2019届人教B版(文科数学) 二元一次不等式(组)与简单的线性规划问题 单元测试

2019届人教B版(文科数学)   二元一次不等式(组)与简单的线性规划问题   单元测试
2019届人教B版(文科数学)   二元一次不等式(组)与简单的线性规划问题   单元测试

一、填空题

1.若x ,y 满足不等式组????

?

x +y -3≤0,x -y +3≥0,

y ≥-1,

则 =3x +y 的最大值为

【解析】将 =3x +y 化为y =-3x + ,作出可行域如图阴影部分所示,易知当直线y =-3x + 经过点D 时,

取得最大值.联立?

??

??

x +y -3=0,

y =-1,得D (4,-1),此时 max =4×3-1=11,

2.已知x ,y 满足约束条件????

?

x ≥2,x +y ≤4,

-2x +y +c ≥0,

目标函数 =6x +2y 的最小值是10,则 的最大值是

即D (3,1),将点D 的坐标代入目标函数 =6x +2y ,得 max =6×3+2=20.

3.若x ,y 满足????

?

x +y -2≥0,kx -y +2≥0,

y ≥0,

且 =y -x 的最小值为-4,则k 的值为

4.若x ,y 满足约束条件???

??

3x -y ≥0,

x +y -4≤0,

y ≥12x 2

则 =y -x 的取值范围为

【解析】作出可行域如图所示,设直线l :y =x + ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0

的交点(1,3)时, 取得最大值2;当l 与抛物线y =12x 2

相切时, 取得最小值,由?????

z =y -x ,y =12x 2

,消去y 得

x 2-2x -2 =0,由Δ=4+8 =0,得 =-1

2

,故-12

≤ ≤2.

5.在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域????

?

x -2≤0,x +y ≥0,

x -3y +4≥0

的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=

【解析】作出不等式组所表示的平面区域如图中阴影部分所示,过点C ,D 分别作直线x +y -2=0的垂线,

垂足分别为A ,B ,则四边形ABDC 为矩形,由????

?

x =2,x +y =0

得C (2,-2).由???

?

?

x -3y +4=0,x +y =0

得D (-1,1).所

以|AB |=|CD |=

2

+-2-

2

=3 2.

6.已知变量x ,y 满足约束条件????

?

x +2y -3≤0,x +3y -3≥0,

y -1≤0,

若目标函数 =ax +y (其中a >0)仅在点 (1,1)处取得

最大值,则a 的取值范围为

7.若直线y =2x 上存在点(x ,y )满足约束条件????

?

x +y -3≤0,x -2y -3≤0,

x ≥m ,

则实数m 的最大值为 .

【解析】约束条件????

?

x +y -3≤0,x -2y -3≤0,

x ≥m

表示的可行域如图中阴影部分所示.当直线x =m 从如图所示的实线

位置运动到过A 点的虚线位置时,m 取最大值.解方程组?

??

??

x +y -3=0,

y =2x 得A 点坐标为(1,2),∴m 的最大

值是1. 【答案】1

8.已知实数x ,y 满足????

?

x -2y +1≥0,x <2,

x +y -1≥0,

则 =2x -2y -1的取值范围是 .

【解析】画出不等式组所表示的区域,如图中阴影部分所示,可知2×13-2×2

3

-1≤ <2×2-2×(-1)-1,

即 的取值范围是????

??-53,5.

【答案】????

??-53,5 9.已知x ,y 满足????

?

y -2≤0,x +3≥0,

x -y -1≤0,

x +y -6

x -4

的取值范围是 .

【答案】?

?????1,137

10.实数x ,y 满足不等式组????

?

x -y +2≥0,2x -y -5≤0,

x +y -4≥0,

则 =|x +2y -4|的最大值为 .

【答案】21

二、解答题

11.若x ,y 满足约束条件????

?

x +y ≥1,x -y ≥-1,

2x -y ≤2.

(1)求目标函数 =12x -y +1

2

的最值;

(2)若目标函数 =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围.

解:(1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0).平移初始直线12x -y +12=0,可知 =1

2x -y

+1

2过A (3,4)时取最小值-2,过C (1,0)时取最大值1. 所以 的最大值为1,最小值为-2.

(2)直线ax +2y = 仅在点(1,0)处取得最小值,由图象可知-1<-a

2<2,解得-4<a <2.故所求a 的取值

范围为(-4,2).

