2014年上海海事大学考研真题 高等数学

合集下载

2014年上海海事大学考研真题 管理学

2014年上海海事大学考研真题 管理学

2014年上海海事大学攻读硕士学位研究生入学考试试题(重要提示:答案必须做在答题纸上,做在试题上不给分)考试科目代码810 考试科目名称管理学一、简答题(30分,每题5分)1.管理人员的选拔适合从哪些方面去考虑?2.简述德尔菲法的概念和步骤。

3.影响管理幅度的因素主要有哪些?4.简述前馈控制的优点和难点。

5.明茨伯格的研究显示管理者会扮演哪些角色?6.管理人员应如何进行信息的评估?二、选择题(40分,每题2分)1.霍桑实验表明()A.非正式组织对组织目标的达成是有害的B.正式组织对组织目标的达成是有益的C.企业应采取一切措施来取缔非正式组织D.企业应该正视非正式组织的存在2.预测既是计划工作的前提条件,又是计划工作的()A.组成部分B.基础C.结果D.保证3.授权时应依被授权者的才能和知识水平高低而定,这是授权原则的()A.扬长避短B.因人设职,视能授权C.任人唯贤D.因事设人,视能授权4.因领导者的特殊品格、个性或个人魅力而形成的权力是()A.法定权B.奖励权C.强制权D.统御权5.下列方法中属于风险型决策的方法是()A.决策树法B.线性规划法C.小中取大法D.量本利分析法6.下列各项不属于双因素理论所指的激励因素的是()A.工作本身B.同事关系C.承认D.晋升7.管理控制工作的一般程序是()A.建立控制标准、分析差异产生原因、采取矫正措施B.采取矫正措施、分析差异产生原因、建立控制标准C.建立控制标准、采取矫正措施、分析差异产生原因D.分析差异产生原因、采取矫正措施、建立控制标准8.管理创新的基准和出发点是()A.创新条件B.创新内容C.创新原则D.创新方法9.企业把客户、销售代理商、供应商、协助单位纳入生产体系,同他们建立起利益共享的合作伙伴关系,进而组成一个企业的供应链,这是()A.精益生产B.同步工程C.敏捷制造D.企业流程再造10.一家产品单一的跨国公司在世界许多地区拥有客户和分支机构,该公司的组织结构应该考虑按照什么因素来划分()A.职能B.产品C.地区D.矩阵结构11.采取工作轮换的方式来培养管理人员的最大优点是有助于()A.提供受训者的业务专精能力B.减轻上级领导的工作压力C.增强受训者的综合管理能力D.考察受训者的高层管理能力12.作为公司经理,当你发现公司内部存在许多小团体时,你应该()A.立即宣布这些小团体非法并予以取缔B.深入调查,找出小团体的领导人,向他们发出警告,不要再搞小团体C.只要小团体不影响企业正常运行,可以不闻不问、听之任之D.正视小团体存在的客观性,允许乃至鼓励小团体的存在,对其加以积极引导13.关于组织文化的特征,下列说法中不正确的是()A.组织文化的中心是人本文化B.组织文化的管理方式以柔性管理为主C.组织文化的核心是组织精神D.组织文化的重要任务是增强群体凝聚力14.权变理论的提出者是()A.布莱克B.菲德勒C.勒温D.施米特15.某企业对生产车间的工作条件进行了改善,这是为了更好地满足职工的()A.生理需求B.安全需求C.感情需求D.尊重需求16.向新来的员工支付比最低工资高一些的工资,由此推断该管理者接受的是()A.功利观B.权利观C.公平理论观D.综合社会理论观17.所谓的“跳一跳,摘桃子”指的是目标的()A.可考核性B.可接受性C.挑战性D.层次性18.若较低层次做出的决策比较重要、影响面较大,则该组织的权力划分特征为()A.分权程度较高B.集权程度较高C.集权分权程度相当D.分权程度较弱19.双向网络沟通中,倾向于集权化的沟通方式是()A.圆型B.轮型C.星型D.风车型20.罚款属于管理方法中的()A.法律方法B.经济方法C.教育方法D.行政方法三、论述题(40分,每题10分)1.管理的基本职能有哪些?试述这些基本职能间的关系。

