标,可得|BA ⃗⃗⃗⃗⃗⃗|=|AC ⃗⃗⃗⃗⃗⃗|,结合BA ⃗⃗⃗⃗⃗⃗⋅AC⃗⃗⃗⃗⃗⃗=0得答案. 【解答】 解:∵BA ⃗⃗⃗⃗⃗⃗=(1,−3),BC ⃗⃗⃗⃗⃗⃗=(4,−2), ∴AC ⃗⃗⃗⃗⃗⃗=BC ⃗⃗⃗⃗⃗⃗−BA ⃗⃗⃗⃗⃗⃗=(3,1), ∴|BA⃗⃗⃗⃗⃗⃗|=|AC ⃗⃗⃗⃗⃗⃗|=√10. 又BA ⃗⃗⃗⃗⃗⃗⋅AC⃗⃗⃗⃗⃗⃗=1×3−3×1=0. ∴△ABC 的形状为等腰直角三角形. 故选A . 8.【答案】D【解析】【分析】本题考查了向量共线定理、平面向量基本定理,考查了推理能力与计算能力,属于中档题.若BC ⃗⃗⃗⃗⃗⃗=λDC ⃗⃗⃗⃗⃗⃗(λ∈R),可得AC ⃗⃗⃗⃗⃗⃗−AB ⃗⃗⃗⃗⃗⃗=λAC ⃗⃗⃗⃗⃗⃗−λAD ⃗⃗⃗⃗⃗⃗,化简与AD ⃗⃗⃗⃗⃗⃗=−13AB ⃗⃗⃗⃗⃗⃗+43AC ⃗⃗⃗⃗⃗⃗比较,即可得出.【解答】解:若BC⃗⃗⃗⃗⃗⃗=λDC ⃗⃗⃗⃗⃗⃗(λ∈R),∴AC ⃗⃗⃗⃗⃗⃗−AB ⃗⃗⃗⃗⃗⃗=λAC ⃗⃗⃗⃗⃗⃗−λAD ⃗⃗⃗⃗⃗⃗, 化为:AD ⃗⃗⃗⃗⃗⃗=1λAB ⃗⃗⃗⃗⃗⃗+λ−1λAC ⃗⃗⃗⃗⃗⃗, 与AD ⃗⃗⃗⃗⃗⃗=−13AB ⃗⃗⃗⃗⃗⃗+43AC ⃗⃗⃗⃗⃗⃗比较,可得:1λ=−13,λ−1λ=43,解得λ=−3. 则λ=−3.故选D . 9.【答案】B【解析】【分析】考查向量加法的几何意义,相反向量的概念,以及数量积的运算及计算公式.可画出图形,据图可得出BE ⃗⃗⃗⃗⃗⃗=BA ⃗⃗⃗⃗⃗⃗−EA ⃗⃗⃗⃗⃗⃗,从而便得到BE ⃗⃗⃗⃗⃗⃗⋅EA ⃗⃗⃗⃗⃗⃗=(BA ⃗⃗⃗⃗⃗⃗−EA ⃗⃗⃗⃗⃗⃗)⋅EA⃗⃗⃗⃗⃗⃗,这样进行数量积的运算即可. 【解答】 解:如图,BE ⃗⃗⃗⃗⃗⃗=BA ⃗⃗⃗⃗⃗⃗+AE ⃗⃗⃗⃗⃗⃗=BA ⃗⃗⃗⃗⃗⃗−EA⃗⃗⃗⃗⃗⃗; ∴BE ⃗⃗⃗⃗⃗⃗⋅EA ⃗⃗⃗⃗⃗⃗=(BA ⃗⃗⃗⃗⃗⃗−EA ⃗⃗⃗⃗⃗⃗)⋅EA⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗⃗⋅EA ⃗⃗⃗⃗⃗⃗−EA ⃗⃗⃗⃗⃗⃗2=0−1=−1.故选B .10.【答案】C【解析】【分析】本题考查平面向量的模和夹角,属于基础题.可知|a ⃗⃗|=|b ⃗⃗|=1,这样对|a ⃗⃗+3b ⃗⃗|=√13两边平方即可求出a ⃗⃗⋅b ⃗⃗的值,进而求出cos <a ⃗⃗,b⃗⃗>的值,从而得出a ⃗⃗与b ⃗⃗的夹角. 【解答】 解:(a ⃗⃗+3b ⃗⃗)2=a ⃗2+6a ⃗⋅b ⃗⃗+9b ⃗⃗2 =1+6a ⃗⋅b ⃗⃗+9 =13, ∴a ⃗·b⃗⃗=12, ,∴a ⃗⃗,b ⃗⃗的夹角为π3. 故选C .11.【答案】A【解析】解:∵向量a⃗=(2,1),b ⃗⃗=(0,−2). ∴a ⃗+2b⃗⃗=(2,−3), ∵(2,−3)⋅(3,2)=6−6=0,∴与a ⃗+2b⃗⃗垂直的向量可以是(3,2). 故选:A .求出a ⃗+2b ⃗⃗=(2,−3),由此利用向量垂直的性质能求出与a ⃗+2b⃗⃗垂直的向量的可能结果. 本题考查向量的坐标运算、向量垂直等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是基础题. 12.【答案】B【解析】【分析】本题考查了向量共线定理,考查了推理能力与计算能力,属于基础题.解:a⃗+λb⃗⃗=(2−λ,4+λ),∵a⃗+λb⃗⃗与c⃗⃗共线,∴3(2−λ)−2(4+λ)=0,解得λ=−25.故选B.13.【答案】D【解析】【分析】本题主要考查了向量的投影的定义,属于基础题.m⃗⃗⃗⃗在n⃗⃗方向上的投影为m⃗⃗⃗⃗⋅n⃗⃗⃗|n⃗⃗⃗|,代值计算即可.【解答】解:m⃗⃗⃗⃗=(1,2),n⃗⃗=(2,3),则m⃗⃗⃗⋅n⃗⃗=1×2+2×3=8,|n⃗⃗|=√22+32=√13,则m⃗⃗⃗⃗在n⃗⃗方向上的投影为m⃗⃗⃗⃗⋅n⃗⃗|n⃗⃗|=√13=8√1313.故选D.14.【答案】B【解析】【分析】本题考查向量数量积的坐标计算,关键是掌握向量数量积的坐标计算公式,属于基础题.根据题意,由向量坐标计算公式可得a⃗−b⃗⃗的坐标,由向量垂直与向量数量积的关系,分析可得(a⃗−b⃗⃗)·b⃗⃗=(−3)×1+(x−√3)×√3=0,解可得x的值,即可得答案.【解答】解:根据题意,向量a⃗=(−2,x),b⃗⃗=(1,√3),则a⃗−b⃗⃗=(−3,x−√3),又由(a⃗⃗−b⃗⃗)⊥b⃗⃗,则(a⃗−b⃗⃗)·b⃗⃗=(−3)×1+(x−√3)×√3=0,解可得x=2√3.故选B.15.【答案】C【解析】【分析】本题考查了平面向量数量积与模长公式的应用问题,是基础题.根据平面向量数量积的定义与模长公式,求模长|a⃗−b⃗⃗|即可.【解答】解:向量a⃗⃗,b⃗⃗满足a⃗⋅b⃗⃗=1,|a⃗⃗|=2,|b⃗⃗|=3,∴(a⃗−b⃗⃗)2=a⃗2−2a⃗⋅b⃗⃗+b⃗⃗2=22−2×1+32=11,∴|a⃗−b⃗⃗|=√11.故选C.16.【答案】A【解析】【分析】本题考查向量的数量积的运算,属于基础题.解:向量a⃗⃗=(2,−1),b ⃗⃗=(−1,2), 2a ⃗+b⃗⃗=(3,0), 则(2a ⃗+b ⃗⃗)⋅a ⃗=6, 故选A .17.【答案】A【解析】解:∵a ⃗⃗//b ⃗⃗,∴−√3λ−√3=0,解得λ=−1. 故答案为A .利用向量共线定理即可得出−√3λ−√3=0,解出即可. 熟练掌握向量共线定理是解题的关键. 18.【答案】D【解析】【分析】本题考查平面向量坐标减法运算,考查向量模的求法,是基础题. 由已知向量的坐标求得AB ⃗⃗⃗⃗⃗⃗的坐标,代入向量模的计算公式求解. 【解答】解:∵OA ⃗⃗⃗⃗⃗⃗=(cos15°,sin15°),OB ⃗⃗⃗⃗⃗⃗=(cos75°,sin75°), ∴AB ⃗⃗⃗⃗⃗⃗=OB ⃗⃗⃗⃗⃗⃗−OA ⃗⃗⃗⃗⃗⃗=(cos75°−cos15°,sin75°−sin15°), 则.故选D .19.【答案】D【解析】【分析】本题主要考查诱导公式的应用,两个向量的数量积的定义,求向量的模的方法,由题意利用两个向量的数量积的定义求得a ⃗⃗⋅b ⃗⃗ 的值,可得b ⃗⃗(2a ⃗−b⃗⃗)的值.属于基础题. 【解答】解:∵向量a⃗⃗,b ⃗⃗满足|a ⃗⃗|=1,|b ⃗⃗|=2√3, a ⃗⃗与b ⃗⃗的夹角的余弦值为sin 17π3=sin (−π3)=−√32,∴a ⃗⋅b ⃗⃗=1×2√3×(−√32)=−3, ∴b ⃗⃗⋅(2a ⃗−b ⃗⃗)=2a ⃗⋅b ⃗⃗−b ⃗⃗2=2⋅(−3)−12=−18, 故选D .20.【答案】B【解析】【分析】本题考查向量数量积的计算公式,关键是掌握向量夹角的计算公式. 【解答】解:根据题意,设向量a ⃗⃗,b ⃗⃗的夹角为θ,又由|a ⃗⃗|=1,|b ⃗⃗|=2,a ⃗⃗⋅b ⃗⃗=1,又由0°≤θ≤180°,则θ=60°;故选B.21.【答案】60°【解析】【分析】本题主要考查用两个向量的数量积表示两个向量的夹角,两个向量的数量积的定义,属于基础题.将|a⃗⃗−2b⃗⃗|=√13的等号两边平方,带入|a⃗⃗|=1,|b⃗⃗|=2,解出a⃗⃗与b⃗⃗的夹角的余弦值,从而得到夹角.【解答】解:设a⃗⃗与b⃗⃗的夹角为θ,∵|a⃗|=1,|b⃗⃗|=2,|a⃗⃗−2b⃗⃗|=√13,∴a⃗2−4a⃗⋅b⃗⃗+4b⃗⃗2=13,即1−4×1×2⋅cosθ+4×4=13,∴cosθ=1,∴θ=60°,2故答案为60°.22.【答案】4【解析】【分析】本题主要考查向量的线性运算和模的运算以及三角函数公式的应用,三角函数与向量的综合题是高考考查的重点,要强化复习.先根据向量的线性运算得到2a⃗−b⃗⃗的表达式,再由向量模的求法表示出|2a⃗−b⇀|,再结合正弦和余弦函数的公式进行化简,最后根据正弦函数的最值可得到答案.【解答】解:∵2a⃗−b⇀=(2cosθ−√3,2sinθ+1),)≤4.∴|2a⃗−b⃗⃗|=√(2cosθ−√3)2+(2sinθ+1)2=√8+8sin(θ−π3∴|2a⃗−b⃗⃗|的最大值为4.故答案为:4.23.【答案】12【解析】【分析】本题考查三角函数值的求解,涉及向量的垂直和数量积的关系,属于基础题.由题意可得1×cosθ+2sinθ×(−1)=0,化简后,由同角三角函数的关系可得答案.【解答】解:由题意可知:a⃗=(1,2sinθ),b⃗⃗=(cosθ,−1),∵a⃗⃗⊥b⃗⃗,∴1×cosθ+2sinθ×(−1)=0,化简得cosθ=2sinθ,故tanθ=sinθcosθ=12,故答案为12.24.【答案】5【解析】【分析】本题考查向量的坐标运算,向量垂直的坐标表示,向量的模,属于基础题.根据题意,由a⃗⊥b⃗⃗可得a⃗⋅b⃗⃗=0,解可得x的值,即可得a⃗⃗的坐标,由向量的坐标计算公式可得a⃗+2b⃗⃗的坐标,由向量模的公式计算可得答案.【解答】解:根据题意,向量a⃗⃗=(x,1),b⃗⃗=(1,−2),因为a⃗⊥b⃗⃗,则有a⃗·b⃗⃗=x−2=0,解得x=2,故a⃗=(2,1),又由b⃗⃗=(1,−2),则a⃗+2b⃗⃗=(4,−3),则,故答案为:5.25.【答案】−1213【解析】【分析】本题考查三角函数的化简求值,关键是利用向量平行的坐标表示方法求出关于三角函数式.根据题意,由向量的坐标运算可得求出2a⃗−b⃗⃗=(3sinθ,2),进而由向量平行的坐标表示方法可得有3sinθ×(−1)=2cosθ,化简可得,tanθ=−23,进而由二倍角公式变形分析可得sin2θ=2sinθcosθ=2sinθcosθsin2θ+cos2θ=2tanθtan2θ+1,代入tanθ的值计算即可得答案.【解答】解:根据题意,a⃗=(sinθ,1),b⃗⃗=(−sinθ,0),c⃗=(cosθ,−1),则2a⃗−b⃗⃗=(3sinθ,2),又由(2a⃗−b⃗⃗)//c⃗,则有3sinθ×(−1)=2cosθ,即−3sinθ=2cosθ,化简可得,tanθ=−23,sin2θ=2sinθcosθ=2sinθcosθsin2θ+cos2θ=2tanθtan2θ+1=2×(−23)(−23)2+1=−1213,即sin2θ=−1213;故答案为−1213.26.【答案】√6【解析】【分析】利用题意首先求得e1⃗⃗⃗⃗⋅e2⃗⃗⃗⃗的值,然后结合平面向量模的计算公式整理计算即可求得最终结果.本题考查平面向量数量积的定义,平面向量模的计算等,重点考查学生对基础概念的理解和计算能力,属于基础题.【解答】解:由题意可得:e1⃗⃗⃗⃗⋅e2⃗⃗⃗⃗=1×1×14=14,则:|a⃗⃗|=√(e1⃗⃗⃗⃗+2e2⃗⃗⃗⃗)2=√e1⃗⃗⃗⃗2+4e1⃗⃗⃗⃗⋅e2⃗⃗⃗⃗+4e2⃗⃗⃗⃗2=√1+4×14+4×1=√6.故答案为√6.27.【答案】−√22【解析】解:根据条件,a⃗⃗在b⃗⃗方向上的投影为:|a⃗⃗|cos<a⃗⃗,b⃗⃗>=√2cos2π3=−√22.故答案为:−√22.由条件,可得出a⃗⃗在b⃗⃗方向上的投影为|a⃗⃗|cos2π3,从而求出投影的值.考查向量夹角的概念,向量投影的概念及计算公式.28.【答案】12【解析】【分析】本题考查了平面向量的坐标运算,也考查了同角的三角函数关系应用问题,是基础题.根据两向量垂直时的坐标运算,将向量a⃗=(cosθ,2),b⃗⃗=(−1,sinθ)代入,列方程即可求出tanθ的值.【解答】解:设θ∈(0,π2),向量a⃗=(cosθ,2),b⃗⃗=(−1,sinθ),若a⃗⃗⊥b⃗⃗,则a⃗·b⃗⃗=0,∴(cosθ,2)·(−1,sinθ)=−cosθ+2sinθ=0,,∴sinθcosθ=12,∵tanθ=sinθcosθ,∴tanθ=12,故答案为12.29.【答案】72【解析】【分析】本题考查平面向量的运算及平面向量的数量积,属于基础题.根据向量的运算法则进行计算即可.【解答】 解:如图:CE ⃗⃗⃗⃗⃗⃗⋅AB ⃗⃗⃗⃗⃗⃗=12(CA ⃗⃗⃗⃗⃗⃗+CB ⃗⃗⃗⃗⃗⃗)⋅(CB ⃗⃗⃗⃗⃗⃗−CA⃗⃗⃗⃗⃗⃗) =12(CB ⃗⃗⃗⃗⃗⃗2−CA ⃗⃗⃗⃗⃗⃗2)=12×(16−9)=72. 故答案为72.30.【答案】29【解析】解:AM ⃗⃗⃗⃗⃗⃗⃗=AB ⃗⃗⃗⃗⃗⃗+BM ⃗⃗⃗⃗⃗⃗⃗=AB ⃗⃗⃗⃗⃗⃗+12BC ⃗⃗⃗⃗⃗⃗,DB ⃗⃗⃗⃗⃗⃗⃗=DA ⃗⃗⃗⃗⃗⃗+AB ⃗⃗⃗⃗⃗⃗=−BC ⃗⃗⃗⃗⃗⃗+AB ⃗⃗⃗⃗⃗⃗, ∴AB ⃗⃗⃗⃗⃗⃗=λAM ⃗⃗⃗⃗⃗⃗⃗+μDB ⃗⃗⃗⃗⃗⃗⃗=λ(AB ⃗⃗⃗⃗⃗⃗+12BC ⃗⃗⃗⃗⃗⃗)+μ(−BC ⃗⃗⃗⃗⃗⃗+AB ⃗⃗⃗⃗⃗⃗)=(λ+μ)AB ⃗⃗⃗⃗⃗⃗+(λ2−μ)BC ⃗⃗⃗⃗⃗⃗, ∴{λ+μ=112λ−μ=0,解得λ=23,μ=13, ∴λμ=29, 故答案为:29根据向量的三角形法则和平行四边形法则计算即可.本题考查了向量的三角形法则和平行四边形法则,属于基础题.31.【答案】解:(1)∵a ⃗=(√3sin x,cos x +sin x),b ⃗⃗=(2cos x,sin x −cos x),f(x)=a⃗⋅b ⃗⃗, ∴f(x)=2√3sinxcosx +(cosx +sinx)(sinx −cosx) =√3sin2x −cos2x =2sin(2x −π6),令2kπ−π2≤2x −π6≤2kπ+π2(k ∈Z), 解得:−π6+kπ≤x ≤π3+kπ,所以,函数f(x)的单调递增区间为:[−π6+kπ,π3+kπ](k ∈Z), 单调递减区间为[π3+kπ,5π6+kπ](k ∈Z).(2)当x ∈[5π24,5π12]时,π4≤2x −π6≤2π3,∴√2≤f(x)≤2,不等式mt 2+mt +3≥f(x)当x ∈[5π24,5π12]时恒成立, 必须且只需mt 2+mt +3≥f(x)max 成立即可, 即mt 2+mt +1≥0对任意的t ∈R ,即可, ①当m =0时,恒成立②当m ≠0时,只需满足{m >0Δ≤0, 解得:0<m ≤4, 综合所得:0≤m ≤4.【解析】本题考查的知识要点:三角函数关系式的恒等变换,向量的坐标运算,正弦型函数的单调区间,恒成立问题的应用.属于中档题.(1)首先根据向量的坐标运算求出函数的解析式,进一步变函数为正弦型函数,最后求出单调区间.(2)根据函数的定义域求出函数的值域,进一步利用恒成立问题,利用分类讨论的思想求出m 的取值范围.32.【答案】解:(1)因为a ⃗//b ⃗⃗, 所以34cos x +sin x =0, 所以tan x =−34. 故cos 2x −sin2x =cos 2x−2sinxcosx sin 2x+cos 2x=1−2tanx1+tan 2x=1−2×(−34)1+(−34)2=85.(2)f(x)=2(a ⃗+b ⃗⃗)⋅b ⃗⃗ =2sinxcosx −32+2(cos 2x +1)=sin2x +cos2x +32=√2sin (2x +π4)+32,因为f(α2)=34,所以f(α2)=√2sin (α+π4)+32=34, 即sin (α+π4)=−3√28, 因为α∈(π2,π), 所以3π4<α+π4<5π4,故cos (α+π4)=−√1−(3√28)2=−√468, 所以sinα=sin [(α+π4)−π4]=√22[sin (α+π4)−cos (α+π4)] =√22×(−3√28+√468) =−3+√238.