12.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5

元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.

(1)试用每天生产的卫兵个数x与骑兵个数y表示每天的利润w(元);

(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

基本不等式与线性规划

基本不等式与线性规划

不等式(二) 一.基本不等式(ab b a 2 ≥+一正:两个数或式子必须都为 正数. 二定;必须有和定或积定 三相等:等号成立为最值存在的充分,那里使用基本不等式,那两个数相等) 积定,和有最小( 1.设41 4,4-+-=>x x y x 2.设 4 1 ,4-+ =>x x y x 3.1,1>>b a ,则a b b a log log +的最小为 .4.下列函数中,最小值为22的是 ( ) A .x x y 2+= B .)0(sin 2 sin π<<+=x x x y C .x x e e y -+=2 D .2 log 2log 2 x x y += 5.下列各函数中,最小值为2的是 ( ) A .y=x +x 1 B .y= sinx +x sin 1 ,x ∈(0,2π) C .y= 2 32 2++x x D .y= x x 1 +

6.若lg x +lg y =2,则x 1+y 1 的最小值为( ) A .201 B .51 C .2 1 D .2 7.(10.重庆)已知0>t ,则函数t t t y 142+-= 的最小值 为 . 8.若1>=+y x y x 则y x 2 1+的最小 . (09.天津)设0,0>>b a ,若3是a 3与b 3的等比中项,则b a 1 1+的最小值为( ) A .8 B .4 C .1 D .4 1 已知312,0,0=+>>y x y x ,则y x 11+的最小 . 若实数a 、b 满足的最小值是则b a b a 22,2+=+ ( ) A .8 B .4 C .22 D .4 22 和定,积有最大(和定的判断依据:相反符号) 1.设 , 20<

不等式与线性规划

1. 不等式2560x x -++≥的解集是______________________________ 2. ()21680k x x --+<的解集是425x x x ??<->???? 或,则k =_________ 3. 不等式20ax bx c ++>的解集为{} 23x x <<,则不等式20ax bx c -+>的解集是___ 4. 若0a b >>,则()()0a bx ax b --≤的解集是_____________________ 5. 已知点(2 , 1)和点(-4 , 5)在直线 3x –2y + m = 0 的两侧,则 m 的取值范围 为_________ 6. 若?????≥+≤≤2 22y x y x ,则目标函数 z = x + 2 y 的取值范围是______________ 7. 已知x ,y 满足?????≥-+≥≥≤-+0320 ,1052y x y x y x ,则x y 的最大值为___________,最小值为____________ 8. 不等式组260302x y x y y +-≥??+-≤??≤? 表示的平面区域的面积为___________ 9. 、已知x 、y 满足以下约束条件220240330x y x y x y +-≥??-+≥??--≤? ,则z=x 2+y 2的最大值和 最小值分别是___________ 10. 已知x 、y 满足以下约束条件5503x y x y x +≥??-+≤??≤? ,使z=x+ay(a>0)取得最小值 的最优解有无数个,则a 的值为___________ 11. 若不等式kx 2-2x+6k<0(k ≠0). (1)若不等式解集是{x|x<-3或x>-2},求k 的值; (2)若不等式解集是R ,求k 的取值。 12. 某运输公司接受了向抗洪抢险地区每天至少送180t 支援物资的任务.该公司有8辆载重为6t 的A 型卡 车与4辆载重为10t 的B 型卡车,有10名驾驶员;每辆卡车每天往返的次数为A 型卡车4次,B 型卡车3次;每辆卡车每天往返的成本费A 型车为320元,B 型车为504元.请你们为该公司安排一下应该如何调配车辆,才能使公司所花的成本费最低?若只调配A 型或B 型卡车,所花的成本费分别是多少?