上海海事大学2013-2014复变函数与积分变换A卷

上海海事大学2013-2014复变函数与积分变换A卷

第1页共4页上海海事大学试卷2013—2014学年第一学期期末考试《复变函数与积分变换》(A 卷)班级学号姓名总分一、填空题(共10题,每空3分,共30分)请将正确答案写在题目后面的横线上1.复平面中1Rez 2=所表示的平面曲线为___________.2.方程e 10z --=的解z=________________________________.3.-1的三次根是_____________________________________________.4.3223()33,f z x x yi xy y i z x yi =+--=+其中,则()f z '=______________________.5.2124z dz z z ==++⎰ ________________.6.0z i e dz π--=⎰________________.7.设C 为正向圆周|ζ|=2,c sin 3(z)d -zf πζζ=⎰ ,其中|z|<2,则(1)f '=_______________.8.设100i)(1z +=,则Imz =___________________________.9.已知函数[()](),[()]f t F tf t ω==则F F _________.10.若12120,0;0,0;()()()()=1,0,,0,t t t f t f t f t f t t e t -<<⎧⎧==*⎨⎨≥≥⎩⎩则_____________.题目一二三四五六得分阅卷人--------------------------------------------------------------------------------------装订线------------------------------------------------------------------------------------第2页共4页二、计算下列积分(共2题,其中第1题8分,第2题12分,共20分)1.(1)d cz z -⎰,其中积分路径C 为从点0到点1+i 的直线段.2.dz a z e c 22z⎰+,其中c:|z |=b 正向,且b>|a |.第3页共4页三、(10分)将函数)2)(1(1--z z 分别在区域0<|z -1|<1,1<|z -2|<+∞内展开为洛朗级数四、求下列积分变换(共2题,其中第1题8分,第2题12分,共20分)1.利用定义求函数()tf t e -=的Fourier 变换2.求22233()(1)(3)s s F s s s ++=++的Laplace 逆变换第4页共4页五、(10分)利用拉氏变换解常微分方程的初值问题2e ,(0)(0)(0)0t y y y y y '''''''+====六、(10分)利用留数方法计算()22022d ,0x x a x a +∞>+⎰。

2014年全国硕士研究生入学统一考试数学(二)真题及答案

2014年全国硕士研究生入学统一考试数学(二)真题及答案

2014年全国硕士研究生入学统一考试数学(二)真题及答案(江南博哥)1[单选题]A.(2,+∞)B.(1,2)C.(,1)D.(0,)正确答案:B参考解析:2[单选题]下列曲线中有渐近线的是().A.y=x+sin xB.y=x2+sin xC.y=x+sinD.y=x2+sin正确答案:C参考解析:3[单选题]设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上().A.当f’(x)≥0时,f(x)≥g(x)B.当f'(x)≥0时,f(x)≤g(x)C.当f”(x)≥0时,f(x)≥g(x)D.当f”(x)≥0时,f(x)≤g(x)正确答案:D参考解析:令F(x)=g(x)-f(x)=f(0)(1-x)+f(1)x-f(x),则 F(0)=F(1)=0,F'(x)=-f(0)+f(1)-f’(x),F”(x)=-f”(x).若f”(x)≥0,则F”(x)≤0,此时F(x)在[0,1]上为凸的.又F(0)=F(1)=0,所以当x∈[0,1]时,F(x)≥0,从而g(x)≥f(x).4[单选题]().A.B.C.D.正确答案:C参考解析:5[单选题]().A.1B.C.D.正确答案:D参考解析:6[单选题]A.u(x,y)的最大值和最小值都在D的边界上取得B.u(x,y)的最大值和最小值都在D的内部取得C.u(x,y)的最大值在D的内部取得,最小值在D的边界上取得D.u(x,y)的最小值在D的内部取得,最大值在D的边界上取得正确答案:A参考解析:由题意知,B≠0,A,C互为相反数.由于AC—B2<0,可知u(x,y)在D内无极值.而最值只可能在极值点、不可导点和区间端点(或区域边界)处取得,因此可知u(x,y)的最大值和最小值均在区域D的边界处取得.7[单选题]A.(ad—bc)2B.-(ad—bc)2C.a2d2-b2c2D.b2c2-a2d2正确答案:B参考解析:利用行列式的展开定理,按列步步展开,可得提示:本题也可用特殊值代入,通过排除,从而得出正确答案.令a=d=0,可得行列式值为-(bc)2,排除A、D项;令b=c=0,可得行列式值为-(ad)2,排除C项,故B项正确.8[单选题]设α1,α2,α3均为三维向量,则对任意的常数k,l,向量组α1+kα+lα3,线性无关是向量组α1,α2,α3线性无关的().3,α2A.必要非充分条件B.充分非必要条件C.充分必要条件D.既非充分也非必要条件正确答案:A参考解析:9[填空题]_______.参考解析:【解析】10[填空题]设f(x)是周期为4的可导奇函数,且f’(x)=2(x-1),x∈[0,2],则f(7)=_______. 参考解析:1【解析】由题意知,当x∈[0,2]时,又f(x)是周期为4的奇函数,可知f(0)=C=0,f(7)=f(-1)=-f(1)=1.11[填空题]_______. 参考解析:【解析】解法一将方程两边对x,y分别求偏导数,得12[填空题]曲线L的极坐标方程是r=θ,则L在点(r,θ)=()处的切线的直角坐标方程是_______.参考解析:【解析】13[填空题]一根长度为1的细棒位于x轴的区间[0,1]上,若其线密度p(x)=-x2+2x+1,则该细棒的质心横坐标=_______.参考解析:【解析】14[填空题]设二次型f(x1,x2,x3)=的负惯性指数是1,则a的取值范围是_______.参考解析:[-2,2]【解析】配方法:f(x1,x2,x3)=(x1+ax3)2-(x2-2x3)2+(4-a2)由于二次型负惯性指数为1,所以4-a2≥0,故-2≤a≤2.15[简答题]参考解析:16[简答题]已知函数y=y(x)满足微分方程x2+y2y’=1-y’,且y(2)=0,求y(x)的极大值与极小值.参考解析:由x2+y2y '=1-y' ,得17[简答题]设平面区域D={(x,y)| 1≤x2+y2≤4,x≥0,y≥0}.参考解析:区域D关于y=x对称,且满足轮换对称性,即18[简答题]参考解析:19[简答题]设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1,证明:(I)(1I)参考解析:20[简答题]参考解析:21[简答题]已知函数f(x,y)满足=2(y+1),且f(y,y)=(y+1)2-(2-y)ln y.求曲线f(x,y)=0所围图形绕直线y=-1旋转所成旋转体的体积.参考解析:22[简答题](I)求方程组Ax=0的一个基础解系; (Ⅱ)求满足AB=E 的所有矩阵B . 参考解析:23[简答题]参考解析:。