【解析】本题主要考查向量数量积的应用以及向量共线的坐标公式,以及向量和三角函数的综合应用,根据向量数量积的关系求出函数,结合三角函数的性质是解决本题的关键.属于中档题.(1)根据向量关系的坐标关系进行转化,结合三角函数的性质进行求解即可.(2)根据向量数量积的公式求出函数f(x)的解析式,结合三角函数的公式进行化简求解.33.【答案】解:(1)f(x)=2√3sinxcosx +2cos 2x=√3sin2x +cos2x +1=2sin(2x +π6)+1;(2)∵f(A)=2sin(2A +π6)+1=2,∴sin (2A +π6)=12, ∵A ∈(0,π),∴2A +π6∈(π6,13π6),∴2A +π6=5π6,∴A =π3. ∴S △ABC =12bcsinA =12×1×c ×√32=√32, ∴c =2,由余弦定理可得,a 2=b 2+c 2−2bccosA =3, ∴a =√3.【解析】本题考查平面向量的数量积及三角函数恒等变换,余弦定理解三角形及面积公式的应用,属于中档题.(1)根据平面向量的数量积公式和三角恒等变换化简即可;(2)根据f(A)=2计算A ,根据面积计算c ,再利用余弦定理求出a .34.【答案】解:(1)因为cos A 2=2√55, 所以cosA =2cos 2A 2−1=35,sinA =45. 又由AB ⃗⃗⃗⃗⃗⃗⋅AC ⃗⃗⃗⃗⃗⃗=3得bccosA =3,所以bc =5 因此S △ABC =12bcsinA =2. (2)由(1)知,bc =5,又b +c =6,由余弦定理,得a 2=b 2+c 2−2bccosA =(b +c)2−165bc =20,所以a =2√5【解析】本题考查向量的数量积是应用,余弦定理的应用,同角三角函数基本关系式的应用,考查计算能力.(1)利用二倍角公式求出余弦函数值,利用同角三角函数基本关系式求出正弦函数值,利用向量的数量积求出bc ,然后求解三角形的面积. (2)利用余弦定理以及(1)的结果,代入求解即可.35.【答案】解:(Ⅰ)设b⃗⃗=(m,n), ∴{m 2+n 2=53m −n =−5, 解得{m =−1n =2或{m =−2n =−1,当b⃗⃗=(−1,2)时, ∴c ⃗=x(3,−1)+(1−x)(−1,2)=(4x −1,2−3x), ∵a ⃗⊥c ⃗,∴3(4x −1)−(2−3x)=0, 解得x =13,当b ⃗⃗=(−2,−1)时, ∴c ⃗=x(3,−1)+(1−x)(−2,−1)=(5x −2,−1), ∵a ⃗⊥c ⃗,∴3(5x −2)+1=0, 解得x =13,(Ⅱ)设b ⃗⃗与c⃗⃗的夹角θ 由(Ⅰ)可知,当b⃗⃗=(−1,2)时,c ⃗=(4x −1,2−3x), 则|c⃗|2=(4x −1)2+(2−3x)2=25x 2−20x +5=25(x −25)2+1, 当x =25时,|c⃗|取最小值,则|c ⃗|=1,c ⃗=(35,45), ∴b ⃗⃗⋅c ⃗=−35+85=1,|b⃗⃗|=√5 ∴cosθ=b⃗⃗⋅c ⃗|b⃗⃗|⋅|c ⃗|=√55当b⃗⃗=(−2,−1)时,c ⃗=(5x −2,−1), 则|c ⃗|2=(5x −2)2+(−1)2=25(x −25)2+1, 当x =25时,|c ⃗|取最小值,则|c ⃗|=1,c ⃗=(0,−1), ∴b ⃗⃗⋅c ⃗=1,|b⃗⃗|=√5 ∴cosθ=b ⃗⃗⋅c ⃗|b ⃗⃗|⋅|c ⃗|=√55【解析】(Ⅰ)根据向量的数量积和向量的模,先求出b ⃗⃗,再根据向量的垂直即可求出x的值,(Ⅱ)根据二次函数的性质即可求出x 的值,再根据向量的夹角公式即可求出.本题考查了向量的数量积的运算和向量的垂直以及二次函数的性质,属于中档题.。
数学提高题专题复习平面向量多选题练习题及答案

数学提高题专题复习平面向量多选题练习题及答案一、平面向量多选题1.Rt △ABC 中,∠ABC =90°,AB =BC =1,0PA PB PC PAPBPC++=,以下正确的是( ) A .∠APB =120° B .∠BPC =120° C .2BP =PC D .AP =2PC【答案】ABCD 【分析】根据条件作几何图形,由向量的关系可得P ,G ,Q 三点共线且PQ =1,故△PMQ 和△PNQ 均为等边三角形,∠APB =∠BPC =∠APC =120°,进而可确定P 为Rt △ABC 的费马点,利用相似可确定BP 、 AP 、 PC 之间的数量关系. 【详解】在直线PA ,PB ,PC 上分别取点M ,N ,G ,使得|PM |=|PN |=|PG |=1, 以PM ,PN 为邻边作平行四边形PMQN ,则PM PN PQ +=, ∵0PA PB PC PAPBPC++=,即0PM PN PG ++=,即0PQ PG +=,∴P ,G ,Q 三点共线且PQ =1,故△PMQ 和△PNQ 均为等边三角形, ∴∠APB =∠BPC =∠APC =120°,故A 、B 正确; ∵AB =BC =1,∠ABC =90°, ∴AC =2,∠ACB =60°,在△ABC 外部分别以BC 、AC 为边作等边△BCE 和等边△ACD ,直线CP 绕C 旋转60°交PD 于P’,∴120CE CB ECA BCD CA CD =⎧⎪∠=∠=︒⎨⎪=⎩,即ECA BCD ≅,故EAC BDC ∠=∠, EAC BDC CA CDPCA P CD ∠=∠⎧⎪=⎨⎪'∠=∠⎩,即CPA CP D '≅,故CP CP '=, ∴CPP '为等边三角形,120CP D CPA '∠=∠=︒,则B ,P ,D 三点共线,同理有A ,P ,E 三点共线, ∴△BPC ∽△BCD ,即12BP BC CP CD ==,即PC =2BP ,故C 正确, 同理:△APC ∽△ACB ,即AP ACCP BC==2,即AP =2PC ,故D 正确. 故选:ABCD.【点睛】关键点点睛:根据已知条件及向量的数量关系确定P为Rt△ABC的费马点,结合相似三角形及费马点的性质判断各项的正误.2.如图,A、B分别是射线OM、ON上的点,下列以O为起点的向量中,终点落在阴影区域内的向量是()A.2OA OB+B.1123 OA OB+C.3143OA OB+D.3145OA OB+【答案】AC【分析】利用向量共线的条件可得:当点P在直线AB上时,等价于存在唯一的一对有序实数u,v,使得OP uOA vOB=+成立,且u+v=1.可以证明点P位于阴影区域内等价于:OP uOA vOB=+,且u>0,v>0,u+v>1.据此即可判断出答案.【详解】由向量共线的条件可得:当点P在直线AB上时,存在唯一的一对有序实数u,v,使得OP uOA vOB=+成立,且u+v=1.可以证明点P位于阴影区域内等价于:OP uOA vOB=+,且u>0,v>0,u+v>1.证明如下:如图所示,点P 是阴影区域内的任意一点,过点P 作PE //ON ,PF //OM ,分别交OM ,ON 于点E ,F ;PE 交AB 于点P ′,过点P ′作P ′F ′//OM 交ON 于点F ′,则存在唯一一对实数(x ,y ),(u ′,v ′),使得OP xOE yOF u OA v OB ''''=+=+,且u ′+v ′=1,u ′,v ′唯一;同理存在唯一一对实数x ′,y ′使得OP x OE y OF uOA vOB =+=+'', 而x ′=x ,y ′>y ,∴u =u ′,v >v ′,∴u +v >u ′+v ′=1,对于A ,∵1+2>1,根据以上结论,∴点P 位于阴影区域内,故A 正确; 对于B ,因为11123+<,所以点P 不位于阴影区域内,故B 不正确; 对于C ,因为311314312+=>,所以点P 位于阴影区域内,故C 正确; 对于D ,因为311914520+=<,所以点P 不位于阴影区域内,故D 不正确; 故选:AC. 【点睛】关键点点睛:利用结论:①点P 在直线AB 上等价于存在唯一的一对有序实数u ,v ,使得OP uOA vOB =+成立,且u +v =1;②点P 位于阴影区域内等价于OP uOA vOB =+,且u >0,v >0,u +v >1求解是解题的关键.3.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O 、G 、H 分别是ABC 的外心、重心、垂心,且M 为BC 的中点,则( )A .0GA GB GC ++= B .24AB AC HM MO +=- C .3AH OM =D .OA OB OC ==【答案】ABD 【分析】向量的线性运算结果仍为向量可判断选项A ;由12GO HG =可得23HG HO =,利用向量的线性运算()266AB AC AM GM HM HG +===-,再结合HO HM MO =+集合判断选项B ;利用222AH AG HG GM GO OM =-=-=故选项C 不正确,利用外心的性质可判断选项D ,即可得正确选项. 【详解】因为G 是ABC 的重心,O 是ABC 的外心,H 是ABC 的垂心, 且重心到外心的距离是重心到垂心距离的一半,所以12GO HG =, 对于选项A :因为G 是ABC 的重心,M 为BC 的中点,所以2AG GM =, 又因为2GB GC GM +=,所以GB GC AG +=,即0GA GB GC ++=,故选项A 正确;对于选项B :因为G 是ABC 的重心,M 为BC 的中点,所以2AG GM =,3AM GM =,因为12GO HG =,所以23HG HO =, ()226663AB AC AM GM HM HG HM HO ⎛⎫+===-=- ⎪⎝⎭()646424HM HO HM HM MO HM MO =-=-+=-,即24AB AC HM MO +=-,故选项B 正确;对于选项C :222AH AG HG GM GO OM =-=-=,故选项C 不正确; 对于选项D :设点O 是ABC 的外心,所以点O 到三个顶点距离相等,即OA OB OC ==,故选项D 正确;故选:ABD. 【点睛】关键点点睛:本题解题的关键是利用已知条件12GO HG =得23HG HO =,利用向量的线性运算结合2AG GM =可得出向量间的关系.4.已知ABC 是边长为2的等边三角形,D 是边AC 上的点,且2AD DC =,E 是AB 的中点,BD 与CE 交于点O ,那么( )A .0OE OC +=B .1AB CE ⋅=-C .32OA OB OC ++= D .132DE =【答案】AC 【分析】建立平面直角坐标系,结合线段位置关系以及坐标形式下模长的计算公式逐项分析. 【详解】建立平面直角坐标系如下图所示:取BD 中点M ,连接ME ,因为,M E 为,BD BA 中点,所以1//,2ME AD ME AD =,又因为12CD AD =, 所以//,ME CD ME CD =,所以易知EOM COD ≅,所以O 为CE 中点, A .因为O 为CE 中点,所以0OE OC +=成立,故正确; B .因为E 为AB 中点,所以AB CE ,所以0AB CE ⋅=,故错误;C .因为()()(30,,1,0,1,0,32O A B C ⎛- ⎝⎭,所以33331,1,0,OA OB OC ⎛⎛⎛⎛++=+-+= ⎝⎭⎝⎭⎝⎭⎝⎭,所以3OA OB OC ++= D .因为()123,,0,033D E ⎛⎫ ⎪ ⎪⎝⎭,所以123,33DE ⎛⎫=-- ⎪ ⎪⎝⎭,所以133DE =,故错误, 故选:AC. 【点睛】关键点点睛:对于规则的平面图形(如正三角形、矩形、菱形等)中的平面向量的数量积和模长问题,采用坐标法计算有时会更加方便.5.如图所示,设Ox ,Oy 是平面内相交成2πθθ⎛⎫≠⎪⎝⎭角的两条数轴,1e ,2e 分别是与x ,y 轴正方向同向的单位向量,则称平面坐标系xOy 为θ反射坐标系中,若12OM xe ye =+,则把有序数对(),x y 叫做向量OM 的反射坐标,记为(),OM x y =.在23πθ=的反射坐标系中,()1,2a =,()2,1b =-.则下列结论中,正确的是( )A .()1,3a b -=-B .5a =C .a b ⊥D .a 在b 上的投影为3714-【答案】AD 【分析】123a b e e -=-+,则()1,3a b -=-,故A 正确;3a =,故B 错误;32a b ⋅=-,故C 错误;由于a 在b 上的投影为3372147a b b-⋅==-,故D 正确.【详解】()()121212223a b e e e e e e -=+--=-+,则()1,3a b -=-,故A 正确;()2122254cos33a e e π=+=+=B 错误;()()22121211223222322a b e e e e e e e e ⋅=+⋅-=+⋅-=-,故C 错误; 由于()22227b e e =-=a 在b 上的投影为33727a b b-⋅==,故D 正确。
提高题专题复习平面向量多选题专项训练练习题及答案