2019高考试题文科数学汇编:不等式

2019高考试题文科数学汇编:不等式 1.【2018高考山东文6】设变量,x y 满足约束条件22,24,41,x y x y x y +≥?? +≤??-≥-? 那么目标函数3z x y =-的取 值范围是 (A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3 [6,]2 - 【答案】A 2.【2018高考安徽文8】假设x ,y 满足约束条件 02323x x y x y ≥?? +≥??+≤? ,那么y x z -=的最 小值是 〔A 〕-3 〔B 〕0 〔C 〕 3 2 〔D 〕3 【答案】A 3.【2018高考新课标文5】正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,假设点〔x ,y 〕在△ABC 内部,那么z=-x+y 的取值范围是 〔A 〕(1-3,2) 〔B 〕(0,2) 〔C 〕(3-1,2) 〔D 〕(0,1+3) 【答案】A 4.【2018高考重庆文2】不等式 1 02 x x -<+ 的解集是为 〔A 〕(1,)+∞ 〔B 〕 (,2)-∞- 〔C 〕〔-2,1〕〔D 〕(,2)-∞-∪(1,)+∞ 【答案】C 5.【2018高考浙江文9】假设正数x ,y 满足x+3y=5xy ,那么3x+4y 的最小值是 A. 245 B. 285 C.5 D.6 【答案】C 6.【2018高考四川文8】假设变量,x y 满足约束条件3, 212,21200 x y x y x y x y -≥-??+≤?? +≤??≥?≥??,那么34z x y =+的最 大值是〔 〕 A 、12 B 、26 C 、28 D 、33 【答案】C 7.【2018高考天津文科2】设变量x,y 满足约束条件?? ? ??≤-≥+-≥-+01042022x y x y x ,那么目标函数z=3x-2y 的最小值为

基本不等式与线性规划

不等式(二) 一.基本不等式(ab b a 2≥+一正:两个数或式子必须都为正数. 二定;必须有和定或积定 三相等:等号成立为最值存在的充分,那里使用基本不等式,那两个数相等) 积定,和有最小(积定的判断依据:互为倒数关系) 1.设4 1 4,4-+-=>x x y x 的最小值为 . 2.设4 1 ,4-+ =>x x y x 的最小值为 . 3.1,1>>b a ,则a b b a log log +的最小为 . 4.下列函数中,最小值为22的是 ( ) A .x x y 2+ = B .)0(sin 2 sin π<<+ =x x x y C .x x e e y -+=2 D .2log 2log 2x x y += 5.下列各函数中,最小值为2的是 ( ) A .y=x + x 1 B .y= sinx +x sin 1,x ∈(0,2 π) C .y= 2 322++x x D .y=x x 1 + 6.若lg x +lg y =2,则 x 1 +y 1的最小值为( ) A . 20 1 B . 5 1 C . 2 1 D .2 7.(10.重庆)已知0>t ,则函数t t t y 1 42+-=的最小值为 . 8.若1>=+y x y x 则 y x 2 1+的最小 . (09.天津)设0,0>>b a ,若3是a 3与b 3的等比中项,则b a 1 1+的最小值为( ) A .8 B .4 C .1 D .4 1 总结:常见倒数关系 x x a a -与 a b b a log log 与

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

高考数学二轮复习专题突破训练一第2讲不等式与线性规划理含2014年高考真题

第2讲 不等式与线性规划 考情解读 1.在高考中主要考查利用不等式的性质进行两数的大小比较、一元二次不等式的解法、基本不等式及线性规划问题.基本不等式主要考查求最值问题,线性规划主要考查直接求最优解和已知最优解求参数的值或取值范围问题.2.多与集合、函数等知识交汇命题,以选择、填空题的形式呈现,属中档题. 1.四类不等式的解法 (1)一元二次不等式的解法 先化为一般形式ax 2 +bx +c >0(a ≠0),再求相应一元二次方程ax 2 +bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法 ①变形?f x g x >0(<0)?f (x )g (x )>0(<0); ②变形? f x g x ≥0(≤0)?f (x )g (x )≥0(≤0)且g (x )≠0. (3)简单指数不等式的解法 ①当a >1时,a f (x ) >a g (x ) ?f (x )>g (x ); ②当0a g (x ) ?f (x )1时,log a f (x )>log a g (x )?f (x )>g (x )且f (x )>0,g (x )>0; ②当0log a g (x )?f (x )0,g (x )>0. 2.五个重要不等式 (1)|a |≥0,a 2 ≥0(a ∈R ). (2)a 2 +b 2 ≥2ab (a 、b ∈R ). (3) a +b 2 ≥ab (a >0,b >0). (4)ab ≤(a +b 2)2 (a ,b ∈R ). (5) a 2+ b 22 ≥ a +b 2 ≥ab ≥ 2ab a +b (a >0,b >0). 3.二元一次不等式(组)和简单的线性规划 (1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等.

