定积分在几何中的应用 课件

合集下载

§5 数学模型:定积分的应用

§5 数学模型:定积分的应用

438§5 数学模型:定积分的应用定积分的概念来源于几何学上求曲边梯形的面积和物理学中的实际问题,因而有着广泛的应用。

由于定积分定义为积分和的极限,因此当所研究的量可以归结为求类似积分和的和式的极限时,就可用定积分来求解。

其思想方法为:“分割,代替,求和,取极限。

”定积分的思想常应用在建立求总量的数学模型中,它在几何、物理、经济、社会学等几乎每一门学科中都有着广泛的用途,成为定量研究各种自然规律与社会现象的必不可少的工具。

各种在整体范围内为变化的或弯曲的几何或物理对象,在经过分割后的局部范围内可以近似的认为是不变的或直的,然后用定积分(求和)的思想建立定积分模型。

为了今后讨论方便,需要寻找建立这一类模型的共同的简单方法,从而在建立积分模型时,不必重复定积分概念引入时的分析和推导过程。

5.1 定积分的微元法 1 定积分概念的实质分析引例(积水问题) 设水流到水箱的速度为)(t r 升/分钟,问从0=t 到2=t 这段时间水流入水箱的总量W 是多少?利用定积分的思想,这个问题要用以下几个步骤来解决。

Step(1) 分割:用任意一组分点把区间[]2,0分成长度为),,2,1(1n i t t t i i i =-=∆-的n 个小时间段;Step(2) 代替:设第i 个小时间段里流入水箱的水量是i W ∆ ,在每个小时间段上,水的流速可视为常量,得i W ∆的近似值i i i t r W ∆≈∆)(ξ (i i i t t ≤≤-ξ1); Step(3) 求和:得W 的近似值∑=∆=ni i i t r W 1)(ξ;439Step(4) 取极限:得W 的精确值⎰∑=∆==→21d )()(lim t t r t r W ni i i ξλ。

上述四个步骤 “分割-代替-求和-取极限” 可概括为两个步骤。

第一个步骤:包括分割和求近似.其主要过程是将时间间隔细分成很多小的时间段,在每个小的时间段内,“以常代变”,将水的流速近似看作是匀速的,设为)(i t r ,得到在这个小的时间段内流入水箱的水量i i i t t r W ∆≈∆)(。

高中数学-定积分在几何中的应用-课件

高中数学-定积分在几何中的应用-课件

求由一条曲线 y=f(x)和直线 x=a,x=b(a<b)及 y=0 所围成平面图形的面积 S.
①如图 1 所示,f(x)>0, bf(x)dx>0. a
∴S= bf(x)dx. a
②如图 2 所示,f(x)<0, bf(x)dx<0, a
∴S=| bf(x)dx|=- bf(x)dx.
a
a
2×23x32
|
2 0
=136,
8
S2=2 [4-x-(- 2x)]dx
=4x-12x2+2
3
2x32|
8 2
=338,
于是 S=136+338=18.
方法二:选y作为积分变量,
将曲线方程写为x=y22及x=4-y.
则S=2-44-y-y22dy
=4y-y22-y63|
2 -4
=18.
变式训练 1:由曲线 y= x,直线 y=x-2 及 y 轴所围成
解.
由方程组
y2=2x y=4-x
解出抛物线和直线的交
点为(2,2)及(8,-4).
方法一:选 x 作为积分变量,由图可看出 S=S1+S2,
由于抛物线在 x 轴上方的方程为 y= 2x,
在 x 轴下方的方程为 y=- 2x,
2
所以 S1=0 [ 2x-(- 2x)]dx
=2
2 1
20x2 dx=2
❖1.7 定积分的简单应用
❖1.7.1 定积分在几何中的应用
自主学习 新知突破
❖ 1.理解定积分的几何意义.
❖ 2.会通过定积分求由两条或多条曲线 围成的平面图形的面积.
复习回顾
[问题 1]定积分的几何意义.
由三条直线 x=a,x=b(a<b),x 轴及 一条曲线 y=f(x)(f(x)≥0)围成的曲边 梯形的面积 S=________.