提高题专题复习平面向量多选题专项训练练习题及答案一、平面向量多选题1.若a →,b →,c →是任意的非零向量,则下列叙述正确的是( )A .若a b →→=,则a b →→=B .若a c b c →→→→⋅=⋅,则a b →→=C .若//a b →→,//b c →→,则//a c →→D .若a b a b →→→→+=-,则a b →→⊥ 答案:ACD【分析】根据平面向量的定义、数量积定义、共线向量定义进行判断.【详解】对应,若,则向量长度相等,方向相同,故,故正确;对于,当且时,,但,可以不相等,故错误;对应,若,,则方向相同解析:ACD【分析】根据平面向量的定义、数量积定义、共线向量定义进行判断.【详解】对应A ,若a b =,则向量,a b 长度相等,方向相同,故||||a b =,故A 正确; 对于B ,当a c ⊥且b c ⊥时,··0a c b c ==,但a ,b 可以不相等,故B 错误; 对应C ,若//a b ,//b c ,则,a b 方向相同或相反,,b c 方向相同或相反,故,a c 的方向相同或相反,故//a c ,故C 正确;对应D ,若||||a b a b +=-,则22222?2?a a b b a a b b ++=-+,∴0a b =,∴a b ⊥,故D 正确.故选:ACD【点睛】本题考查平面向量的有关定义,性质,数量积与向量间的关系,属于中档题.2.已知向量a =(2,1),b =(1,﹣1),c =(m ﹣2,﹣n ),其中m ,n 均为正数,且(a b -)∥c ,下列说法正确的是( )A .a 与b 的夹角为钝角B .向量a 在bD .mn 的最大值为2答案:CD【分析】对于A ,利用平面向量的数量积运算判断;对于B ,利用平面向量的投影定义判断;对于C ,利用()∥判断;对于D ,利用C 的结论,2m+n=4,结合基本不等式判断.【详解】对于A ,向量(解析:CD【分析】对于A ,利用平面向量的数量积运算判断; 对于B ,利用平面向量的投影定义判断;对于C ,利用(a b -)∥c 判断;对于D ,利用C 的结论,2m +n =4,结合基本不等式判断.【详解】对于A ,向量a =(2,1),b =(1,﹣1),则2110a b ⋅=-=>,则,a b 的夹角为锐角,错误;对于B ,向量a =(2,1),b =(1,﹣1),则向量a 在b 方向上的投影为22a b b ⋅=,错误; 对于C ,向量a =(2,1),b =(1,﹣1),则a b -= (1,2),若(a b -)∥c ,则(﹣n )=2(m ﹣2),变形可得2m +n =4,正确;对于D ,由C 的结论,2m +n =4,而m ,n 均为正数,则有mn 12=(2m •n )12≤ (22m n +)2=2,即mn 的最大值为2,正确; 故选:CD.【点睛】本题主要考查平面向量的数量积运算以及基本不等式的应用,属于基础题.3.已知向量()1,0a =,()2,2b =,则下列结论正确的是( )A .()25,4a b +=B .2b =C .a 与b 的夹角为45°D .()//2a a b + 答案:AC【分析】利用向量线性的坐标运算可判断A ;利用向量模的坐标求法可判断B ;利用向量数量积的坐标运算可判断C ;利用向量共线的坐标表示即可求解.由向量,,则,故A 正确;,故B 错误;解析:AC【分析】利用向量线性的坐标运算可判断A ;利用向量模的坐标求法可判断B ;利用向量数量积的坐标运算可判断C ;利用向量共线的坐标表示即可求解.【详解】由向量()1,0a =,()2,2b =,则()()()21,022,25,4a b +=+=,故A 正确;222b =+=,故B 错误;21cos ,21a b a b a b ⋅⨯<>===⋅+ 又[],0,a b π<>∈,所以a 与b 的夹角为45°,故C 正确;由()1,0a =,()25,4a b +=,140540⨯-⨯=≠,故D 错误.故选:AC【点睛】本题考查了向量的坐标运算,考查了基本运算能力,属于基础题.4.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,不解三角形,确定下列判断错误的是( )A .B =60°,c =4,b =5,有两解B .B =60°,c =4,b =3.9,有一解C .B =60°,c =4,b =3,有一解D .B =60°,c =4,b =2,无解答案:ABC【分析】根据判断三角形解的个数的结论:若为锐角,当时,三角形有唯一解;当时,三角形有两解;当时,三角形无解:当时,三角形有唯一解.逐个判断即可得解.【详解】对于,因为为锐角且,所以三角解析:ABC【分析】根据判断三角形解的个数的结论:若B 为锐角,当c b <时,三角形有唯一解;当sin c B b c <<时,三角形有两解;当sin c B b >时,三角形无解:当sin c B b =时,三角形有唯一解.逐个判断即可得解.【详解】对于A ,因为B 为锐角且45c b =<=,所以三角形ABC 有唯一解,故A 错误;对于B ,因为B 为锐角且sin 4 3.92c B b c =⨯=<=<,所以三角形ABC 有两解,故B 错误;对于C ,因为B 为锐角且 sin 43c B b ==>=,所以三角形ABC 无解,故C 错误;对于D ,因为B 为锐角且sin 42c B b ==>=,所以三角形ABC 无解,故D 正确.故选:ABC.【点睛】本题考查了判断三角形解的个数的方法,属于基础题.5.下列关于平面向量的说法中正确的是( )A .已知A 、B 、C 是平面中三点,若,AB AC 不能构成该平面的基底,则A 、B 、C 共线 B .若a b b c ⋅=⋅且0b ≠,则a c =C .若点G 为ΔABC 的重心,则0GA GB GC ++=D .已知()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则实数λ的取值范围为1λ< 答案:AC【分析】根据平面向量基本定理判断A ;由数量积的性质可判断;由向量的中点表示和三角形的重心性质可判断,由数量积及平面向量共线定理判断D .【详解】解:因为不能构成该平面的基底,所以,又有公共解析:AC【分析】根据平面向量基本定理判断A ;由数量积的性质可判断B ;由向量的中点表示和三角形的重心性质可判断C ,由数量积及平面向量共线定理判断D .【详解】解:因为,AB AC 不能构成该平面的基底,所以//AB AC ,又,AB AC 有公共点A ,所以A 、B 、C 共线,即A 正确;由平面向量的数量积可知,若a b b c =,则||||cos ,||||cos ,a b a b b c b c <>=<>,所以||cos ,||cos ,a a b c b c <>=<>,无法得到a c =,即B 不正确;设线段AB 的中点为M ,若点G 为ABC ∆的重心,则2GA GB GM +=,而2GC GM =-,所以0GA GB GC ++=,即C 正确;()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则220a b λ=⋅->解得1λ<,且a 与b 不能共线,即4λ≠-,所以()(),44,1λ∈-∞--,故D 错误;故选:AC .【点睛】本题考查向量共线定理和向量数量积的性质和向量的加减运算,属于中档题.6.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且()()()::9:10:11a b a c b c +++=,则下列结论正确的是( )A .sin :sin :sin 4:5:6ABC =B .ABC ∆是钝角三角形 C .ABC ∆的最大内角是最小内角的2倍D .若6c =,则ABC ∆答案:ACD【分析】先根据已知条件求得,再根据正余弦定理计算并逐一判断即可.【详解】因为所以可设:(其中),解得:所以,所以A 正确;由上可知:边最大,所以三角形中角最大,又 ,所以角为解析:ACD【分析】先根据已知条件求得::4:5:6a b c =,再根据正余弦定理计算并逐一判断即可.【详解】因为()()()::9:10:11a b a c b c +++=所以可设:91011a b x a c x b c x +=⎧⎪+=⎨⎪+=⎩(其中0x >),解得:4,5,6a x b x c x === 所以sin :sin :sin ::4:5:6A B C a b c ==,所以A 正确;由上可知:c 边最大,所以三角形中C 角最大, 又222222(4)(5)(6)1cos 022458a b c x x x C ab x x +-+-===>⨯⨯ ,所以C 角为锐角,所以B 错误;由上可知:a 边最小,所以三角形中A 角最小,又222222(6)(5)(4)3cos 22654c b a x x x A cb x x +-+-===⨯⨯, 所以21cos22cos 18A A =-=,所以cos 2A cosC = 由三角形中C 角最大且C 角为锐角,可得:()20,A π∈,0,2C π⎛⎫∈ ⎪⎝⎭所以2A C =,所以C 正确; 由正弦定理得:2sin c R C =,又sin 8C ==所以2R =,解得:R =D 正确. 故选:ACD.【点睛】本题考查了正弦定理和与余弦定理,属于基础题.7.下列命题中,结论正确的有( )A .00a ⨯=B .若a b ⊥,则||||a b a b +=-C .若//AB CD ,则A 、B 、C 、D 四点共线;D .在四边形ABCD 中,若0AB CD +=,0AC BD ⋅=,则四边形ABCD 为菱形. 答案:BD【分析】根据平面向量的数量积及平行向量共线定理判断可得;【详解】解:对于A ,,故A 错误;对于B ,若,则,所以,,故,即B 正确;对于C ,,则或与共线,故C 错误;对于D ,在四边形中,若解析:BD【分析】根据平面向量的数量积及平行向量共线定理判断可得;【详解】解:对于A ,00a ⨯=,故A 错误;对于B ,若a b ⊥,则0a b ⋅=,所以2222||2a b a b a b a b +=++⋅=+,2222||2a b a b a b a b -=+-⋅=+,故||||a b a b +=-,即B 正确;AB CD或AB与CD共线,故C错误;对于C,//AB CD,则//对于D,在四边形ABCD中,若0=,所以四边形ABCD是平行+=,即AB DCAB CD四边形,又0⊥,所以四边形ABCD是菱形,故D正确;AC BD⋅=,所以AC BD故选:BD【点睛】本题考查平行向量的数量积及共线定理的应用,属于基础题.8.已知a、b是任意两个向量,下列条件能判定向量a与b平行的是()=A.a b=B.a bC.a与b的方向相反D.a与b都是单位向量答案:AC【分析】根据共线向量的定义判断即可.【详解】对于A选项,若,则与平行,A选项合乎题意;对于B选项,若,但与的方向不确定,则与不一定平行,B选项不合乎题意;对于C选项,若与的方向相反,解析:AC【分析】根据共线向量的定义判断即可.【详解】对于A选项,若a b=,则a与b平行,A选项合乎题意;=,但a与b的方向不确定,则a与b不一定平行,B选项不合乎题对于B选项,若a b意;对于C选项,若a与b的方向相反,则a与b平行,C选项合乎题意;对于D选项,a与b都是单位向量,这两个向量长度相等,但方向不确定,则a与b不一定平行,D选项不合乎题意.故选:AC.【点睛】本题考查向量共线的判断,考查共线向量定义的应用,属于基础题.9.在下列结论中,正确的有()A.若两个向量相等,则它们的起点和终点分别重合B.平行向量又称为共线向量C.两个相等向量的模相等D.两个相反向量的模相等答案:BCD【分析】根据向量的定义和性质依次判断每个选项得到答案.【详解】A. 若两个向量相等,它们的起点和终点不一定不重合,故错误;B. 平行向量又称为共线向量,根据平行向量定义知正确解析:BCD【分析】根据向量的定义和性质依次判断每个选项得到答案.【详解】A. 若两个向量相等,它们的起点和终点不一定不重合,故错误;B. 平行向量又称为共线向量,根据平行向量定义知正确;C. 相等向量方向相同,模相等,正确;D. 相反向量方向相反,模相等,故正确;故选:BCD【点睛】本题考查了向量的定义和性质,属于简单题.10.设a 、b 是两个非零向量,则下列描述正确的有( )A .若a b a b +=-,则存在实数λ使得λab B .若a b ⊥,则a b a b +=-C .若a b a b +=+,则a 在b 方向上的投影向量为aD .若存在实数λ使得λa b ,则a b a b +=-答案:AB 【分析】 根据向量模的三角不等式找出和的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】 当时,则、方向相反且,则存在负实数解析:AB【分析】 根据向量模的三角不等式找出a b a b +=-和a b a b +=+的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】 当a b a b +=-时,则a 、b 方向相反且a b ≥,则存在负实数λ,使得λa b ,A 选项正确,D 选项错误; 若a b a b +=+,则a 、b 方向相同,a 在b 方向上的投影向量为a ,C 选项错误;若a b ⊥,则以a 、b 为邻边的平行四边形为矩形,且a b +和a b -是这个矩形的两条对角线长,则a b a b +=-,B 选项正确.故选:AB.【点睛】本题考查平面向量线性运算相关的命题的判断,涉及平面向量模的三角不等式的应用,考查推理能力,属于中等题.11.对于菱形ABCD ,给出下列各式,其中结论正确的为( ) A .AB BC = B .AB BC = C .AB CD AD BC -=+ D .AD CD CD CB +=-答案:BCD【分析】由向量的加法减法法则及菱形的几何性质即可求解.【详解】菱形中向量与的方向是不同的,但它们的模是相等的, 所以B 结论正确,A 结论错误;因为,,且,所以,即C 结论正确;因为,解析:BCD 【分析】 由向量的加法减法法则及菱形的几何性质即可求解. 【详解】 菱形中向量AB 与BC 的方向是不同的,但它们的模是相等的, 所以B 结论正确,A 结论错误; 因为2AB CD AB DC AB -=+=,2AD BC BC +=,且AB BC =, 所以AB CD AD BC -=+,即C 结论正确;因为AD CD BC CD BD +=+=,||||CD CB CD BC BD -=+=,所以D 结论正确.故选:BCD【点睛】本题主要考查了向量加法、减法的运算,菱形的性质,属于中档题.12.在ABCD 中,设AB a =,AD b =,AC c =,BD d =,则下列等式中成立的是( )A .a b c +=B .a d b +=C .b d a +=D .a b c += 答案:ABD【分析】根据平行四边形及向量的加法法则即可判断.【详解】由向量加法的平行四边形法则,知成立,故也成立;由向量加法的三角形法则,知成立,不成立.故选:ABD【点睛】本题主要考查解析:ABD【分析】根据平行四边形及向量的加法法则即可判断.【详解】由向量加法的平行四边形法则,知a b c +=成立, 故a b c +=也成立;由向量加法的三角形法则,知a d b +=成立,b d a +=不成立.故选:ABD【点睛】本题主要考查了向量加法的运算,数形结合,属于容易题.13.已知实数m ,n 和向量a ,b ,下列说法中正确的是( )A .()m a b ma mb -=-B .()m n a ma na -=-C .若ma mb =,则a b =D .若()0ma na a =≠,则m n = 答案:ABD【分析】根据向量数乘运算判断AB 选项的正确性,通过的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性.【详解】根据向量数乘的运算可知A 和B 正确;C 中,当时,,但与不一定相等, 解析:ABD【分析】根据向量数乘运算判断AB 选项的正确性,通过m 的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性.【详解】根据向量数乘的运算可知A 和B 正确;C 中,当0m =时,0ma mb ==,但a 与b 不一定相等,故C 不正确;D 中,由ma na =,得()0m n a -=,因为0a ≠,所以m n =,故D 正确. 故选:ABD 【点睛】本小题主要考查向量数乘运算,属于基础题.14.点P 是ABC ∆所在平面内一点,满足20PB PC PB PC PA --+-=,则ABC ∆的形状不可能是( ) A .钝角三角形B .直角三角形C .等腰三角形D .等边三角形答案:AD 【解析】 【分析】由条件可得,再两边平方即可得答案. 【详解】∵P 是所在平面内一点,且, ∴, 即, ∴,两边平方并化简得, ∴,∴,则一定是直角三角形,也有可能是等腰直角三角形, 故解析:AD 【解析】 【分析】由条件可得||||AB AC AC AB -=+,再两边平方即可得答案. 