2014年普通高等学校招生全国统一考试(上海卷)数学试题(文科)解析版

2014年普通高等学校招生全国统一考试(上海卷)数学试题(文科)解析版

2 0 1 4年 全 国 普 通 高 等 学 校 招 生 统 一 考 试上海 数学试卷(文史类)考生注意:1、本试卷共4页,23道试题,满分150分。

考试时间120分钟。

2、本考试分设试卷和答题纸。

试卷包括试题与答题要求。

作答必须涂(选择题)或写(非选择题)在答题纸上。

在试卷上作答一律不得分。

3、答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸正面清楚地填写姓名。

一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。

1、函数._______)2(cos 212的最小正周期是x y -=1【答案】 2π【解析】2π4π2∴4cos -)2(cos 2-12====T x x y 周期Θ2、若复数z=1+2i ,其中i 是虚数单位,则⎪⎪⎭⎫ ⎝⎛_z 1 +z z ⋅=___________.2【答案】 6 【解析】61)41(1)1(∴21=++=+=•++=z z z zz i z Θ3.设常数a ∈R ,函数2()1f x x x a =-+-。

若(2)1f =,则(1)f =___________. 3【答案】 3 【解析】3.3|4-1|0)1(∴4,1|-4|1)2(∴|-||1-|)(2所以,是解得=+===+=+=f a a f a x x x f Θ4.若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________. 4【答案】 x=-2【解析】2-2-)0,2(2)0,2(159222==∴=∴=+x x px y y x 所以,是其准线方程为焦点为右焦点为ΘΘ5.某校高一、高二、高三分别有学生1600名、1200名、800名。

为了了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样。

若高三抽取20名学生,则高一、高二共需抽取的学生数为___________. 5【答案】 70【解析】按比例进行抽样,设高一高二共抽n 个学生,则(1600+1200):800=n:20,解得n=706.若实数x,y 满足xy=1,则2x +22y 的最小值为______________. 6【答案】 22 【解析】22,2222≥22y ∴1222222所以,是=•+=+=x x x x x xy Θ7.若圆锥的侧面积是底面积的3倍,则其母线与轴所成角的大小为 (结果用反三角函数值表示)。

2014考研数学一真题及答案

2014考研数学一真题及答案

(23) 【答案】 (1) EX
ˆ (2)
(3)存在
1 n X i2 n i 1
6( y )2 y 3 y 2 y 2 yy 2 yy x 2( y )2 x 2 yy 2 y 2 xy 2 xy x 2 y 0 12 y( 1 ) 4 y( 1 ) 4 y( 1 ) 0 9 y( 1 ) 4 y( 1 ) 9 0 4
y 2x 1 x
(12) (13)[-2,2] (14)
2 5n
三、解答题:15—23 小题,共 94 分.请将解答写在答题纸 指定位置上.解答应写出文字说明、 ... 证明过程或演算步骤. (15) 【答案】
2014 年全国硕士研究生入学统一考试数学一
x
lim

x
1
[ t ( e 1 ) t ] dt x 2 ln( 1
2E 2E f ( e x cos y )e 2 x ( 4 E e x cos y )e 2 x x 2 y 2 f ( e x cos y ) 4 f ( e x cos y ) e x cos y
令 e x cos y u , 则 f ( u ) 4 f ( u ) u , 故 f ( u ) C1e 2 u C 2 e 2u 由 f ( 0 ) 0 , f ( 0 ) 0 , 得
(21) 【答案】利用相似对角化的充要条件证明。
0, y 0, 3 y, 0 y 1, 4 (22) 【答案】 (1) FY y 1 1 1 y ,1 y 2, 2 2 1, y 2.
(2)
3 4 1 , EX 2 2
1 x x