数学:171《定积分在几何中的应用》课件新人教A版选修

数学:171《定积分在几何中的应用》课件新人教A版选修
图1.7 1.从 图 中 可
y
y x2
1
C
B
y2 x
DAo1x以 看 出,所 求 图 形 的 面积可以转化为两
图1.7 1
个 曲 边 梯 形 面 积 的 差,进 而 可 以 用 定 积 分 求 面
积 S.为 了 确 定 出 被 积 函 数 和积 分 的 上 、 下 限,
我 们 需 要 求 出 两 条 曲 线的 交 点 的 横 坐 标.
还需把所求图形的面积 分成两部分 S1和 S 2. 为了确定出被积函数和 积分的上、下限 ,需
要求出直线 y x 4与曲线 y 2x 的交点
的横坐标 , 直线 y x 4与 x轴的交点 .
编辑ppt
6
y
yx4
解 作出直线 y x4,曲线
4
y 2x的草图,所求面积为2
y 2x S2
图1.7
1.7 定积分的简单应用
编辑ppt
1
我们已经看,定到积分可以用来计边算曲 梯形的面,求 积变速运动物体的.事位实移 上,定积分有着广泛的.下应面用我们介绍 定积分的一些简单. 应用
编辑ppt
2
1.7.1 定积分在几何中的应用
编辑ppt
3
例1 计算由曲线y2
x,y x2所围图形 的 面 积S. 分析 首先画草图
3
3
2
0
4编辑ppt
43
7
思考本题还有其他解 ?如法果吗,有 请 写出你的解 ,并法 比较一下这些 . 解法
由 上 面 例 题 可 以 发 ,在现利 用 定 积 分 求 平 面 图 形 的 面 积,一时般 要 先 画 出 它 的 草 图,再 借 助 图 形 直 观 确被定积出函 数 以 及 积 分 的 上 、.下 限

高数课件第六章定积分的应用:第二节定积分的几何应用

高数课件第六章定积分的应用:第二节定积分的几何应用

y
c
b O
x
bx
x
x x 1 sh dx ch dx c c b x xb s 2 ch dx 2c sh 0 c c 0 x b 1 x 2c sh ( c ch ) c sh c c c c
2
e e ch x 2 x x e e sh x 2 (ch x) sh x
Hale Waihona Puke 2 (t ) 2 (t ) d t
因此所求弧长
s


2 (t ) 2 (t ) d t
(3) 曲线弧由极坐标方程给出:
令 x r ( ) cos , y r ( ) sin , 则得
dx [r ( ) cos r ( ) sin ]d dy [r ( ) sin r ( ) cos ]d
2
选 x 为积分变量 (1) x [2, 0], dA1 ( x 3 6 x x 2 )dx 于是所求面积 A A1 A2
特别注意:
各积分区间 A ( x 3 6 x x 2 )dx 0 (x x 6 x)dx 上被积函数的 2 253 形式不同. . 12

0

3
2
3
x2 1 练习:1.求曲线 y , y 与直线 x 3 2 1 x 2
x 3 所围成的图形的面积。
2.求曲线 xy 1 与直线
x y 0 y 2
x y 2
P1
2
所围成的图形的面积。 2014考研题
提示:1
P2
y
1
32 1 0 2 1 1 3 x 1 x 1 1 s 2[ ( )d x ( ( 3 3 2) ) d x ] 2 0 1 x 1 3 2 2 1 x2

定积分在几何中的应用 课件

定积分在几何中的应用  课件

y=x2-3围成平面图形的面积是
S [3 2x (x2 3)]dx 3 (3 2x x2 )dx
1
1
(3x
x2
1 3
x3
31
(3 3 32 1 33) [1 3 (1)2 1 (1)3]
3
3
9 2 1 32 . 33
【拓展提升】求函数图象围成平面图形面积的方法 (1)画出两个函数的图象,先将两个函数方程联立方程组求 解,得到函数图象的交点的横坐标a,b(a<b),确定积分区间 [a,b]. (2)在公共的积分区间上,由上界函数减去下界函数作为被积 函数,定积分的值就等于两个函数图象围成平面图形的面
积,即 S a[b f1(x) (f其2 (中x)]fd1x(x)>f2(x)).
类型 二 计算复杂平面图形的面积 【典型例题】 1.由两条曲线y=x2, y 1 x2与直线y=1围成平面区域的面积
4
是_______.
2.求曲线 y x 与直线y=2-x,y 1 x 围成图形的面积.
3
【解题探究】1.题1中怎样确定积分变量的区间? 2.如何将图形的面积转化为定积分计算? 探究提示: 1.由直线y=1分别与曲线y=x2y, 1 x联2 立,求出交点坐标,
(2x
1 2
x2
1 6
x2)
13
=2 3
1 6
(2x
1 3
x2
)
13
=5 6 1 9 21 1 1=2 1 .
63
36
【互动探究】若将题2中条件变为如图由直线y=x-2,曲线 y2=x所围成图形,试求其面积S.
【解析】由
y2
x得, x=1或x=4,
y x 2,
故A(1,-1),B(4,2),如图所示:

高等数学第六章第二节定积分在几何学上的应用课件.ppt

高等数学第六章第二节定积分在几何学上的应用课件.ppt

解:
cos x 0,
2
x
2
s
2
2
2 2 0
1 y2 dx 1 ( cos x)2 dx
2 2
2 cos x dx
0
2
2
2
2
sin
x 2
2
0
4
的弧长.
例11. 计算摆线
一拱
的弧长 .
y
解: ds
(dd
x t
)2
(
d d
y t
)
2
d
t
o
a2 (1 cos t)2 a2 sin2 t d t
1 y2 dx
因此所求弧长
s b 1 y2 dx a
b
a
1 f 2(x) dx
y
y f (x)
ds
o a xxdxb x
(2) 曲线弧由参数方程给出:
弧长元素(弧微分) :
ds (dx)2 (dy)2
2 (t) 2 (t) dt
因此所求弧长
s
2 (t) 2 (t) d t
(3) 曲线弧由极坐标方程给出:
y b
o x ax
则 V 2 a y2 dx 0
(利用对称性)
2
b2 a2
a
(a
2
x2
)
dx
0
2
b2 a2
a2 x
1 3
x3
a 0
4 ab2
3
方法2 利用椭圆参数方程
则 V 20a y2 dx 2 ab2 sin3t d t
2 ab2 2 1
3
4 ab2
3
特别当b
=
a

《定积分课件》课件

《定积分课件》课件

03 定积分的应用
CHAPTER
面积与体积的计算
总结词
定积分在计算平面图形的面积和三维物体的体积方面具有广 泛应用。
详细描述
利用定积分,可以计算出由曲线围成的平面图形的面积,例 如由y=sinx和y=cosx围成的图形面积。此外,定积分还可以 用于计算三维物体的体积,例如球体、圆柱体和旋转体的体 积。
详细描述
在静水压力问题中,压力分布是深度的函数。通过定积分,我们可以计算任意 深度的压力分布,从而了解水下物体的受力情况。
引力场的强度
总结词
通过定积分计算引力场的强度,理解引 力场的分布规律。
VS
详细描述
在引力场中,场强是位置的函数。通过定 积分,我们可以计算任意位置的场强,从 而了解物体在引力场中的运动规律。
符号表示
02
定积分的符号为∫,读作“拉姆达”。
计算方法
03
定积分的计算方法是通过微积分基本定理,将定积分转化为求
原函数在某点的值。
定积分的几何意义
平面区域面积
定积分可以用来计算平面图形的面积,特别是 当面积元素与坐标轴平行时。
体积
定积分还可以用来计算三维物体的体积,例如 旋转体的体积。
曲线下面积
定积分可以用来计算曲线下在某一区间内的面积。
定积分的计算方法
要点一
总结词
定积分的计算方法包括直接法、换元法和分部积分法等。
要点二
详细描述
定积分的计算可以通过多种方法进行。直接法是根据微积 分基本定理,通过求原函数并计算其差值来得到定积分的 结果。换元法是在积分变量进行换元,使得积分简化。分 部积分法则是通过将两个函数的乘积进行积分,将一个积 分转化为另一个积分,从而简化计算。这些方法在计算定 积分时常常需要结合使用。

高中数学选修2-2定积分在几何中的应用课件

高中数学选修2-2定积分在几何中的应用课件

的交点为 (0, 0)
取x为积分变量, 则 x [0, 3].
所求的几何图形的面积表示为
A 3 ( x2 3x)dx 0
A 3 ( x2 3x)dx 9.
0
2
= 2
2
3
x2
3
4 0
+
2
2 3
3
x2
8 4
-
1 2
x-4 2
8 4
= 40 3
新知探究
例3
计算由曲线 y = x3 6x 和 y = x2 所围成的图形的面积.
首先画出草图,并设法把所求图形的面积问题转化为求两部分的面积问题.其次,确定被积函数 和积分的上、下限.
新知探究
由图可知,我们需要把所求图形的面积分成两部分 S1和S2 .需要求出曲线 y = x3 - 6x 、曲 线 y = x2 两个交点.
n
i =1 b
F = lim f λ →0 i=1
ξi Δxi =
f
a
x dx
新知探究
平面图形的面积 直角坐标系 设平面图形由上下两条曲线y=f上(x)与y=f下(x)及左右两 条直线x=a与x=b所围成.
新知探究
在点x处面积增量的近似值为 [f上(x)-f下(x)]dx, 它也就是面积元素. 因此平面图形的面积为
极坐标方程的情形
设由曲线 r = φθ 及射线 θ = α、θ = β 围成一曲边扇形, 求其面积.这里 φθ 在 α,β 上连续,且 φθ≥0 .
曲边扇形面积元素 dA = 1 [φ(θ)]2 dθ 2
d
r ( )
d
曲边扇形的面积公式 A = β 1[j(θ)]2 dθ. α2
o x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分在几何中的应用
题型一 不分割图形求面积
规律方法:求不分割图形面积的一般步骤: (1)在坐标系中画出由直线与曲线围成的图形;(2)求出直线 与曲线交点的横坐标并确定积分上、下限;(3)用定积分表 示图形的面积;(4)求定积分进而得到图形的面积.
题型二 分割图形求面积
规律方法:求两条曲线围成的平面图形的面积的步骤是: ①画图,确定图形范围④用微积分基本定理计算定积 分.
对图形分割不合理致误
【易错剖析】复杂图形的面积的求解,合理分割图形是 关键,方法一中的分割是解本题较好的一种方法.若不 能抓住图形的特征,进行合理分割,则会出现错解.
相关文档
最新文档