【详解】∵P 是ABC ∆所在平面内一点,且|||2|0PB PC PB PC PA --+-=, ∴|||()()|0CB PB PA PC PA --+-=, 即||||CB AC AB =+, ∴||||AB AC AC AB -=+, 两边平方并化简得0AC AB ⋅=, ∴AC AB ⊥,∴90A ︒∠=,则ABC ∆一定是直角三角形,也有可能是等腰直角三角形, 故不可能是钝角三角形,等边三角形, 故选:AD. 【点睛】本题考查向量在几何中的应用,考查计算能力,是基础题. 15.下列说法中错误的是( )A .向量AB 与CD 是共线向量,则A ,B ,C ,D 四点必在一条直线上 B .零向量与零向量共线 C .若,a b b c ==,则a c =D .温度含零上温度和零下温度,所以温度是向量答案:AD 【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论. 【详解】向量与是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B解析:AD 【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论. 【详解】向量AB 与CD 是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B 正确; 若,a b b c ==,则a c =,故C 正确; 温度是数量,只有正负,没有方向,故D 错误. 故选:AD 【点睛】本题考查零向量、单位向量的定义,平行向量和共线向量的定义,属于基础题.二、平面向量及其应用选择题16.如图所示,在坡度一定的山坡A 处测得山顶上一建筑物CD 的顶端C 对于山坡的斜度为15°,向山顶前进50 m 到达B 处,又测得C 对于山坡的斜度为45°,若CD =50 m ,山坡对于地平面的坡度为θ,则cos θ等于( )A 3B 2C 31- D 21-解析:C 【分析】易求30ACB ∠=︒,在ABC 中,由正弦定理可求BC ,在BCD 中,由正弦定理可求sin BDC ∠,再由90BDC θ∠=+︒可得答案.【详解】45CBD ∠=︒,30ACB ∴∠=︒,在ABC 中,由正弦定理,得sin sin BC AB CAB ACB =∠∠,即50sin15sin30BC =︒︒,解得BC =,在BCD 中,由正弦定理,得sin sin BC CD BDC CBD=∠∠50sin 45=︒,sin BDC ∴∠=sin(90)θ+︒=,cos θ∴=故选:C . 【点睛】该题考查正弦定理在实际问题中的应用,由实际问题恰当构建数学模型是解题关键. 17.在△ABC 中,点D 在线段BC 的延长线上,且3BC CD =,点O 在线段CD 上(与点C ,D 不重合),若()1AO xAB x AC =+-,则x 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .1,02⎛⎫-⎪⎝⎭ D .1,03⎛⎫- ⎪⎝⎭解析:D 【分析】设CO yBC =,则()1AO AC CO AC yBC yAB y AC =+=+=-++,根据3BC CD =得出y 的范围,再结合()1AO xAB x AC =+-得到,x y 的关系,从而得出x的取值范围. 【详解】 设CO yBC =,则()()1AO AC CO AC yBC AC y AC AB y AB y AC =+=+=+-=-++, 因为3BC CD =,点O 在线段CD 上(与点C ,D 不重合), 所以10,3y ⎛⎫∈ ⎪⎝⎭, 又因为()1AO xAB x AC =+-,所以x y =-,所以1,03x ⎛⎫∈- ⎪⎝⎭. 故选:D 【点睛】本题考查平面向量基本定理及向量的线性运算,考查利用向量关系式求参数的取值范围问题,难度一般.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos 2c A a C c +=且a b =,则cos B 等于( )AB .14CD.2解析:B 【分析】利用正弦定理可得sin 2sin B C =,结合a b =和余弦定理,即可得答案; 【详解】cos cos 2sin cos sin cos 2sin c A a C c C A A C C +=⇒+=,∴sin()2sin sin 2sin A C C B C +=⇒=, ∴2b c =,又a b =,∴22222114cos 12422ba cb B ac b ⋅+-===⋅⋅,故选:B. 【点睛】本题考查正、余弦定理解三角形,考查运算求解能力,求解时注意进行等量代换求值. 19.在ABC ∆中,8AB =,6AC =,60A ∠=,M 为ABC ∆的外心,若AM AB AC λμ=+,λ、R μ∈,则43λμ+=( )A .34B .53C .73D .83解析:C 【分析】作出图形,先推导出212AM AB AB ⋅=,同理得出212AM AC AC ⋅=,由此得出关于实数λ、μ的方程组,解出这两个未知数的值,即可求出43λμ+的值. 【详解】如下图所示,取线段AB 的中点E ,连接ME ,则AM AE EM =+且EM AB ⊥,()212AM AB AE EM AB AE AB EM AB AB ∴⋅=+⋅=⋅+⋅=,同理可得212AM AC AC ⋅=,86cos6024AB AC ⋅=⨯⨯=,由221212AM AB AB AM AC AC ⎧⋅=⎪⎪⎨⎪⋅=⎪⎩,可得()()3218AB AC AB AB AC AC λμλμ⎧+⋅=⎪⎨+⋅=⎪⎩,即642432243618λμλμ+=⎧⎨+=⎩,解得512λ=,29,因此,52743431293λμ+=⨯+⨯=. 故选:C. 【点睛】本题考查利用三角形外心的向量数量积的性质求参数的值,解题的关键就是利用三角形外心的向量数量积的性质列方程组求解,考查分析问题和解决问题的能力,属于中等题. 20.ABC ∆中,22:tan :tan a b A B =,则ABC ∆一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等腰或直角三角形解析:D 【分析】由已知22:tan :tan a b A B =,利用正弦定理及同角的三角函数的基本关系对式子进行化简,然后结合三角函数的性质再进行化简即可判断. 【详解】∵22:tan :tan a b A B =,由正弦定理可得,22sin sin tan sin cos sin sin sin tan sin cos cos AA A A BB B B B B AB===, ∵sin sin B 0A ≠,∴sin cos sin cos A BB A=, ∴sin cos sin cos A A B B =即sin 2sin 2A B =,∵()(),0,,0,A B A B ππ∈+∈, ∴22A B =或22A B π+=,∴A B =或2A B π+=,即三角形为等腰或直角三角形,故选D . 【点睛】本题考查同角三角函数的基本关系及正弦定理的应用,利用正弦定理进行代数式变形是解题的关键和难点.21.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若1c =,45B =︒,3cos 5A =,则b 等于( ) A .35 B .107C .57D解析:C 【分析】利用同角三角函数基本关系式可得sin A ,进而可得cos (cos cos sin sin )C A B A B =--,再利用正弦定理即可得出. 【详解】 解:3cos 5A =,(0,180)A ∈︒︒.∴4sin 5A ,34cos cos()(cos cos sin sin )(55C A B A B A B =-+=--=-=.sin C ∴==由正弦定理可得:sin sin b cB C=,∴1sin 5sin 7c B b C ===. 故选:C . 【点睛】本题考查了同角三角函数基本关系式、正弦定理、两角和差的余弦公式,考查了推理能力与计算能力,属于中档题.22.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15︒的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60︒和30,第一排和最后一排的距离为米(如图所示),旗杆底部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)A .3323 B .5323C .7323D .8323解析:B 【分析】如解析中图形,可在HAB ∆中,利用正弦定理求出HB ,然后在Rt HBO ∆中求出直角边HO 即旗杆的高度,最后可得速度.【详解】如图,由题意45,105HAB HBA ∠=︒∠=︒,∴30AHB ∠=︒, 在HAB ∆中,sin sin HB AB HAB AHB =∠∠,即102sin 45sin 30HB =︒︒,20HB =. ∴sin 20sin60103OH HB HBO =∠=︒=,103534623v ==(米/秒). 故选B . 【点睛】 本题考查解三角形的应用,解题关键是掌握正弦定理和余弦定理,解题时要根据条件选用恰当的公式,适当注意各个公式适合的条件.23.如图,ADC 是等边三角形,ABC 是等腰直角三角形,90ACB ∠︒=,BD 与AC 交于E 点.若2AB =,则AE 的长为( )A 62B .162)2C 62D .162)2解析:A【分析】由条件求得∠BCD =150°,∠CBE =15°,故∠ABE =30°,可得∠AEB =105°.计算sin105°,代入正弦定理sin30sin105AE AB=︒︒,化简求得AE = 【详解】由题意可得,AC =BC =CD =DA =BAC =45°,∠BCD =∠ACB +∠ACD =90°+60°=150°.又△BCD 为等腰三角形,∴∠CBE =15°,故∠ABE =45°﹣15°=30°,故∠BEC =75°,∠AEB =105°.再由 sin105°=sin (60°+45°)=sin60°cos45°+cos60°sin45°=, △ABE 中,由正弦定理可得sin30sin105AE AB=︒︒,∴12AE=AE = 故选:A .【点睛】本题考查勾股定理、正弦定理的应用,两角和的正弦公式,属于中档题.24.在ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,则下列各等式中不正确...的是( ) A .23BG BE = B .2CG GF = C .12DG AG = D .0GA GB GC ++=解析:C 【分析】由三角形的重心定理和平面向量的共线定理可得答案. 【详解】ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,可得G为重心,则23BG BE =,2CG GF =,12DG GA =且0GA GB GC ++= 故选:C 【点睛】本题考查了三角形的重心定理和向量共线定理,属于中档题. 25.在ABC 中,若A B >,则下列结论错误的是( ) A .sin sin A B > B .cos cos A B <C .sin 2sin 2A B >D .cos2cos2A B <解析:C 【分析】由正弦定理结合三角形中的大边对大角得sin sin A B >,由余弦函数性质判断B ,然后结合二倍角公式判断CD . 【详解】设ABC 三边,,a b c 所对的角分别为,,A B C , 由A B >,则,a b >∴sin sin 0A B >>,A 正确; 由余弦函数性质知cos cos A B <,B 正确;sin 22sin cos A A A =,sin 22sin cos B B B =, 当A 为钝角时就有sin 2sin 2A B <,C 错误,;2cos212sin A A =-,2cos 212sin B B =-,∴cos2cos2A B <,D 正确. 故选:C . 【点睛】本题考查三角形内角和定理,考查正弦定理、余弦函数性质,考查正弦、余弦的二倍角公式,考查学生的逻辑推理能力,属于中档题. 26.a ,b 为单位向量,且27a b +=,则向量a ,b 夹角为( )A .30B .45︒C .60︒D .90︒解析:C 【分析】首先根据题的条件27a b +=,得到2()7a b +=,根据a ,b 为单位向量,求得12a b ⋅=,进而求得向量夹角. 【详解】 因为27a b +=,所以2()7a b +=,即22447a a b b +⋅+=, 因为221a b ==,所以12a b ⋅=,所以1cos ,2a b <>=,因为向量a ,b 夹角的范围为[0,180]︒︒, 所以向量a ,b 夹角的范围为60︒, 故选:C. 【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的平方与向量模的平方是相等的,已知向量数量积求向量夹角,属于简单题目.27.已知在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若ABC 的面积为S ,且222()S a b c =+-,则tan C =( )A .43-B .34-C .34D .43解析:A【分析】由三角形面积公式和余弦定理可得C 的等式,利用二倍角公式求得tan2C,从而求得tan C .【详解】∵222222()2S a b c a b ab c =+-=++-,即22212sin 22ab C a b ab c ⨯⋅=++-, ∴222sin 2ab C ab a b c ⋅-=+-,又222sin 2sin cos 1222a b c ab C ab CC ab ab +-⋅-===-,∴sin cos 12C C +=, 即22cos sin cos 222C C C =,则tan 22C =,∴222tan2242tan 1231tan2CC C ⨯===---, 故选:A . 【点睛】本题考查三角形面积公式,余弦定理,考查二倍角公式,同角间的三角函数关系,掌握相应的公式即可求解.属于中档题,考查了学生的运算求解能力.28.已知非零向量AB 与AC 满足0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭且12AB AC AB AC ⋅=,则ABC 的形状是( ) A .三边均不相等的三角形 B .等腰直角三角形 C .等边三角形 D .以上均有可能解析:C 【分析】ABAB 和ACAC 分别表示向量AB 和向量AC 方向上的单位向量,0AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭表示A ∠平分线所在的直线与BC 垂直,可知ABC 为等腰三角形,再由12AB AC ABAC⋅=可求出A ∠,即得三角形形状。
数学4必修第二章平面向量提高训练C组及答案

3t),
f
(t )
1 (t3 4
3t)
4 解:Q AB AC, AB AC 0.