高考数学专题练习:不等式与线性规划

高考数学专题练习:不等式与线性规划 1.若不等式(-2)n a -3n -1-(-2)n <0对任意正整数n 恒成立,则实数a 的取值范围是( ) A.? ? ???1,43 B.? ???? 12,43 C.? ? ???1,74 D.? ?? ??12,74 答案 D 解析 当n 为奇数时,要满足2n (1-a )<3n -1恒成立, 即1-a <13× ? ????32n 恒成立,只需1-a <13×? ????321,解得a >1 2; 当n 为偶数时,要满足2n (a -1)<3n -1恒成立, 即a -1<13× ? ????32n 恒成立,只需a -1<13×? ????322,解得a <7 4. 综上,12<a <7 4,故选D. 2.已知a >0,b >0,且a ≠1,b ≠1,若log a b >1,则( ) A.(a -1)(b -1)<0 B.(a -1)(a -b )>0 C.(b -1)(b -a )<0 D.(b -1)(b -a )>0 答案 D 解析 取a =2,b =4,则(a -1)(b -1)=3>0,排除A ;则(a -1)(a -b )=-2<0,排除B ;(b -1)(b -a )=6>0,排除C,故选D. 3.设函数f (x )=??? x 2-4x +6,x ≥0, x +6,x <0,则不等式f (x )>f (1)的解集是( ) A.(-3,1)∪(3,+∞) B.(-3,1)∪(2,+∞) C.(-1,1)∪(3,+∞) D.(-∞,-3)∪(1,3) 答案 A 解析 f (1)=3.由题意得??? x ≥0,x 2-4x +6>3或??? x <0, x +6>3, 解得-33. 4. 若a ,b ,c 为实数,则下列命题为真命题的是( ) A.若a >b ,则ac 2>bc 2 B.若a <b <0,则a 2>ab >b 2

选修4-5文科数学基本不等式练习题及答案

2016年04月15日基本不等式 一.选择题(共14小题) 1.(2016?济南模拟)已知直线ax+by=1经过点(1,2),则2a+4b的最小值为()A.B.2 C.4 D.4 2.(2016?乌鲁木齐模拟)已知x,y都是正数,且xy=1,则的最小值为()A.6 B.5 C.4 D.3 3.(2016?合肥二模)若a,b都是正数,则的最小值为()A.7 B.8 C.9 D.10 4.(2016?山东模拟)已知不等式2x+m+>0对一切x∈(1,+∞)恒成立,则实 数m的取值范围是() A.m>﹣10 B.m<﹣10 C.m>﹣8 D.m<﹣8 5.(2016?宜宾模拟)下列关于不等式的结论中正确的是() A.若a>b,则ac2>bc2B.若a>b,则a2>b2 C.若a<b<0,则a2<ab<b2D.若a<b<0,则> 6.(2016?金山区一模)若m、n是任意实数,且m>n,则() A.m2>n2B.C.lg(m﹣n)>0 D. 7.(2015?福建)若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于() A.2 B.3 C.4 D.5 8.(2015?红河州一模)若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为() A.6 B.8 C.10 D.12 9.(2015?江西一模)已知不等式的解集为{x|a<x<b},点A(a,b)在直线mx+ny+1=0上,其中mn>0,则的最小值为() A. B.8 C.9 D.12 10.(2015?浙江模拟)函数y=a x+1﹣3(a>0,a≠1)过定点A,若点A在直线mx+ny=﹣2(m>0,n>0)上,则+的最小值为() A.3 B.2 C.D. 11.(2015?南市区校级模拟)若m+n=1(mn>0),则+的最小值为() A.1 B.2 C.3 D.4