2014年数学一真题与答案解析

2014年数学一真题与答案解析

2014年全国硕士研究生入学统一考试数学一2014年全国硕士研究生入学统一考试数学一试题答案一、选择题:1 8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 下列曲线有渐近线的是 ( )(A)sin y x x =+ (B)2sin y x x =+ (C)1sin y x x =+ (D)21sin y x x=+ 【答案】(C)【解析】关于C 选项:11sinsinlimlim1lim 101x x x x x x x x →∞→∞→∞+=+=+=,又 11lim[sin ]lim sin 0x x x x x x →∞→∞+-==,所以1sin y x x=+存在斜渐近线y x =. 故选(C).(2) 设函数()f x 具有二阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上 ( )(A) 当()0f x '≥时,()()f x g x ≥ (B) 当()0f x '≥时,()()f x g x ≤ (C) 当()0f x ''≥时,()()f x g x ≥ (D) 当()0f x ''≥时,()()f x g x ≤ 【答案】(D)【解析】令()()()(0)(1)(1)()F x g x f x f x f x f x =-=-+-,则(0)(1)0F F ==,()(0)(1)()F x f f f x ''=-+-,()()F x f x ''''=-.若()0f x ''≥,则()0F x ''≤,()F x 在[0,1]上为凸的.又(0)(1)0F F ==,所以当[0,1]x ∈时,()0F x ≥,从而()()g x f x ≥. 故选(D).2014年全国硕士研究生入学统一考试数学一(3) 设()f x 是连续函数,则110(,)ydy f x y dx -=⎰⎰( )(A) 1100010(,)(,)x dx f x y dy dx f x y dy --+⎰⎰⎰ (B)1101(,)(,)xdx f x y dy dx f x y dy --+⎰⎰⎰⎰(C)112cos sin 02(cos ,sin )(cos ,sin )d f r r dr d f r r dr ++⎰⎰⎰⎰ππθθπθθθθθθ(D)112cos sin 02(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ++⎰⎰⎰⎰ππθθπθθθθθθ【答案】(D) 【解析】1101101(,)(,)(,)yxdy f x y dx dx f x y dy dx f x y dy ---=+⎰⎰⎰⎰⎰112cos sin 02(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr +=+⎰⎰⎰⎰ππθθπθθθθθθ.故选(D). (4) 若{}ππ2211-π-π,(cos sin )min(cos sin )a b Rx a x b x dx x a x b x dx ∈--=--⎰⎰,则11cos sin a x b x +=32260y xy x y +++= ( )(A) 2sin x (B) 2cos x (C) 2sin x π (D) 2cos x π 【答案】(A) 【解析】2222(cos sin )(sin )2cos (sin )cos x a x b x dx x b x a x x b x a x x dx --⎡⎤--=---+⎣⎦⎰⎰ππππ22222(2sin sin cos )x bx x b x a x dx -=-++⎰ππ2222202(sin cos 2sin )x dx b x a x bx x dx -=++-⎰⎰πππ223124()422223a b b =+⋅-⋅+πππ 2232(4)3a b b =+-+ππ2014年全国硕士研究生入学统一考试数学一2232(2)43a b ⎡⎤=+--+⎣⎦ππ当0,2a b ==时,积分最小. 故选(A).(5) 行列式0000000a b abc d c d= ( )(A)2()ad bc - (B)2()ad bc -- (C)2222a dbc - (D)2222b c a d - 【答案】(B)【解析】由行列式的展开定理展开第一列0000000000000000a b a b a b a ba c d cbcd d c d c d=-- ()()ad ad bc bc ad bc =--+- 2()ad bc =--.故选(B).(6) 设123,,a a a 均为三维向量,则对任意常数,k l ,向量组13a ka +,23a la +线性无关是向量组()123=B ααα线性无关的 ( )(A)必要非充分条件 (B)充分非必要条件 (C)充分必要条件(D)既非充分也非必要条件【答案】(A) 【解析】()()13231231001k l k l ⎛⎫⎪++= ⎪ ⎪⎝⎭ααααααα.)⇐ 记()1323A k l =++αααα,()123B =ααα,A . 若123,,ααα线性无关,则2014年全国硕士研究生入学统一考试数学一()()()2r A r BC r C ===,故()0.3P A B -=线性无关.()P B A -= 举反例. 令30=α,则12,αα线性无关,但此时123,,ααα却线性相关.综上所述,对任意常数402Q p =-,向量p 线性无关是向量D 线性无关的必要非充分条件. 故选(A).(7) 设随机事件A 与B 相互独立,且()0.5P B =,()0.3P A B -=,则()P B A -= ( ) (A)0.1 (B)0.2 (C)0.3 (D)0.4 【答案】(B)【解析】 已知a =,A 与()2123121323,,24f x x x x x ax x x x =-++独立,a ,()()()()()()P A B P A P AB P A P A P B -=-=-()0.5()0.5()0.3P A P A P A =-==,则 ()0.6P A =,则()()()()()()0.50.50.60.50.30.2P B A P B P AB P B P A P B -=-=-=-⨯=-=.故选(B).(8) 设连续性随机变量1X 与2X 相互独立,且方差均存在,1X 与2X 的概率密度分别为1()f x 与2()f x ,随机变量1Y 的概率密度为1121()[()()]2Y f y f y f y =+,随机变量2121()2Y X X =+,则( )(A) 12EY EY >,12DY DY > (B) 12EY EY =,12DY DY =(C) 12EY EY =,12DY DY < (D) 12EY EY =,12DY DY > 【答案】(D)【解析】 用特殊值法. 不妨设12,(0,1)X X N ,相互独立. 22212221())2y y y Y f y ---==,1(0,1)Y N .2014年全国硕士研究生入学统一考试数学一2121()2Y X X =+,212212111()(()())0,()(()())242E Y E X E X D Y D X D X =+==+=. 12121()()0,()1()2E Y E Y D Y D Y ===>=.故选(D).二、填空题:9 14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 曲面22(1sin )(1sin )z x y y x =-+-在点(1,0,1)处的切平面方程为__________. 【答案】21x y z --=【解析】由于22(1sin )(1sin )z x y y x =-+-,所以22(1sin )cos x z x y x y '=--⋅,(1,0)2x z '=;2cos 2(1sin )yz x y y x '=-+-,(1,0)1y z '=-. 所以,曲面在点(1,0,1)处的法向量为{2,1,1}n =--. 