Q AP AQ, BP AP AB,CQ AQ AC, uBuPurCuQuur (AuPuur ABuu)ur(AQuuurACu)uur
AP AQ AP AC AB AQ AB AC
r 3,1),b
(
1, 2
3) 2
得
ar gb
0, ar
2, b
1
[ar (t2 3)b ]g(kar tb) 0,kar 2 tar gb k(t 2 3)ar gb t(t2 3)b 2 0
4k
t3
3t
0,k
1 (t 3 4
三、解答题
1 已知 ar ,b, cr 是三个向量,试判断下列各命题的真假 (1)若 ar b ar rc 且 ar 0 ,则b cr (2)向量 a 在 b 的方向上的投影是一模等于 ar cos ( 是 a 与 b 的夹角),方向与 a 在
b 相同或相反的一个向量
2 证明:对于任意的 a,b, c, d R ,恒有不等式 (ac bd)2 (a2 b2 )(c2 d 2 )
3 C 单位向量仅仅长度相等而已,方向也许不同;当b 0 时, a 与 c 可以为任意向
量;
| a b | | a b | ,即对角线相等,此时为矩形,邻边垂直;还要考虑夹角
4 5
C C
ar
r 3b
ar
2
6ar gbr
r 9b
2
高中数学提高题专题复习平面向量多选题专项训练练习题及答案

高中数学提高题专题复习平面向量多选题专项训练练习题及答案一、平面向量多选题1.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S .下列ABC 有关的结论,正确的是( )A .cos cos 0AB +>B .若a b >,则cos2cos2A B <C .24sin sin sin S R A B C =,其中R 为ABC 外接圆的半径D .若ABC 为非直角三角形,则tan tan tan tan tan tan A B C A B C ++=答案:ABD 【分析】对于A ,利用及余弦函数单调性,即可判断;对于B ,由,可得,根据二倍角的余弦公式,即可判断;对于C ,利用和正弦定理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断. 【解析:ABD 【分析】对于A ,利用A B π+<及余弦函数单调性,即可判断;对于B ,由a b >,可得sin sin A B >,根据二倍角的余弦公式,即可判断;对于C ,利用in 12s S ab C =和正弦定理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断. 【详解】对于A ,∵A B π+<,∴0A B ππ<<-<,根据余弦函数单调性,可得()cos cos cos A B B π>-=-,∴cos cos 0A B +>,故A 正确;对于B ,若sin sin a b A B >⇔>,则22sin sin A B >,则2212sin 12sin A B -<-,即cos2cos2A B <,故B 正确;对于C ,211sin 2sin 2sin sin 2sin sin sin 22S ab C R A R B C R A B C ==⋅⋅⋅=,故C 错误;对于D ,在ABC 为非直角三角形,()tan tan tan tan 1tan tan B CA B C B C+=-+=--⋅,则tan tan tan tan tan tan A B C A B C ++=,故D 正确.故选:ABD. 【点睛】本题主要考查了正弦定理在解三角形中的应用,三角函数基本性质.考查了推理和归纳的能力.2.在△ABC 中,a ,b ,c 是角A ,B ,C 的对边,已知A =3π,a =7,则以下判断正确的是( )A .△ABC 的外接圆面积是493π; B .b cos C +c cos B =7;C .b +c 可能等于16;D .作A 关于BC 的对称点A ′,则|AA ′|的最大值是答案:ABD 【分析】根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】对于A ,设的外接圆半径为,根据正弦定理,可得,所以的外接圆面积是,故A 正确;对于B ,根据正弦定解析:ABD 【分析】根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】对于A ,设ABC 的外接圆半径为R ,根据正弦定理2sin aR A =,可得R =ABC 的外接圆面积是2493S R ππ==,故A 正确; 对于B ,根据正弦定理,利用边化角的方法,结合A B C π++=,可将原式化为2sin cos 2sin cos 2sin()2sin R B C R C B R B C R A a +=+==,故B 正确.对于C ,22(sin sin )2[sin sin()]3b c R B C R B B π+=+=+-114(cos )14sin()223B B B π=+=+14b c ∴+≤,故C 错误.对于D ,设A 到直线BC 的距离为d ,根据面积公式可得11sin 22ad bc A =,即sin bc Ad a=,再根据①中的结论,可得d =D 正确. 故选:ABD. 【点睛】本题是考查三角恒等变换与解三角形结合的综合题,解题时应熟练掌握运用三角函数的性质、诱导公式以及正余弦定理、面积公式等.3.ABC 是边长为2的等边三角形,已知向量a ,b 满足2AB a =,2AC a b =+,则下列结论正确的是( )A .a 是单位向量B .//BC b C .1a b ⋅=D .()4BC a b ⊥+答案:ABD 【分析】A. 根据是边长为2的等边三角形和判断;B.根据,,利用平面向量的减法运算得到判断;C. 根据,利用数量积运算判断;D. 根据, ,利用数量积运算判断. 【详解】 A. 因为是边长解析:ABD 【分析】A. 根据ABC 是边长为2的等边三角形和2AB a =判断;B.根据2AB a =,2AC a b =+,利用平面向量的减法运算得到BC 判断;C. 根据1,2a ABb BC ==,利用数量积运算判断;D. 根据b BC =, 1a b ⋅=-,利用数量积运算判断. 【详解】A. 因为ABC 是边长为2的等边三角形,所以2AB =,又2AB a =,所以 a 是单位向量,故正确;B. 因为2AB a =,2AC a b =+,所以BC AC AB b =-=,所以//BC b ,故正确;C. 因为1,2a AB b BC ==,所以1122cos120122a b BC AB ⋅=⋅=⨯⨯⨯︒=-,故错误; D. 因为b BC =, 1a b ⋅=-,所以()()2444440BC a b b a b a b b ⋅+=⋅+=⋅+=-+=,所以()4BC a b ⊥+,故正确. 故选:ABD 【点睛】本题主要考查平面向量的概念,线性运算以及数量积运算,还考查了运算求解的能力,属于中档题.4.已知ABC ∆是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且AE EB =,2AD DC =,BD 与CE 交于点O ,则下列说法正确的是( )A .1AB CE ⋅=- B .0OE OC +=C .32OA OB OC ++=D .ED 在BC 方向上的投影为76答案:BCD 【分析】以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可.【详解】由题E 为AB 中点,则,以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示: 所以,,解析:BCD 【分析】以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】由题E 为AB 中点,则CE AB ⊥,以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示:所以,123(0,0),(1,0),(1,0),3),(3E A B C D -, 设123(0,),3),(1,),(,33O y y BO y DO y ∈==--,BO ∥DO , 所以23133y y -=-,解得:3y =, 即O 是CE 中点,0OE OC +=,所以选项B 正确;322OA OB OC OE OC OE ++=+==,所以选项C 正确; 因为CE AB ⊥,0AB CE ⋅=,所以选项A 错误;123(3ED =,(1,3)BC =,ED 在BC 方向上的投影为127326BC BCED +⋅==,所以选项D 正确.故选:BCD 【点睛】此题考查平面向量基本运算,可以选取一组基底表示出所求向量的关系,对于特殊图形可以考虑在适当位置建立直角坐标系,利于计算. 5.以下关于正弦定理或其变形正确的有( ) A .在ABC 中,a :b :c =sin A :sin B :sin C B .在ABC 中,若sin 2A =sin 2B ,则a =bC .在ABC 中,若sin A >sin B ,则A >B ,若A >B ,则sin A >sin B 都成立D .在ABC 中,sin sin sin +=+a b cA B C答案:ACD 【分析】对于A ,由正弦定理得a :b :c =sinA :sinB :sinC ,故该选项正确; 对于B ,由题得A =B 或2A+2B =π,即得a =b 或a2+b2=c2,故该选项错误; 对于C ,在ABC 中解析:ACD 【分析】对于A ,由正弦定理得a :b :c =sin A :sin B :sin C ,故该选项正确; 对于B ,由题得A =B 或2A +2B =π,即得a =b 或a 2+b 2=c 2,故该选项错误; 对于C ,在ABC 中,由正弦定理可得A >B 是sin A >sin B 的充要条件,故该选项正确; 对于D ,由正弦定理可得右边=2sin 2sin 2sin sin R B R CR B C+=+=左边,故该选项正确.【详解】对于A ,由正弦定理2sin sin sin a b cR A B C===,可得a :b :c =2R sin A :2R sin B :2R sin C =sin A :sin B :sin C ,故该选项正确;对于B ,由sin2A =sin2B ,可得A =B 或2A +2B =π,即A =B 或A +B =2π,∴a =b 或a 2+b 2=c 2,故该选项错误;对于C ,在ABC 中,由正弦定理可得sin A >sin B ⇔a >b ⇔A >B ,因此A >B 是sin A >sin B 的充要条件,故该选项正确; 对于D ,由正弦定理2sin sin sin a b cR A B C===,可得右边=2sin 2sin 2sin sin sin sin b c R B R CR B C B C++==++=左边,故该选项正确.故选:ACD. 【点睛】本题主要考查正弦定理及其变形,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.下列结论正确的是( )A .已知a 是非零向量,b c ≠,若a b a c ⋅=⋅,则a ⊥(-b c )B .向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则a 在b 上的投影向量为12b C .点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 是△ABC 的外心 D .以(1,1),(2,3),(5,﹣1),(6,1)为顶点的四边形是一个矩形答案:ABD 【分析】利用平面向量的数量积运算,结合向量的线性运算,对每个选项进行逐一分析,即可容易判断选择. 【详解】对:因为,又,故可得, 故,故选项正确;对:因为||=1,||=2,与的夹角为解析:ABD 【分析】利用平面向量的数量积运算,结合向量的线性运算,对每个选项进行逐一分析,即可容易判断选择. 【详解】对A :因为()a b c a b a c ⋅-=⋅-⋅,又a b a c ⋅=⋅,故可得()0a b c ⋅-=, 故()a b c ⊥-,故A 选项正确;对B :因为|a |=1,|b |=2,a 与b 的夹角为60°,故可得1212a b ⋅=⨯=. 故a 在b 上的投影向量为12a b b b b ⎛⎫⋅⎪= ⎪⎝⎭,故B 选项正确; 对C :点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 为三角形ABC 的重心,故C 选项错误;对D :不妨设()()()()1,1,2,3,6,1,5,1A B C D -,则()()()1,24,25,0AB AD AC +=+-==,故四边形ABCD 是平行四边形; 又()14220AB AD ⋅=⨯+⨯-=,则AB AD ⊥,故四边形ABCD 是矩形. 故D 选项正确;综上所述,正确的有:ABD . 故选:ABD .【点睛】本题考查向量数量积的运算,向量的坐标运算,向量垂直的转化,属综合中档题. 7.在ABC 中,15a =,20b =,30A =,则cos B =( ) A.B .23C .23-D.3答案:AD 【分析】利用正弦定理可求得的值,再利用同角三角函数的平方关系可求得的值. 【详解】由正弦定理,可得, ,则,所以,为锐角或钝角. 因此,. 故选:AD. 【点睛】本题考查利用正弦定理与同解析:AD 【分析】利用正弦定理可求得sin B 的值,再利用同角三角函数的平方关系可求得cos B 的值. 【详解】由正弦定理sin sin b a B A=,可得120sin 22sin 153b A B a ⨯===, b a >,则30B A >=,所以,B 为锐角或钝角.因此,cos B ==. 故选:AD. 【点睛】本题考查利用正弦定理与同角三角函数的基本关系求值,考查计算能力,属于基础题. 8.已知平行四边形的三个顶点的坐标分别是(3,7),(4,6),(1,2)A B C -.则第四个顶点的坐标为( ) A .(0,1)-B .(6,15)C .(2,3)-D .(2,3)答案:ABC 【分析】设平行四边形的四个顶点分别是,分类讨论点在平行四边形的位置有:,,,将向量用坐标表示,即可求解. 【详解】第四个顶点为, 当时,,解得,此时第四个顶点的坐标为; 当时,, 解得解析:ABC 【分析】设平行四边形的四个顶点分别是(3,7),(4,6),(1,2),(,)A B C D x y -,分类讨论D 点在平行四边形的位置有:AD BC =,AD CB =,AB CD =,将向量用坐标表示,即可求解. 【详解】第四个顶点为(,)D x y ,当AD BC =时,(3,7)(3,8)x y --=--,解得0,1x y ==-,此时第四个顶点的坐标为(0,1)-; 当AD CB =时,(3,7)(3,8)x y --=,解得6,15x y ==,此时第四个顶点的坐标为(6,15); 当AB CD =时,(1,1)(1,2)x y -=-+,解得2,3x y ==-,此时第四个项点的坐标为(2,3)-. ∴第四个顶点的坐标为(0,1)-或(6,15)或(2,3)-. 故选:ABC . 【点睛】本题考查利用向量关系求平行四边形顶点坐标,考查分类讨论思想,属于中档题. 9.(多选题)下列命题中,正确的是( ) A .对于任意向量,a b ,有||||||a b a b +≤+; B .若0a b ⋅=,则00a b ==或; C .对于任意向量,a b ,有||||||a b a b ⋅≤ D .若,a b 共线,则||||a b a b ⋅=±答案:ACD 【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项. 【详解】由向量加法的三角形法则可知选项A 正确; 当时,,故选项B 错误; 因为,故选项C 正确; 当共线同向时,, 当共线反【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项. 【详解】由向量加法的三角形法则可知选项A 正确; 当a b ⊥时,0a b ⋅=,故选项B 错误;因为||cos ||||a b a b a b θ⋅=≤,故选项C 正确; 当,a b 共线同向时,||||cos0||||a b a b a b ⋅==,当,a b 共线反向时,||||cos180||||a b a b a b ⋅=︒=-,所以选项D 正确. 