线性规划与基本不等式

线性规划及基本不等式 一、知识梳理 (一)二元一次不等式表示的区域 1、对于直线0=++C By Ax (A>0),斜率K=__________,与x 轴的交点为________与y 轴的交点为___________ 2、 当B>0时, 0>++C By Ax 表示直线0=++C By Ax 上方区域; 0<++C By Ax 表示直线0=++c By Ax 的下方区域. 当B<0时, 0>++C By Ax 表示直线0=++C By Ax 下方区域; 0<++C By Ax 表示直线0=++c By Ax 的上方区域. 3、问题1:画出不等式组?????≤≥+≥+-3005x y x y x 表示的平面区域 问题2:求z=x-3y 的最大值和最小值 注、(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z=Ax+By 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z=Ax+By 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.满足线性约束条件的解(x,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(11,y x )和(22,y x )分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解. (2)、用图解法解决简单的线性规划问题的基本步骤: 1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域). 2.设z=0,画出直线l0. 3.观察、分析,平移直线l0,从而找到最优解. 4.最后求得目标函数的最大值及最小值. (3)、线性目标函数的最值常在可行域的顶点处取得 (二)基本不等式 1.基本形式:,a b R ∈,则222a b ab +≥;0,0a b >>, 则a b +≥,当且仅当a b =时等号成 立2.、已知x 为正数,求2x+x 1 的最小值

高中不等式的基本知识点和练习题(含答案)

不等式的基本知识 (一)不等式与不等关系 1、应用不等式(组)表示不等关系; 不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>;d b c a d c b a +>+?>>,(同向可加) (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0(同向同正可乘) (5)倒数法则:b a a b b a 1 10,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论) 3、应用不等式性质证明不等式 (二)解不等式 1、一元二次不等式的解法 一元二次不等式()0002 2 ≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002 ≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42 -=?,则不等式的解的各种情况 如下表: 2、简单的一元高次不等式的解法: 标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿偶不穿;(3)根据曲线显现的符号变化规律,写出不等式的解集。()()()如:x x x +--<11202 3 3、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。 ()()0() () 0()()0;0()0 () ()f x g x f x f x f x g x g x g x g x ≥?>?>≥?? ≠? 4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < ()f x

不等式与线性规划教案

一 体验高考 1.(2012年高考福建卷,理9)若函数y=2x 图象上存在点(x,y)满足约束 条件?? ? ??≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( B ) (A)21 (B)1 (C)2 3 (D)2 解析:∵x+y-3=0和y=2x 交点为(1,2), ∴只有m ≤1时才能符合条件,故选B. 2.(2012年高考福建卷,理5)下列不等式一定成立的是( C ) (A)lg(x 2+4 1)>lg x(x>0) (B)sin x+ x sin 1 ≥2(x ≠k π,k ∈Z ) (C)x 2+1≥2|x|(x ∈R ) (D) 1 1 2 +x >1(x ∈R ) 解析:当x>0时,x 2+41≥2·x ·2 1 =x, 故lg(x 2+41)≥lg x(x>0), 当且仅当x=2 1 时取等号,因此A 不对, B 中由于x ≠k π,k ∈Z 时,sin x 的正、负不确定, 因此sin x+ x sin 1≥2或sin x+x sin 1 ≤-2,故B 不正确, C 中,由基本不等式x+y ≥2xy (x>0,y>0)知x 2+1≥22x =2|x|,故C 一定成立, 而D 中,由于x 2≥0,则x 2+1≥1.因此0<1 1 2+x ≤1. 从而D 不正确,因此选C.

3.(2011年高考湖南卷,理10)设x,y ∈R,且xy ≠0,则(x 2+21y )(21x +4y 2 )的最小值为 . 解析:(x 2+ 21y )(21x +4y 2)=1+4x 2y 2 +221y x +4 =5+(4x 2y 2+ 221y x )≥5+22 22 214y x y x =5+2×2=9. 当且仅当4x 2y 2=221y x 即x 2y 2=2 1时取得最小值9. 答案:9 二备考感悟 1.命题与备考 (1)不等式解法常与二次函数、集合等知识交汇在一起命题;基本不等 式常与函数或代数式的最值问题、不等式恒成立问题、实际应用相互交汇命题.在备考中要熟练掌握各种不等式的解法,注意基本不等式成立的条件. (2)线性规划有时单独考查目标函数的最值问题,或求字母的取值范围问题,有时也会与函数、平面向量、解析几何等相互交汇考查,求解此类问题时应准确作出不等式表示的平面区域. 2.小题快做:线性规划问题中,若不等式组表示的平面区域具有边界且目标函数是线性的,则目标函数的最值就在其区域边界的顶点处取得. 三热点考向突破 考向一 不等式的解法 解不等式的常见策略 1.解一元二次不等式的策略:先化为一般形式ax 2+bx+c>0(a>0),再结合相应二次方程的根及二次函数图象确定一元二次不等式的解集. 2.解简单的分式不等式的策略:将不等式一边化为0,再将不等式等价转化为整式不等式(组)求解; 3.解含指、对数不等式的策略:利用指、对数函数的单调性将其转化