故切平面方程为2(1)(1)(0)(1)0x y z -+----=,即21x y z --=.(10) 设()f x 是周期为4的可导奇函数,且()f x '2(1),x =-[0,2]x ∈,则(7)f =__________.【答案】1【解析】由于()f x '2(1)x =-,[0,2]x ∈,所以2()(1)f x x C =-+,[0,2]x ∈.又()f x 为奇函数,(0)0f =,代入表达式得1C =-,故2()(1)1f x x =--,[0,2]x ∈.()f x 是以4为周期的奇函数,故2(7)(18)(1)(1)[(11)1]1f f f f =-+=-=-=---=.(11) 微分方程(ln ln )0xy y x y '+-=满足条件3(1)y e =的解为y =__________.2014年全国硕士研究生入学统一考试数学一【答案】21(0)x y xe x +=>【解析】(ln ln )0xy y x y '+-=ln()y y y x x'⇒=. 令yu x=,则y x u =⋅,y xu u ''=+,代入原方程得 ln xu u u u '+=(ln 1)u u u x-'⇒=分离变量得,(ln 1)du dxu u x=-,两边积分可得 ln |ln 1|ln u x C -=+,即ln 1u Cx -=.故ln1y Cx x -=. 代入初值条件3(1)y e =,可得2C =,即ln 21yx x=+. 由上,方程的解为21,(0)x y xe x +=>.(12) 设L 是柱面221x y +=与平面0y z +=的交线,从A 0x =轴正向往z 轴负向看去为逆时针方向,则曲线积分Lzdx ydz +=⎰ __________.【答案】π【解析】由斯托克斯公式,得0Ldydz dzdx dxdyzdx ydz dydz dzdx x y z z y∑∑∂∂∂+==+∂∂∂⎰⎰⎰⎰⎰xyD dydz dzdx =+=⎰⎰π,其中22{(,)|1}xy D x y x y =+≤.(13) 设二次型()22123121323,,24f x x x x x ax x x x =-++的负惯性指数是1,则a 的取值范围_________. 【答案】[]2,2-2014年全国硕士研究生入学统一考试数学一【解析】配方法:()()()22222123133233,,24f x x x x ax a x x x x =+---+由于二次型负惯性指数为1,所以240a -≥,故22a -≤≤.(14) 设总体X 的概率密度为()22,2,;30,xx f x ⎧<<⎪=⎨⎪⎩θθθθ其他,其中θ是未知参数,12,,,n X X X 为来自总体X 的简单样本,若221()nii E cX==∑θ,则c =_________.【答案】25n【解析】 222222()(;)3x E X x f x dx x dx +∞-∞==⋅⎰⎰θθθθ 2422215342x =⋅=θθθθ,222215[]()2ni i n E cX ncE X c ===⋅=∑θθ, 25c n∴=. 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限12121lim.1ln 1xtx t e t dt x x →+∞⎡⎤⎛⎫--⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎛⎫+ ⎪⎝⎭⎰【解析】11221122d d (e 1)(e 1)lim lim 11ln(1)xx t t x x t t t t t t x x x x→+∞→+∞⎡⎤⎡⎤----⎢⎥⎢⎥⎣⎦⎣⎦=+⋅⎰⎰12lim [(e 1)]xx x x →+∞=--2014年全国硕士研究生入学统一考试数学一12000e 1e 11lim lim lim 222t t t xt t t t t t t t +++=→→→---====. (16)(本题满分10分)设函数()y f x =由方程32260y xy x y +++=确定,求()f x 的极值. 【解析】对方程两边直接求导:2223220y y y xyy x y xy '''++++= ①令1x 为极值点,则由极值必要性知:1()0y x '=,代入①式得:2111()2()0y x x y x +=.即1()0y x =或11()2y x x =-. 将其代入原方程知:1()0y x =(舍去),即11()2y x x =-. 代入,有 33311184260x x x -+-+=,∴11x =. 即(1)2y =-,(1)0y '=.对①式两边再求导:22226()322()222220y y y y yy x y xyy yy xy x y y xy ''''''''''''+++++++++=.将(1)2y =-,(1)0y '=代入得:4(1)09y ''=>. ∴()y f x =在1x =处取极小值,(1)2y f ==-.(17)(本题满分10分)设函数()f u 具有二阶连续导数,()cos xz f e y =满足()222224cos .x xz z z e y e x y∂∂+=+∂∂若()()00,00f f '==,求()f u 的表达式.【解析】由()cos ,xz f e y =()(cos )cos ,(cos )sin x x x x z zf e y e y f e y e y x y∂∂''=⋅=⋅-∂∂ 22(cos )cos cos (cos )cos x x x x x zf e y e y e y f e y e y x∂'''=⋅⋅+⋅∂,2014年全国硕士研究生入学统一考试数学一()()()22(cos )sin sin (cos )cos x x x x xz f e y e y e y f e y e y y∂'''=⋅-⋅-+⋅-∂ 由 ()22222+4cos x x z zz e y e x y∂∂=+∂∂,代入得,()()22cos 4[cos cos ]x x x x x f e y e f e y e y e ''⋅=+,即()()cos 4cos 4cos x x x f e y f e y e y ''-=,令cos =,x e y t 得()()44f t f t t ''-=特征方程 240,2-==±λλ 得齐次方程通解2212t t y c e c e -=+ 设特解*y at b =+,代入方程得1,0a b =-=,特解*y t =- 则原方程通解为()2212=tty f t c e c et -=+-由()()'00,00f f==,得1211,44c c ==-, 则()2211=44u uy f u e e u -=-- (18)(本题满分10分)设∑为曲面22z x y =+(z 1)≤的上侧,计算曲面积分33(1)(1)(1)I x dydz y dzdx z dxdy ∑=-+-+-⎰⎰.【解析】∑非闭,补1∑:平面1z =,被22z x y =+所截有限部分下侧,由Gauss 公式,有 133+(1)(1)(1)x dydz y dzdx z dxdy ∑∑--+-+-⎰⎰223(1)3(1)1x y dV Ω⎡⎤=-+-+⎣⎦⎰⎰⎰ 223()667x y dV xdV ydV dV ΩΩΩΩ=+--+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2014年全国硕士研究生入学统一考试数学一∑和1∑所围立体为Ω,Ω关于yoz 面和zox 面对称,则0xdV ydV ΩΩ==⎰⎰⎰⎰⎰⎰22221221()x y x y x y dV dxdy dz +Ω+≤+=⎰⎰⎰⎰⎰⎰=21220(1)d r r rdr -⎰⎰πθ461011112()2()46466r r =-=-=πππ22112x y zdV dzdxdy zdz Ω+≤===⎰⎰⎰⎰⎰⎰⎰ππ173746222∑+∑∴-=⋅+⋅=+=⎰⎰πππππ 14∑+∑∴-=⎰⎰π又22111(1)(11)0x y z dxdy dxdy ∑∑+≤=-=--=⎰⎰⎰⎰⎰⎰1114I ∑+∑∑∴=-=-⎰⎰⎰⎰π(19)(本题满分10分)设数列{}{},n n a b 满足02n a <<π,02n b <<π,cos cosb n n n a a -=,且级数1nn b∞=∑收敛.