故选:ACD. 【点睛】本题考查向量加法的性质以及对向量数量积的运算规律的辨析,注意数量积运算有交换律,但没有消去律,本题属于基础题.10.设a 、b 、c 是任意的非零向量,则下列结论不正确的是( ) A .00a ⋅= B .()()a b c a b c ⋅⋅=⋅⋅ C .0a b a b ⋅=⇒⊥D .()()22b b a b a a +-=⋅-答案:AB 【分析】利用平面向量数量积的定义和运算律可判断各选项的正误. 【详解】对于A 选项,,A 选项错误;对于B 选项,表示与共线的向量,表示与共线的向量,但与不一定共线,B 选项错误; 对于C 选项,解析:AB 【分析】利用平面向量数量积的定义和运算律可判断各选项的正误. 【详解】对于A 选项,00a ⋅=,A 选项错误;对于B 选项,()a b c ⋅⋅表示与c 共线的向量,()a b c ⋅⋅表示与a 共线的向量,但a 与c 不一定共线,B 选项错误;对于C 选项,0a b a b ⋅=⇒⊥,C 选项正确;对于D 选项,()()2222a b a b a b a b +⋅-=-=-,D 选项正确.【点睛】本题考查平面向量数量积的应用,考查平面向量数量积的定义与运算律,考查计算能力与推理能力,属于基础题.11.下列命题中,正确的有( )A .向量AB 与CD 是共线向量,则点A 、B 、C 、D 必在同一条直线上 B .若sin tan 0αα⋅>且cos tan 0αα⋅<,则角2α为第二或第四象限角C .函数1cos 2y x =+是周期函数,最小正周期是2π D .ABC ∆中,若tan tan 1A B ⋅<,则ABC ∆为钝角三角形答案:BCD 【分析】根据共线向量的定义判断A 选项的正误;根据题意判断出角的终边的位置,然后利用等分象限法可判断出角的终边的位置,进而判断B 选项的正误;利用图象法求出函数的最小正周期,可判断C 选项的正误解析:BCD 【分析】根据共线向量的定义判断A 选项的正误;根据题意判断出角α的终边的位置,然后利用等分象限法可判断出角2α的终边的位置,进而判断B 选项的正误;利用图象法求出函数1cos 2y x =+的最小正周期,可判断C 选项的正误;利用切化弦思想化简不等式tan tan 1A B ⋅<得出cos cos cos 0A B C <,进而可判断出选项D 的正误.综合可得出结论.【详解】对于A 选项,向量AB 与CD 共线,则//AB CD 或点A 、B 、C 、D 在同一条直线上,A 选项错误;对于B 选项,2sin sin tan 0cos αααα⋅=>,cos tan sin 0ααα⋅=<,所以sin 0cos 0αα<⎧⎨>⎩, 则角α为第四象限角,如下图所示:则2α为第二或第四象限角,B 选项正确; 对于C 选项,作出函数1cos 2y x =+的图象如下图所示:由图象可知,函数1cos 2y x =+是周期函数,且最小正周期为2π,C 选项正确; 对于D 选项,tan tan 1A B <,()()cos cos sin sin cos cos sin sin 1tan tan 1cos cos cos cos cos cos cos cos A B C A B A B A B A B A B A B A B A B π+--∴-=-===cos 0cos cos C A B=->,cos cos cos 0A B C ∴<, 对于任意三角形,必有两个角为锐角,则ABC ∆的三个内角余弦值必有一个为负数, 则ABC ∆为钝角三角形,D 选项正确.故选:BCD.【点睛】本题考查三角函数、三角恒等变换与向量相关命题真假的判断,考查共线向量的定义、角的终边位置、三角函数的周期以及三角形形状的判断,考查推理能力,属于中等题.12.某人在A 处向正东方向走xkm 后到达B 处,他向右转150°,然后朝新方向走3km 到达C 处,3km ,那么x 的值为( )A 3B .23C .33D .3答案:AB【分析】由余弦定理得,化简即得解.【详解】由题意得,由余弦定理得,解得或.故选:AB.【点睛】本题主要考查余弦定理的实际应用,意在考查学生对这些知识的理解掌握水平. 解析:AB【分析】 由余弦定理得293cos306x x︒+-=,化简即得解. 【详解】 由题意得30ABC ︒∠=,由余弦定理得293cos306x x ︒+-=,解得x =x =故选:AB.【点睛】本题主要考查余弦定理的实际应用,意在考查学生对这些知识的理解掌握水平.13.已知,a b 为非零向量,则下列命题中正确的是( )A .若a b a b +=+,则a 与b 方向相同B .若a b a b +=-,则a 与b 方向相反C .若a b a b +=-,则a 与b 有相等的模D .若a b a b -=-,则a 与b 方向相同答案:ABD【分析】根据平面向量的平行四边形法则与三角不等式分析即可.【详解】如图,根据平面向量的平行四边形或三角形法则,当不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有.当同向时解析:ABD【分析】根据平面向量的平行四边形法则与三角不等式分析即可.【详解】如图,根据平面向量的平行四边形或三角形法则,当,a b 不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有||||||||||||a b a b a b -<±<+.当,a b 同向时有||||||a b a b +=+,||||||a b a b -=-.当,a b 反向时有||||||||a b a b +=-,||+||||a b a b =-故选:ABD【点睛】本题主要考查了平面向量的线性运算与三角不等式,属于基础题型.14.题目文件丢失!15.题目文件丢失!二、平面向量及其应用选择题16.题目文件丢失!17.ABC 中,a ,b ,c 分别为A ∠,B ,C ∠的对边,如果a ,b ,c 成等差数列,30B ∠=︒,ABC 的面积为32,那么b 等于( ) A 13+B .13C 23+ D .23解析:B【分析】 由题意可得2b a c =+,平方后整理得22242a c b ac +=-,利用三角形面积可求得ac 的值,代入余弦定理可求得b 的值.【详解】解:∵a ,b ,c 成等差数列,∴2b a c =+,平方得22242a c b ac +=-,①又ABC 的面积为32,且30B ∠=︒, 由11sin sin 3022ABC S ac B ac ==⋅︒△1342ac ==,解得6ac =, 代入①式可得222412a c b +=-,由余弦定理得222cos 2a c b B ac+-=,2224123122612b b b ---===⨯解得24b =+,∴1b =故选:B .【点睛】本题考查等差数列的性质和三角形的面积公式,涉及余弦定理的应用,属于中档题.18.已知ABC中,1,30a b A ︒===,则B 等于( )A .60°B .120°C .30°或150°D .60°或120° 解析:D【分析】由正弦定理可得,sin B =,根据b a >,可得B 角的大小. 【详解】由正弦定理可得,sin sin 2b A B a ==, 又0,,π<<>∴>B b a B A ,60︒∴=B 或120B =. 故选:D【点睛】本题考查了正弦定理的应用,考查了运算求解能力和逻辑推理能力,属于基础题目.19.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos 2c A a C c +=且a b =,则cos B 等于( )AB .14 CD.2解析:B【分析】利用正弦定理可得sin 2sin B C =,结合a b =和余弦定理,即可得答案;【详解】cos cos 2sin cos sin cos 2sin c A a C c C A A C C +=⇒+=,∴sin()2sin sin 2sin A C C B C +=⇒=,∴2b c =,又a b =, ∴22222114cos 12422b ac b B ac b ⋅+-===⋅⋅, 故选:B.【点睛】本题考查正、余弦定理解三角形,考查运算求解能力,求解时注意进行等量代换求值.20.已知菱形ABCD 边长为2,∠B =3π,点P 满足AP =λAB ,λ∈R ,若BD ·CP =-3,则λ的值为( )A .12B .-12C .13D .-13解析:A【分析】根据向量的基本定理,结合数量积的运算公式,建立方程即可得到结论.【详解】 法一:由题意可得BA ·BC =2×2cos 3π=2,BD ·CP =(BA +BC )·(BP -BC ) =(BA +BC )·[(AP -AB )-BC ] =(BA +BC )·[(λ-1)·AB -BC ] =(1-λ) BA 2-BA ·BC +(1-λ)·BA ·BC -BC 2=(1-λ)·4-2+2(1-λ)-4 =-6λ=-3,∴λ=12,故选A. 法二:建立如图所示的平面直角坐标系,则B (2,0),C (1,),D (-13.令P (x,0),由BD ·CP =(-33(x -13=-3x +3-3=-3x =-3得x =1. ∵AP =λAB ,∴λ=12.故选A. 【点睛】1.已知向量a ,b 的坐标,利用数量积的坐标形式求解.设a =(a 1,a 2),b =(b 1,b 2),则a ·b =a 1b 1+a 2b 2. 2.通过建立平面直角坐标系,利用数量积的坐标形式计算.21.如图所示,设P 为ABC ∆所在平面内的一点,并且1142AP AB AC =+,则BPC ∆与ABC ∆的面积之比等于( )A .25B .35C .34D .14解析:D【分析】由题,延长AP 交BC 于点D ,利用共线定理,以及向量的运算求得向量,,CP CA CD 的关系,可得DP 与AD 的比值,再利用面积中底面相同可得结果.【详解】延长AP 交BC 于点D ,因为A 、P 、D 三点共线,所以(1)CP mCA nCD m n =++=,设CD kCB =代入可得CP mCA nkCB =+即()(1)AP AC mAC nk AB AC AP m nk AC nk AB -=-+-⇒=--+又因为1142AP AB AC =+,即11,142nk m nk =--=,且1m n += 解得13,44m n == 所以1344CP CA CD =+可得4AD PD = 因为BPC ∆与ABC ∆有相同的底边,所以面积之比就等于DP 与AD 之比所以BPC ∆与ABC ∆的面积之比为14故选D【点睛】本题考查了向量的基本定理,共线定理以及四则运算,解题的关键是在于向量的灵活运用,属于较难题目. 22.在ABC 中,若cos a b C =,则ABC 的形状是( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .等腰或直角三角形解析:A【分析】利用正弦定理边角互化思想化简可得cos 0B =,求得角B 的值,进而可判断出ABC 的形状.【详解】cos a b C =,由正弦定理得sin sin cos A B C =,即()sin cos sin sin cos cos sin B C B C B C B C =+=+,cos sin 0B C ∴=,0C π<<,sin 0C ∴>,则cos 0B =,0B π<<,所以,2B π=,因此,ABC 是直角三角形.故选:A.【点睛】 本题考查利用正弦定理边角互化判断三角形的形状,同时也考查了两角和的正弦公式的应用,考查计算能力,属于中等题.23.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若()()(2a b c a c b ac +++-=,则cos sin A C +的取值范围为A .3)2B .C .3(2D .3(2解析:A【分析】先化简已知()()(2a b c a c b ac +++-=+得6B π=,再化简cos sin A C +)3A π+,利用三角函数的图像和性质求其范围.【详解】由()()(2a b c a c b ac +++-=可得22()(2a c b ac +-=,即222a cb +-=,所以222cos 2ac b B ac +-==,所以6B π=,56C A π=-,所以5cos sin cos sin()6A C A A π+=+-553cos sin cos cos sin cos )6623A A A A A A πππ=+-=+=+,又02A π<<,506A π<-2π<,所以32A ππ<<,所以25336A πππ<+<,所以3)62A π<+<,故cos sin A C +的取值范围为3)2.故选A . 【点睛】(1)本题主要考查余弦定理解三角形,考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)利用函数的思想研究数学问题,一定要注意“定义域优先”的原则,所以本题一定要准确计算出A 的范围32A ππ<<,不是02A π<<.24.如图所示,在山底A 处测得山顶B 的仰角为45︒,沿倾斜角为30的山坡向山顶走1000米到达S 点,又测得山顶的仰角为75︒,则山高BC =( )A .500米B .1500米C .1200米D .1000米解析:D【分析】 作出图形,过点S 作SE AC ⊥于E ,SH AB ⊥于H ,依题意可求得SE 在BDS ∆中利用正弦定理可求BD 的长,从而可得山顶高BC .【详解】解:依题意,过S 点作SE AC ⊥于E ,SH AB ⊥于H ,30SAE ∠=︒,1000AS =米,sin 30500CD SE AS ∴==︒=米,依题意,在Rt HAS ∆中,453015HAS ∠=︒-︒=︒,sin15HS AS ∴=︒,在Rt BHS ∆中,30HBS ∠=︒,22000sin15BS HS ∴==︒,在Rt BSD ∆中,sin 75BD BS =︒2000sin15sin 75=︒︒2000sin15cos15=︒︒1000sin 30=⨯︒500=米, 1000BC BD CD ∴=+=米,故选:D .【点睛】本题主要考查正弦定理的应用,考查作图与计算的能力,属于中档题.25.在△ABC 中,M 为BC 上一点,60,2,||4ACB BM MC AM ∠=︒==,则△ABC 的面积的最大值为( )A .123B .63C .12D .183解析:A【分析】由已知条件,令||AC a =,||BC b =,则在△ACM 中结合余弦定理可知48ab ≤,根据三角形面积公式即可求最大值【详解】由题意,可得如下示意图令||AC a =,||BC b =,又2BM MC =,即有1||||33b CM CB == ∴由余弦定理知:222||||||2||||cos AM CA CM CA CM ACB =+-∠2221216()332333a ab ab ab ab b =+-⨯≥-=,当且仅当3a b =时等号成立 ∴有48ab ≤ ∴113sin 4812322ABC S ab C ∆=≤⨯=故选:A【点睛】本题考查了正余弦定理,利用向量的知识判断线段的长度及比例关系,再由余弦定理并应用基本不等式求三角形两边之积的范围,进而结合三角形面积公式求最值26.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是△ABC 的外心、垂心,且M 为BC 中点,则 ( )A .33AB AC HM MO +=+B .33AB AC HM MO +=- C .24AB AC HM MO +=+D .24AB AC HM MO +=- 解析:D【分析】构造符合题意的特殊三角形(例如直角三角形),然后利用平面向量的线性运算法则进行计算即可得解.【详解】解:如图所示的Rt ABC ∆,其中角B 为直角,则垂心H 与B 重合,O 为ABC ∆的外心,OA OC ∴=,即O 为斜边AC 的中点,又M 为BC 中点,∴2AH OM =, M 为BC 中点,∴22()2(2)AB AC AM AH HM OM HM +==+=+.4224OM HM HM MO =+=-故选:D .【点睛】本题考查平面向量的线性运算,以及三角形的三心问题,同时考查学生分析问题的能力和推理论证能力.27.ABC ∆内有一点O ,满足3450OA OB OC ++=,则OBC ∆与ABC ∆的面积之比为( )A .1:4B .4:5C .2:3D .3:5解析:A【解析】分析:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,利用三角形的奔驰定理,即可求解结论.详解:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,由奔驰定理可得::3:4:5BOC AOC BOA S S S ∆∆∆=,所以:3:121:4BOC ABC S S ∆∆==, 故选A .点睛:本题考查了向量的应用,对于向量的应用问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用,利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.28.已知ABC 所在平面内的一点P 满足20PA PB PC ++=,则::PAB PAC PBC S S S =△△△( )A .1∶2∶3B .1∶2∶1C .2∶1∶1D .1∶1∶2 解析:B【分析】延长PB 至D ,可得出点P 是ADC 的重心,再根据重心的性质可得出结论。