(I) 证明:lim 0n n a →∞=.(II) 证明:级数1nn na b ∞=∑收敛. 【解析】(I )1nn b∞=∑收敛 lim 0n n b →∞∴=cos cos 2sinsin 022sin 02n n n n n n n n n a b a ba ab a b+-=-=->-∴<又424nn a b --<< ππ,042n n a b-∴-<<π2014年全国硕士研究生入学统一考试数学一即:n n a b <又0,n n a b << lim 0n n b →∞= lim 0n n a →∞∴=(II )证明:由(I )2sinsin 22n n n n n a b a ba +-=- 2sin sin 22n n n nn n na b a b a b b +--∴= 222222222n n n nn n n n n n n a b b a b a b b b b b +--≤=<= 又 1n n b ∞=∑收敛 ∴12nn b ∞=∑收敛,1n n na b ∞=∑收敛(20)(本题满分11分)设矩阵123401111203A --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,E 为三阶单位矩阵.(I)求方程组0Ax =的一个基础解系; (II)求满足AB E =的所有矩阵B .【解析】()123410012341000111010011101012030010431101A E ----⎛⎫⎛⎫⎪ ⎪=-→- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭ 123410010012610111010010213100131410013141---⎛⎫⎛⎫ ⎪ ⎪→-→--- ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭, (I)0Ax =的基础解系为()1,2,3,1T=-ξ (II)()()()1231,0,0,0,1,0,0,0,1TTTe e e ===1Ax e =的通解为()()111112,1,1,02,12,13,T Tx k k k k k =+--=--+-+ξ 2Ax e =的通解为()()222226,3,4,06,32,43,TTx k k k k k =+--=--+-+ξ 3Ax e =的通解为()()333331,1,1,01,12,13,TTx k k k k k =+-=--++ξ2014年全国硕士研究生入学统一考试数学一123123123123261123212134313k k k k k k B k k k k k k ----⎛⎫ ⎪-+-++⎪∴= ⎪-+-++ ⎪ ⎪⎝⎭(123,,k k k 为任意常数)(21)(本题满分11分)证明n 阶矩阵111111111⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭与00100200n ⎛⎫⎪ ⎪⎪⎪⎝⎭相似. 【解析】已知()1111A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ ,()12001B n ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭=, 则A 的特征值为n ,0(1n -重).A 属于n =λ的特征向量为(1,1,,1)T ;()1r A =,故0Ax =基础解系有1n -个线性无关的解向量,即A 属于0=λ有1n -个线性无关的特征向量,故A 相似于对角阵0=0n ⎛⎫ ⎪⎪Λ ⎪ ⎪⎝⎭. B 的特征值为n ,0(1n -重),同理B 属于0=λ有1n -个线性无关的特征向量,故B 相似于对角阵Λ.由相似关系的传递性,A 相似于B . (22)(本题满分11分)设随机变量X 的概率分布为{}{}112,2P X P X ====在给定X i =的条件下,随机变量Y 服从均匀分布()0,,(1,2)U i i =.(I )求Y 的分布函数()Y F y ; (II )求EY .【解析】(I )设Y 的分布函数为(y)Y F ,则2014年全国硕士研究生入学统一考试数学一{}{}{}{}{}()1|12|2Y F y P Y y P X P Y y X P X P Y y X =≤==≤=+=≤={}{}11|1|222P Y y X P Y y X =≤=+≤= 当0y <时,()0Y F y =;当01y ≤<时,13()(y )224Y y yF y =+=; 当12y ≤<时,1()(1)22Y yF y =+;当2y ≥时,()1Y F y =. 所以Y 的分布函数为0,03,014()1(1),12221,2Y y y y F y y y y <⎧⎪⎪≤<⎪=⎨⎪+≤<⎪⎪≥⎩(II) Y 的概率密度为3,01,41(y),12,40,Y y f y ⎧<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩其他.120131()=()d 44Y E Y f y y y dy y dy +∞-∞=+⎰⎰⎰ =31113(41)42424⨯+⨯-=(23)(本题满分11 分)设总体X 的分布函数为21(;)0,0,0,x x x e F x -≥<⎧⎪-=⎨⎪⎩θθ其中θ是未知参数且大于2014年全国硕士研究生入学统一考试数学一零.12,,,n X X X 为来自总体X 的简单随机样本.(I )求()E X ,2()E X ;(II )求θ的最大似然估计量nθ;(III )是否存在实数a ,使得对任何0>ε,都有{}lim 0n n P a →∞-≥=θε?【解析】X 的概率密度为22,0(;)(;)0,xx e x f x F x -⎧⎪>'==⎨⎪⎩θθθθ其它 (I )22()(;)x xE X xf x dx xedx -+∞+∞-∞==⎰⎰θθθ222[]x x x xdexeedx ---+∞+∞+∞=-=--⎰⎰θθθ2x edx -+∞=⎰θ12==22222()(;)x xE X x f x dx x edx -+∞+∞-∞==⎰⎰θθθ222220[2]x x x x dex eexdx ---+∞+∞+∞=-=--⋅⎰⎰θθθ22x xedx -+∞=⎰θθθ=θ2014年全国硕士研究生入学统一考试数学一(II )似然函数2112,0()(;)0,ix n i ni i i x e x L f x -==⎧⎪∏>=∏==⎨⎪⎩θθθθ其它当0(1,,)i x i n >=⋅⋅⋅时,212()i x nii x L e-==∏θθθ,21ln ()[ln 2ln ]ni i i x L x ==--∑θθθ222211ln ()11[][]0n ni i i i x d L x n d ===-+=-=∑∑θθθθθθ 解得 211n i i x n ==∑θ所以,θ的最大似然估计量为211ˆnni i X n ==∑θ (III )依题意,问ˆnθ是否为θ的一致估计量. 2211ˆ()()()nni i E E X E X n ====∑θθ 242211ˆ()()[()()]nD D XE X E X n n==-θ 24442()(;)x xE X x f x dx x edx -+∞+∞-∞==⎰⎰θθθ2224430[4]x x x x dex eex dx ---+∞+∞+∞=-=--⋅⎰⎰θθθ2304x x edx -+∞=⎰θ22222022[2]x x x x dex eexdx ---+∞+∞+∞=-=--⋅⎰⎰θθθθθ2014年全国硕士研究生入学统一考试数学一24x xedx -+∞=⎰θ2222()x x ed -+∞=--⎰θθθ22=θ2221ˆ()[2]nD n n∴=-=θθθθ ˆlim ()0n n D →∞=θˆn∴θ为θ的一致估计量 a ∴=θ。

2014年数学二真题+答案解析

2014年数学二真题+答案解析

2
上,若其线密度 x
2014 年全国硕士研究生入学统一考试数学二
x2 2x 1,则该细棒的质心坐标 x __________.
(14) 设二次型 f x1, x2 , x3 x12 x22 2ax1x3 4x2 x3 的负惯性指数为 1,则 a 的取值范围为
_______. 三、解答题:15~23小题,共 94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证 明过程或演算步骤. (15)(本题满分 10分)
()
(A) 当 f (x) 0 时, f (x) g(x)
(B) 当 f (x) 0 时, f (x) g(x)
(C) 当 f (x) 0 时, f (x) g(x)
(D) 当 f (x) 0 时, f (x) g(x)
(4) 曲 线
x t2 7 上 对 应 于 t 1的 点 处 的 曲 率 半 径 是 y t2 4t 1
()
10 (A) 50
10 (B) 100
(C)10 10
(D)5 10
2
(5)
设函数
f (x) arctan x , 若
f (x) xf ( ) ,

lim x x2
0
()
(A)1
2 (B) 3
(C)1 2
(D)1 3
(6) 设 函 数 u(x, y) 在 有 界 闭 区 域 D 上 连 续 , 在 D 的 内 部 具 有 2 阶 连 续 偏 导 数 , 且 满 足
x t2
1
et
1
t dt
1
求极限 lim
.
x
x2 ln 1
1 x
(16)(本题满分 10分)
已知函数 y y x 满足微分方程 x y y 1 y ,且 y 2 0 ,求 y x 的极大值与极