高中数学平面向量基础提高练习题含答案【选择填空精选50题难度分类】().doc

一、选择题(共36题)【基础题】1. 下列物理昼 ①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功;⑨电流强度;⑩摩擦系数,其中不是向量的有( ) A.4个B. 5个C.6个D.7个2. 下列六个命题中正确的是()①两个向量相等,则它们的起点相同,终点相同;②若丨a \ = \ b I ,贝ij a=b ;③若店=& ,则ABCD 是平行四边形;④平行四边形ABCD 中,一定有乔 =&;⑤若 m =n. n =k,则 m=k ;⑥若a//b,b//c ,贝\\a//c.以下说法错谋的是( )A. 零向虽与任一非零向虽平行 C. 平行向量方向相同B. 零向量与单位向量的模不相等D.平行向量一定是共线向量—》 1 —> —> —》 —》 1 ―> AC=-BC (C) BA = BC (D) BC=- AC 2(C) MB + AD-BM(D) OC-OA + CD---------------------------——•I -------- ►已知向量0M = (3,—2),CW = (-5-1),则/MN 等于(已知向量"(3-1),/? = (-1,2),则-3a 一 2b 的坐标是(A.①②③B.④⑤C.④⑤⑥D.⑤⑥4. 已知B 是线段AC 的中点, 则卜-列各式正确的是() 5. 下列四式不能化简为朮的是((A) (AB+CD) +BC(B) CAD+MB ) + ^BC + CM6、 A. (8,1)B. (-8,1)C ・(4冷)D.(-4冷) 7、A. (7,1)B. (-7-1)C. (-7,1)D ・(7-1)3.(A) A^=~BC (B)8. 与向量a=(-5, 4)平行的向量是( )5 4A. (-5k, 4k)B.C. (-10, 2)D. (5k, 4k)k k9.已知a = (_1,3)上=(兀厂1), SLa // b ,贝!J x 等于( )A. 3B. -3 c. 13D. -13—>10.已知d ==(昇) ,b = (-#,#),下列各式正确的是( )-> -> b (B) a ■ b -> T-》—>(A) a =J丿=1 (C) a = b (D)a与〃平行11.在四边形ABCD中,AB=DC ,且花・BD=0,则四边形ABCD是( )(A)矩形(B)菱形(C)直角梯形(D)等腰梯形【中等难度】12、下面给出的关系式屮正确的个数是( )①0Q = 0②H・b=bV③疋=\a\z@)@・b)C = U(b・C⑤云・b <a-b(A) 0 (B) 1 (C) 2 (D) 313.已知ABCD为矩形,E是DC的中点,且篇=;,AD = b f则旋 =( )(A) h + ^a (B) b _(C) a +^h(D) a —^h-- 》—► > —> -- A14.已知ABCDEF 是正六边形,.FL AB = a , AE = b ,则BC =( )T T -> T -> ->(A) y(/z- b) (B) j(b-a) (C) d+*b15.设a, 〃为不共线向量,AB =6t+2ft, BC =—4 a—b, CD= —5 a—3〃,-> ->(D) ^(a+b)则卞列关系式中正确的是()16. 设;与幺;是不共线的非零向量,凡与;+kw ;共线,则k 的值是()(A) 1(B) -1(C)±1(D)任意不为零的实数17. 在MBC 中,M 是 BC 的中点,AM=1,点 P 在 AM 上满足一 PA = 2PM PA (PB + ~PC )等于 ( ) 4 4 4 4 A.- B.- C.——D.——9 33918.己知a 、〃均为单位向量,它们的夹角为60。
高考数学提高题专题复习平面向量多选题练习题附解析

高考数学提高题专题复习平面向量多选题练习题附解析一、平面向量多选题1.Rt △ABC 中,∠ABC =90°,AB =BC =1,0PA PB PC PAPBPC++=,以下正确的是( ) A .∠APB =120° B .∠BPC =120° C .2BP =PC D .AP =2PC【答案】ABCD 【分析】根据条件作几何图形,由向量的关系可得P ,G ,Q 三点共线且PQ =1,故△PMQ 和△PNQ 均为等边三角形,∠APB =∠BPC =∠APC =120°,进而可确定P 为Rt △ABC 的费马点,利用相似可确定BP 、 AP 、 PC 之间的数量关系. 【详解】在直线PA ,PB ,PC 上分别取点M ,N ,G ,使得|PM |=|PN |=|PG |=1, 以PM ,PN 为邻边作平行四边形PMQN ,则PM PN PQ +=, ∵0PA PB PC PAPBPC++=,即0PM PN PG ++=,即0PQ PG +=,∴P ,G ,Q 三点共线且PQ =1,故△PMQ 和△PNQ 均为等边三角形, ∴∠APB =∠BPC =∠APC =120°,故A 、B 正确; ∵AB =BC =1,∠ABC =90°, ∴AC =2,∠ACB =60°,在△ABC 外部分别以BC 、AC 为边作等边△BCE 和等边△ACD ,直线CP 绕C 旋转60°交PD 于P’,∴120CE CB ECA BCD CA CD =⎧⎪∠=∠=︒⎨⎪=⎩,即ECA BCD ≅,故EAC BDC ∠=∠, EAC BDC CA CDPCA P CD ∠=∠⎧⎪=⎨⎪'∠=∠⎩,即CPA CP D '≅,故CP CP '=, ∴CPP '为等边三角形,120CP D CPA '∠=∠=︒,则B ,P ,D 三点共线,同理有A ,P ,E 三点共线, ∴△BPC ∽△BCD ,即12BP BC CP CD ==,即PC =2BP ,故C 正确, 同理:△APC ∽△ACB ,即AP ACCP BC==2,即AP =2PC ,故D 正确. 故选:ABCD.【点睛】关键点点睛:根据已知条件及向量的数量关系确定P 为Rt △ABC 的费马点,结合相似三角形及费马点的性质判断各项的正误.2.定义空间两个向量的一种运算sin ,a b a b a b ⊗=⋅,则关于空间向量上述运算的以下结论中恒成立的有( ) A .()()a b a b λλ⊗=⊗ B .a b b a ⊗=⊗C .()()()a b c a c b c +⊗=⊗+⊗D .若()11,a x y =,()22,b x y =,则122a b x y x y ⊗=- 【答案】BD 【分析】对于A,B,只需根据定义列出左边和右边的式子即可,对于C,当λab 时,()()1sin ,a b c b c b c λ+⊗=+⋅,()()()sin ,sin,1sin ,a c b c b c b c b c b c b c b c λλ⊗+⊗=⋅+⋅=+⋅,显然不会恒成立. 对于D,根据数量积求出cos ,a b ,再由平方关系求出sin ,a b 的值,代入定义进行化简验证即可. 【详解】解:对于A :()()sin ,a b a b a b λλ⊗=⋅,()sin ,a b a b a bλλλ⊗=⋅,故()()a b a b λλ⊗=⊗不会恒成立;对于B ,sin ,a b a b a b ⊗=⋅,=sin ,b a b a b a ⊗⋅,故a b b a ⊗=⊗恒成立;对于C ,若λab ,且0λ>,()()1sin ,a b c b c b c λ+⊗=+⋅,()()()sin,sin ,1sin ,a c b c b c b c b c b c b c b c λλ⊗+⊗=⋅+⋅=+⋅,显然()()()a b c a c b c +⊗=⊗+⊗不会恒成立; 对于D ,1212cos ,x x y y a b a b+=⋅,21212sin ,1x x y y a b a b ⎛⎫+ ⎪=- ⎪⋅⎝⎭,即有222121212121x x y y x x y y a b a b a b a a b ⎛⎫⎛⎫++ ⎪⊗=⋅⋅-=⋅- ⎪ ⎪ ⎪⋅⎝⎭⎝⎭22222121211222211x x y y x y x y x y ⎛⎫+ ⎪=++- ⎪+⎝⎭()()()22222222211221212122112122xy x y x x y y x y x y x x y y =++-+=+-1221x y x y =-.则1221a b x y x y ⊗=-恒成立. 故选:BD. 【点睛】本题考查向量的新定义,理解运算法则正确计算是解题的关键,属于较难题.3.如图,A 、B 分别是射线OM 、ON 上的点,下列以O 为起点的向量中,终点落在阴影区域内的向量是( )A .2OA OB + B .1123OA OB + C .3143OA OB + D .3145OA OB + 【答案】AC 【分析】利用向量共线的条件可得:当点P 在直线AB 上时,等价于存在唯一的一对有序实数u ,v ,使得OP uOA vOB =+成立,且u +v =1.可以证明点P 位于阴影区域内等价于:OP uOA vOB =+,且u >0,v >0,u +v >1.据此即可判断出答案. 【详解】由向量共线的条件可得:当点P 在直线AB 上时,存在唯一的一对有序实数u ,v ,使得OP uOA vOB =+成立,且u +v =1.可以证明点P 位于阴影区域内等价于: OP uOA vOB =+,且u >0,v >0,u +v >1. 证明如下:如图所示,点P 是阴影区域内的任意一点,过点P 作PE //ON ,PF //OM ,分别交OM ,ON 于点E ,F ;PE 交AB 于点P ′,过点P ′作P ′F ′//OM 交ON 于点F ′,则存在唯一一对实数(x ,y ),(u ′,v ′),使得OP xOE yOF u OA v OB ''''=+=+,且u ′+v ′=1,u ′,v ′唯一;同理存在唯一一对实数x ′,y ′使得OP x OE y OF uOA vOB =+=+'', 而x ′=x ,y ′>y ,∴u =u ′,v >v ′,∴u +v >u ′+v ′=1,对于A ,∵1+2>1,根据以上结论,∴点P 位于阴影区域内,故A 正确; 对于B ,因为11123+<,所以点P 不位于阴影区域内,故B 不正确; 对于C ,因为311314312+=>,所以点P 位于阴影区域内,故C 正确; 对于D ,因为311914520+=<,所以点P 不位于阴影区域内,故D 不正确; 故选:AC. 【点睛】关键点点睛:利用结论:①点P 在直线AB 上等价于存在唯一的一对有序实数u ,v ,使得OP uOA vOB =+成立,且u +v =1;②点P 位于阴影区域内等价于OP uOA vOB =+,且u >0,v >0,u +v >1求解是解题的关键.4.已知ABC 是边长为2的等边三角形,D 是边AC 上的点,且2AD DC =,E 是AB 的中点,BD 与CE 交于点O ,那么( )A .0OE OC +=B .1AB CE ⋅=-C .3OA OB OC ++=D .13DE =【答案】AC 【分析】建立平面直角坐标系,结合线段位置关系以及坐标形式下模长的计算公式逐项分析. 【详解】建立平面直角坐标系如下图所示:取BD 中点M ,连接ME ,因为,M E 为,BD BA 中点,所以1//,2ME AD ME AD =,又因为12CD AD =, 所以//,ME CD ME CD =,所以易知EOM COD ≅,所以O 为CE 中点, A .因为O 为CE 中点,所以0OE OC +=成立,故正确; B .因为E 为AB 中点,所以AB CE ,所以0AB CE ⋅=,故错误;C .因为()()(30,,1,0,1,0,32O A B C ⎛- ⎝⎭,所以33331,1,0,OA OB OC ⎛⎛⎛⎛++=+-+= ⎝⎭⎝⎭⎝⎭⎝⎭,所以3OA OB OC ++= D .因为()123,0,03D E ⎛ ⎝⎭,所以123,3DE ⎛=- ⎝⎭,所以13DE =,故错误, 故选:AC. 【点睛】关键点点睛:对于规则的平面图形(如正三角形、矩形、菱形等)中的平面向量的数量积和模长问题,采用坐标法计算有时会更加方便.5.如图,BC ,DE 是半径为1的圆O 的两条不同的直径,2BF FO =,则( )A .13BF FC = B .89FD FE ⋅=-C .41cos ,5FD FE -<<->≤ D .满足FC FD FE λμ=+的实数λ与μ的和为定值4 【答案】BCD 【分析】A. 根据2BF FO =易得12BF FC =判断;B. 由()()FD FE OD OF OE OF ⋅=-⋅-运算求解判断;,C.建立平面直角坐标系:设,0,2DOF παα⎡⎤∠=∈⎢⎥⎣⎦,则()()1cos ,sin ,cos ,sin ,,03D E F αααα⎛⎫--- ⎪⎝⎭,得到11cos ,sin ,cos ,sin 33FD FE αααα⎛⎫⎛⎫=-=+- ⎪ ⎪⎝⎭⎝⎭,由cos ,FD FE FD FE FD FE ⋅<>=⋅利用三角恒等变换和三角函数的性质判断;D. 将FC FD FE λμ=+,利用线性运算变形为()()4OF OD OF λμλμ-=--+判断;【详解】A. 因为2BF FO =,所以12BF FC =,故错误;B. ()()2FD FE OD OF OE OF OD OE OD OF OF OE OF ⋅=-⋅-=⋅-⋅-⋅+,()22181099OE OF OD OE OF =-+++=-++=-,故正确; C.建立如图所示平面直角坐标系:设,(0,]2DOF παα∠=∈,则()()1cos ,sin ,cos ,sin ,,03D E F αααα⎛⎫--- ⎪⎝⎭, 所以11cos ,sin ,cos ,sin 33FD FE αααα⎛⎫⎛⎫=-=+-⎪ ⎪⎝⎭⎝⎭, 所以222289cos ,11cos sin cos sin 33FD FE FD FE FD FEαααα-⋅<>==⋅⎛⎫⎛⎫-+⋅++ ⎪ ⎪⎝⎭⎝⎭,849(1,]5822cos2819α----⋅,故正确;D. 由FC FD FE λμ=+,得()()()()4OF OD OF OE OF OD OF λμλμλμ-=-+-=--+,所以4λμ+=,故正确; 故选:BCD 【点睛】本题主要考查平面向量的线性运算和数量积运算,还考查了运算求解的能力,属于中档题.6.已知向量(2,1)a =,(cos ,sin )(0)b θθθπ=,则下列命题正确的是( ) A .若a b ⊥,则tan 2θ=B .若b 在a 上的投影为12-,则向量a 与b 的夹角为23πC .存在θ,使得||||||a b a b +=+D .a b 3【答案】BCD 【分析】若a b ⊥,则tan θ=A 错误; 若b 在a 上的投影为12-,且||1b =,则2πcos ,3a b 〈〉=,故B 正确;若b 在a 上的投影为12-,且||1b =,故当a,b 0<>=,|||||a b a b =+|+,故C 正确;2cos sin a b θθ+==)θϕ+, a b D 正确.【详解】若a b ⊥,则2cos sin 0a b θθ+==,则tan θ=A 错误; 若b 在a 上的投影为12-,且||1b =,则1||cos 2b a b 〈〉=-,,2πcos ,3a b 〈〉=,故B 正确;若2()2a b a b a b =+22++,222(||||)||||2||||a b a b a b +=++,若|||||a b a b =+|+,则||||cos ||||a b a b a b a b 〈〉=,=,即cos ,1a b 〈〉=,故a,b 0<>=,|||||a b a b =+|+,故C正确;2cos sin a b θθ+==)θϕ+,因为0πθ≤≤,π02ϕ<<,则当π2θϕ+=时,a b ,故D 正确,故选:BCD . 