上海海事大学数据结构及程序设计2014年—2018年考研真题考研试题

上海海事大学数据结构及程序设计2014年—2018年考研真题考研试题

11. 如下图(图 1)所示是一个索引顺序表,如果第一阶段采用顺序查找,则查找元素 42 要进行( ) 元素间的比较。
A. 7 次
B. 6 次
图1
C. 8 次
Hale Waihona Puke D. 9 次12. 循环队列存储在数组 A[0..m]中,则入队时的操作为 ( )。
A. rear=rear+1
B. rear=(rear+1) mod (m-1)
5. 对于一个有向图,若一个顶点的入度为 k1、出度为 k2,则对应逆邻接表中该顶点单链表中的结点数
为 ( )。
A.k2
B.k1
C.k1-k2
D.kl+k2
6. 设栈 S 和队列 Q 的初始状态为空,元素 e1,e2,e3,e4,e5 和 e6 依次通过栈 S,一个元素 出栈后即进队列 Q,若 6 个元素出队的序列是 e2,e4,e3,e6,e5,e1 则栈 S 的容量最少应该是
14. 设有带权分别为 9,2,5,7 的四个叶子所组成的哈夫曼树,那么其带权路径长度是( )。
A. 44
B. 37
C. 23
D. 46
15. 串的长度是( )。 A. 串中不同字符的个数 C. 串中所含字符的个数且字符个数大于 0
B. 串中不同字母的个数 D. 串中所含字符的个数
三、 简答及运算题(共 5 题,每题 10 分,共 50 分)
三.选择题(本题 30 分,每空 2 分)
1.若 int a=1, b=2, c=3, d=4, m=2, n=2; 执行(m=a>b)&&(n=c>d)后 n 的值为(
)。
A.1
B.2
C.0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个基础解系。证明: , 1 ,… n r 线性无关。
*
3
e2 (0,1,0)T , e3 (0,0,1)T 下的矩阵是------------------。
10.设矩阵 A= aij ,其特征多项式为 f | E A | n a1 n1 … an1 an ,若用
nn
A 的元素表示 f 的系数,我们有 a1 =------二(15 分) 、 t 取何值时,非齐次线性方程组
3 5 2 0
1 1 0 5
1 2 3 4 1 3 1 3
,D 的 (i, j ) 元的代数余子式记作 Aij ,则 A43 A44 =

7.设 A= aij
是一 n 阶正定矩阵,而 , R n ,在线性空间 R 中定义内积; nn
n
n
( , )= A ,则 R 关于这种内积构成一个 Euclid 空间。在此定义下,计算 n 维 向量 (1,
3.设 A 是 4 阶方阵, A 3 ,则 2 A2 。

1 1 2 t 的秩最小,则 t 4.要使矩阵 A 1 1 2 3 4

5.设 3 阶矩阵 A 的特征值 1,-2,3,则 | A3 5 A2 7 A | =

6.设 D
化成标准形。
a b c 四 (16 分)、 设 R 是实数域, V 0 a b a, b, c R 。 0 0 a
(1) 、证明 V 关于矩阵的加法和数量乘法构成 R 上的线性空间。
a1 (2) 、任意的 A 0 0
1 , 0 ,… 0)' 的长度

8.如果 A 是正交矩阵。若 k 是实数,使得 kA 为正交矩阵,则 k= -------。
T 9 .在 R 中,线性变换 A ( x1 , x2 , x3 )T (3x1 x2 , x2 x3 , x1 )T , 那么 A 在基 e1 (1, 0, 0) ,
明 V 是欧氏空间。
a2 a1 0
a3 b1 b2 a2 ,B 0 b1 a1 0 0
b3 b2 定义二元函数 ( A, B) a1b1 a2b2 a3b3 。证 b1
五 (15 分)、 证明:如果 是 n 维欧氏空间的一个正交变换,那么 的不变子空间的正交 补也是 的不变子空间。
an =----------- 。
tx1 x1 x 1
x2 tx2 x2

x3 x3

1 t
tx3
t2
(1) 、有唯一解; (2) 、无解; (3) 、有无穷多解,并求出通解。
三(24 分) 、求一个正交变换把下列二次型
2 2 f ( x1 , x2 , x3 ) x12 2 x2 2 x3 4 x1 x2 4 x1 x3 8x2 x3
2014 年上海海事大学攻读硕士学位研究生入学考试试题
(重要提示:答案必须做在答题纸上,做在试题上不给分)
考试科目代码
一 填空题: (50分)
考试科目名称
高等代数
1. 11 5 3 , 2 4 7 Leabharlann ,则 T =TT

67 98 19 2.设三阶方阵 A 0 yx 2 可逆,则 x, y 应满足条件 0 x x
六(15 分) 、 设 A 是 n 阶矩阵 n 2 并且 rank( A) n 1 . 证明: rank ( A* ) 1 . 其中 A* 表 示 A 的伴随矩阵。
七(15 分) 、设 * 是 n 元非齐次线性方程组 AX=b 的一个解, 1 ,… n r 是对应的齐次线性方程组的
相关文档
最新文档