【点睛】本题主要考查平面向量的数量积的计算和应用,考查数量积的运算律,意在考查学生对这些知识的理解掌握水平.7.已知M 为ABC 的重心,D 为BC 的中点,则下列等式成立的是( ) A .1122AD AB AC =+ B .0MA MB MC ++= C .2133BM BA BD =+ D .1233CM CA CD =+【答案】ABD 【分析】根据向量的加减法运算法则依次讨论即可的答案. 【详解】解:如图,根据题意得M 为AD 三等分点靠近D 点的点. 对于A 选项,根据向量加法的平行四边形法则易得1122AD AB AC =+,故A 正确; 对于B 选项,2MB MC MD +=,由于M 为AD 三等分点靠近D 点的点,2MA MD =-,所以0MA MB MC ++=,故正确;对于C 选项,()2212=3333BM BA AD BA BD BA BA BD =+=+-+,故C 错误;对于D 选项,()22123333CM CA AD CA CD CA CA CD =+=+-=+,故D 正确. 故选:ABD【点睛】本题考查向量加法与减法的运算法则,是基础题.8.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )A .//PB CQ B .1233BP BA BC =+ C .0PA PC ⋅> D .4S =【答案】BD 【分析】利用向量的共线定义可判断A ;利用向量加法的三角形法则以及向量减法的几何意义即可判断B ;利用向量数量积的定义可判断C ;利用三角形的面积公式即可判断D. 【详解】由20PA PC +=,2QA QB =,可知点P 为AC 的三等分点,点Q 为AB 延长线的点, 且B 为AQ 的中点,如图所示:对于A ,点P 为AC 的三等分点,点B 为AQ 的中点, 所以PB 与CQ 不平行,故A 错误; 对于B ,()22123333BP BA AP BA AC BA BC BA BA BC =+=+=+-=+,故B 正确;对于C ,cos 0PA PC PA PC PA PC π⋅==-<,故C 错误; 对于D ,设ABC 的高为h ,132ABCS AB h ==,即6AB h =, 则APQ 的面积1212226423233APQS AQ h AB h =⋅=⋅⋅=⨯=,故D 正确; 故选:BD 【点睛】本题考查了平面向量的共线定理、共线向量、向量的加法与减法、向量的数量积,属于基础题9.设a 、b 是两个非零向量,则下列描述正确的有( ) A .若a b a b +=-,则存在实数λ使得λa bB .若a b ⊥,则a b a b +=-C .若a b a b +=+,则a 在b 方向上的投影向量为aD .若存在实数λ使得λa b ,则a b a b +=-【答案】AB 【分析】根据向量模的三角不等式找出a b a b +=-和a b a b +=+的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】当a b a b +=-时,则a 、b 方向相反且a b ≥,则存在负实数λ,使得λa b ,A选项正确,D 选项错误;若a b a b +=+,则a 、b 方向相同,a 在b 方向上的投影向量为a ,C 选项错误; 若a b ⊥,则以a 、b 为邻边的平行四边形为矩形,且a b +和a b -是这个矩形的两条对角线长,则a b a b +=-,B 选项正确. 故选:AB. 【点睛】本题考查平面向量线性运算相关的命题的判断,涉及平面向量模的三角不等式的应用,考查推理能力,属于中等题.10.如图,46⨯的方格纸(小正方形的边长为1)中有一个向量OA (以图中的格点O 为起点,格点A 为终点),则( )A .分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有11个B .满足10OA OB -=的格点B 共有3个C .存在格点B ,C ,使得OA OB OC =+D .满足1OA OB ⋅=的格点B 共有4个【答案】BCD【分析】根据向量的定义及运算逐个分析选项,确定结果.【详解】解:分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有 18个,故A 错, 以O 为原点建立平面直角坐标系,()1,2A ,设(,)B m n ,若10OA OB -=,所以22(1)(2)10m n -+-=,(33m -,22n -,且m Z ∈,)n Z ∈, 得(0,1)B -,(2,1)-,(2,1)-共三个,故B 正确. 当(1,0)B ,(0,2)C 时,使得OA OB OC =+,故C 正确. 若1OA OB ⋅=,则21m n +=,(33m -,22n -,且m Z ∈,)n Z ∈, 得(1,0)B ,(3,1)-,(1,1)-,(3,2)-共4个,故D 正确. 故选:BCD .【点睛】本题考查向量的定义,坐标运算,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平面向量》提高篇复习卷一、单选题(共15题;共30分)1.若向量满足,,,则的最小值为()A. B. C. D.【答案】B【考点】两向量的和或差的模的最值,平面向量数量积的运算【解析】【解答】解:由两边同时平方,即,解得,则.故当时,,即.故答案为:B.【分析】由得,,当时,最小值为。
2.下列说法中:⑴若是单位向量,也是单位向量,则与的方向相同或相反;⑵若向量是单位向量,则向量也是单位向量;⑶两个相等的向量,若起点相同,则终点必相同.正确的个数为()A. B. C. D.【答案】C【考点】单位向量【解析】【解答】由单位向量的定义知,凡长度为的向量均为单位向量,对方向没有任何要求,故(1)不正确;因为,所以当是单位向量时,也是单位向量,故(2)正确;据相等向量的概念知,(3)是正确的.故答案为:C【分析】根据题意结合单位向量的定义以及性质,长度是1,方向任意性。
3.定义平面向量之间的一种运算“⊙”如下:对任意的,令,下面说法错误的是()A. 若与共线,则⊙=0B. ⊙= ⊙C. 对任意的λ∈R,有⊙= ⊙)D. (⊙)2+()2=| |2| |2【答案】B【考点】平面向量数量积的运算【解析】【解答】解:对于A,若与共线,则有,故A正确;对于B,因为,而,所以有,故选项B错误,对于C,⊙=λqm﹣λpn,而⊙)=λ(qm﹣pn)=λqm﹣λpn,故C正确,对于D,(⊙)2+()2=(qm﹣pn)2+(mp+nq)2=(m2+n2)(p2+q2)=| |2| |2,D 正确;故选B.【分析】根据题意对选项逐一分析.若与共线,则有,故A正确;因为,而,所以有,故选项B错误,对于C,⊙=λqm﹣λpn,而⊙)=λ(qm﹣pn)=λqm﹣λpn,故C正确,对于D,(⊙)2+()2=(qm﹣pn)2+(mp+nq)2=(m2+n2)(p2+q2)=| |2| |2,D 正确;得到答案.4.若向量=(1,1),=(2,﹣1),则2﹣等于()A. (0,3)B. (0,2)C. (﹣1,2)D. (﹣1,3)【答案】A【考点】向量的减法及其几何意义【解析】【解答】2﹣=(2,2)﹣(2,﹣1)=(0,3),故选A.【分析】先求出2的坐标,再利用两个向量相减,它们的坐标对应相减,求出2﹣的坐标。
5.已知向量,的夹角为45°,且||=1,|2﹣|=,则||=()A. B. 2 C. 3 D. 4【答案】C【考点】向量的模,平面向量数量积的运算【解析】【解答】因为向量,的夹角为45°,且||=1,|2﹣|=,所以解得(舍).故选:C.【分析】将|2﹣|=平方,然后将夹角与||=1代入,得到||的方程,解方程可得.6.中,,,,点是内(包括边界)的一动点,且,则的最小值是()A. B. C. 3 D.【答案】C【考点】平面向量的基本定理及其意义【解析】【解答】依题意.由余弦定理得,故为直角三角形.设,过作,交于,过作,交于.由于,根据向量加法运算的平行四边形法则可知,点位于线段上,由图可知最短时为,所以.故答案为:C.【分析】由数量积公式结合余弦定理得出为直角三角形,再利用两直线平行结合平面向量基本定理和平行四边形法则,得出最短时为,所以.7.在中,点是上的点,且满足, ,则的值分别是()A. B. C. D.【答案】C【考点】平面向量的基本定理及其意义【解析】【解答】由题意,在中,为上的点,且满足,则,又由,所以,所以,故答案为:C.【分析】将用和表示,然后结合题目条件将用和表示,将用和表示,然后代入的表达式中,便可以将用和表示,便可以求出m和n的值。
8.若向量与向量满足:| |=2,| |=3,且当λ∈R时,| |的最小值为2 ,则向量在向量方向上的投影为()A. 1 或2B. 2C. 1 或3D. 3【答案】C【考点】平面向量数量积的运算【解析】【解答】解:设与的夹角为θ,∵| |=2,| |=3,且当λ∈R时,| |的最小值为2 ,∴的最小值为8,即﹣2λ +λ2=9﹣2λ•2•3•cosθ+4λ2的最小值为8,当λ= 时,有最小值为8,即4× ,解得cos .向量在向量方向上的投影为,∵cos ,∴=3或1.故选:C.【分析】设出与的夹角为θ,由| |的最小值为2 ,求出使的最小值为8的λ值,再代入﹣2λ +λ2=9﹣2λ•2•3•cosθ+4λ2=8,解出cosθ,再由投影公式求解.9.在平面直角坐标系xOy中,点A(5,0),对于某个正实数k,存在函数f(x)=a(a>0).使得=λ·(+)(λ为常数),这里点P、Q的坐标分别为P(1,f(1)),Q(k,f(k)),则k的取值范围为()A. (2,+∞)B. (3,+∞)C. [4,+∞)D. [8,+∞)【答案】A【考点】平面向量的综合题【解析】【解答】由题设知,点,所以向量,所以,因为=λ·(+)(λ为常数),所以,两式相除得,,,所以且,且,故选A.10.已知三点A(1,1)、B(﹣1,0)、C(3,﹣1),则确等于()A. ﹣2B. ﹣6C. 2D. 3【答案】A【考点】数量积的坐标表达式【解析】解答:∵A(1,1)、B(﹣1,0)、C(3,﹣1),∴=(﹣2,﹣1),=(2,﹣2)∴=(﹣2)•2+(﹣1)•(﹣2)=﹣2故选A分析:由已知中点A(1,1)、B(﹣1,0)、C(3,﹣1)的坐标,我们可以计算出向量,的坐标,代入向量数量积的坐标表达式,可得答案.11.在等腰三角形ABC中,∠A=150°,AB=AC=1,则=()A. B. C. D.【答案】A【考点】平面向量数量积的运算【解析】【解答】解:方法一:如图所示,过点C作CD⊥BA,交于点D,∴=﹣• =﹣| |•| |cosB=﹣[| |+| |cos(180°﹣150°)]=﹣(1+ )=﹣1﹣方法二,等腰三角形ABC中,∠A=150°,AB=AC=1,∴B=15°,∴cos15°=cos(45°﹣30°)= × + × =由余弦定理可得BC2=AB2+AC2﹣2AB•AC•cosA=1+1﹣2×(﹣)=2+ ,∴BC=∴=| || |cos(180°﹣15°)=1× ×(﹣)=﹣1﹣故选:A.【分析】方法一:利用向量的射影即可求出,方法二:根据向量数量积的公式,余弦定理,两角差的余弦公式即可求出.12.已知平面内的向量,满足:,,且与的夹角为,又,,,则由满足条件的点所组成的图形面积是()A. 2B.C. 1D.【答案】D【考点】向量的共线定理,平面向量坐标表示的应用【解析】【解答】解:∵| |=1,,得到= ,且与的夹角为120°,三角形AOB是等边三角形,则不妨以O为原点,以OA方向为x轴正方向,建立坐标系.则 =(1,0),又,0≤λ1≤1,1≤λ2≤2,令=(x,y),则=(λ1+ λ2,λ2)由于0≤λ1≤1,1≤λ2≤3,∴其表示的平面区域是一个平行四边形,由图可知阴影部分的面积为故答案为:D.【分析】以O为原点,以OA方向为x轴正方向,建立坐标系。
写出,坐标,由向量共线定理列式求解,最后求出答案。
13.对于向量a,b,e及实数x,y,x1,x2,,给出下列四个条件:①且;②③且唯一;④其中能使a与b共线的是( )A. ①②B. ②④C. ①③D. ③④【答案】C【考点】向量的共线定理【解析】【解答】对于①,由+=3,-=g,解得= 4,= -,显然 =-4,故与共线,故①满足条件.对于②,当实数x1=x2=五时,与为任意向量,不能推出与一定共线,故②不满足条件.对于③,∵="λ" ?,∴与共线,故③满足条件.对于④,当x=y=五时,不能推出与一定共线,故②不满足条件.故选C.【分析】由①可得="-4" ,故与共线,故①满足条件.对于②,当实数x1=x2="0" 时,与为任意向量,故②不满足条件.由两个向量共线的条件,可得③中的与共线,故③满足条件.对于④,当x=y=0时,不能推出与一定共线.14.如图,半圆的直径AB=4,O为圆心,C为半圆上不同于A,B的任意一点,若P为半径OC上的动点,则的最小值等于()A. 2B. -2C. -1D. 0【答案】B【考点】平面向量数量积的运算【解析】【分析】根据O为AB的中点,我们易得=-2| || |,又由OPC三点共线,故||+||=| |=2为定值,根据基本不等式,我们易得的最小值.【解答】因为O为圆的中点,所以+=2,从而则=-2| || |;又||+||=| |=2为定值,所以当且仅当| |=| |=1,即P为OCy中点时,取得最小值是-2,故选B.15.在△ABC中,边AC长为,| + |=2 ,D是BC边上的点,且=2 ,•=0,则cos∠BAC=()A. B. C. D.【答案】 D【考点】平面向量数量积的运算【解析】【解答】解:△ABC中,设E为边AB的中点,∵,∴CE= .D是BC边上的点,且,,∴AD⊥BC.设DC=x,则BD=2x.设AE=EB=y,由中线长定理可得:+(3x)2=2y2+2× ,化为9x2﹣2y2=5.由勾股定理可得:4y2﹣4x2= ,化为:3x2+5=4y2.联立解得:x=1,y= .AB=2 ,BC=3.则cos∠BAC= = .故选:D.【分析】△ABC中,设E为边AB的中点,由,可得CE= .D是BC边上的点,且,,可得AD⊥BC.设DC=x,则BD=2x.设AE=EB=y,由中线长定理可得:+(3x)2=2y2+2× ,由勾股定理可得:4y2﹣4x2= ,联立解出,再利用余弦定理即可得出.二、填空题(共15题;共16分)16.如图,将两块三角板拼在一起组成一个平面四边形ABCD,若=x +y (x,y∈R).则x+y=________.【答案】1+【考点】平面向量的基本定理及其意义【解析】【解答】解:设AB=1,则AD= ,BD=BC=2,过点C作CE⊥AB,CF⊥AD,垂足分别为E、F,如图所示;则BE= ,AF=1,且= + =(+1)+ ,又=x +y ,所以x= +1,y= ,x+y=1+ .故答案为:1+ .【分析】根据题意,过点C作CE⊥AB,CF⊥AD,设AB=1,根据三角形的边角关系,用、表示出,求出x、y的值即可.17.设向量=(k,2),=(1,﹣1),且∥,则实数k的值为________.【答案】-2【考点】平面向量共线(平行)的坐标表示【解析】【解答】解:∵∥,∴﹣k﹣2=0,解得k=﹣2.故答案为:﹣2.【分析】利用向量共线定理即可得出.18.如图所示,在平行四边形ABCD中,AC与BD交于点O,= 且=a,=b,则=________.(结果用a,b表示)【答案】【考点】平面向量的基本定理及其意义【解析】【解答】解:∵,= ,,∴=- +== .故答案为:.【分析】由,= ,,即可得出.19.已知向量=(3,1),=(1,3),=(k,7),若(-)∥,则k=________ .【答案】5【考点】平面向量的坐标运算【解析】【解答】解:向量=(3,1),=(1,3),=(k,7),若(-)∥,可得3(3﹣k)=1﹣7,解得k=5.故答案为:5【分析】直接利用向量共线的充要条件列出方程求解即可.20.向量与的夹角为,若对任意的t∈R,| |的最小值为,则| |=________.【答案】2【考点】向量的模【解析】【解答】解:向量与的夹角为,;若对任意的,的最小值为则,恒成立,当△时,取得最小值,则,故答案为:2 .【分析】首先求出向量与的数量积,根据已知条件有恒成立,由此得出当△时取得最小值,进而得出| | 。