高中文科数学 不等式

第五讲、不等式 十三、 不等式 (一)不等关系 了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景。 (二)一元二次不等式 1.会从实际情境中抽象出一元二次不等式模型。 2.通过函数图象了解一元二次不等式与相应函数、一元二次方程的联系。 3.会解一元二次不等式。 (三)二元一次不等式组与简单线性规划问题 1.会从实际情境中抽象出二元一次不等式组。 2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。 3.从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。 (四)基本不等式: ,0)2 a b a b +≥> 会用基本不等式解决简单的最大(小)值问题。 不等式的概念与性质 1.实数的大小顺序与运算性质之间的关系: 0>-?>b a b a 0<-? , a b b a >?< (反对称性) (2)c a c b b a >?>>, ,c a c b b a +?>,故b c a c b a ->?>+ (移项法则) 推论:d b c a d c b a +>+?>>, (同向不等式相加) (4)bc ac c b a >?>>0,,bc ac c b a 0, 推论1:bd ac d c b a >?>>>>0,0 推论2:n n b a b a >?>>0 推论3:n n b a b a > ? >>0 算术平均数与几何平均数 1.常用的基本不等式和重要的不等式 (1)0,0,2 ≥≥∈a a R a 当且仅当”取“==,0a (2)ab b a R b a 2,,22≥+∈则 (3)+ ∈R b a ,,则ab b a 2≥+ (4) 2 2 2)2 ( 2 b a b a +≤+

练习-线性规划与基本不等式

线性规划与基本不等式 1.若222x y x y ????+? ≤,≤,≥,则目标函数2z x y =+的取值范围是( ) A.[26], B.[25], C.[36], D.[35], 2.已知x y ,满足约束条件5003x y x y x -+??+??? ≥,≥,≤.则24z x y =+的最大值为( ) A.5 B.38- C.10 D.38 3.若变量x ,y 满足约束条件30101x y x y y -+≤??-+≥??≥? ,则z =2x +y -4的最大值为( ) A .-4 B .-1 C .1 D .5 4.已知目标函数2z x y =+中变量x y ,满足条件4335251x y x y x --??+取得最大值的最优解有无穷多个,则a 的值为( ) A.14 B.35 C.4 D.53 8.已知0x >,0y >,且231x y +=,则23 x y +的最小值为( )

不等式和线性规划试题

高2015级高二下期线性规划和不等式集训试题 3月2日星期天下午2:30高二十班教室(带必修5) 1、设变量x ,y 满足约束条件22024010x y x y x +-≥?? -+≥??-≤? ,则目标函数32z x y =-的最小值为( ) A .6- B .4- C .2 D . 答案:B 2、设变量y x ,满足约束条件?? ? ??≤-≥+-≥-+01042022x y x y x ,则目标函数x y z 32-=的最大值为( ) A .-3 B .2 C .4 D .5 【答案】C 3、点(x ,y )满足??? x +y -1≥0, x -y +1≥0, x ≤a , 若目标函数z =x -2y 的最大值为1,则实数a 的值是 ( ) A .1 B .-1 C .-3 D .3 选A 由题意可知,目标函数经过点(a,1-a )时达到最大值1,即a -2(1-a )=1,解得a =1.

C 5、设0,0 x y x y +≥?? -≥?与抛物线2 4y x =-的准线围成的三角形区域(包含边界)为D ,) ,(y x P 为D 的一个动点,则目标函数2z x y =-的最大值为( ) A. 1- B. 0 C. 2 D. 3

6、若不等式组0 3434 x x y x y ≥??+≥? ?+≤?, 所表示的平面区域被直线4 3y kx =+ 分为面积相等的两部分,则k 的值是( B )A 、73 B 、37 C 、43 D 、3 4 7、已知2z x y =+,x y ,满足2y x x y x m ≥?? +≤??≥? ,且z 的最大值是最小值的4倍,则m 的值是 ( ) A . 14 B . 15 C . 16 D .17 考点:简单线性规划

(完整版)选修4-5文科数学基本不等式练习题及答案.doc

2016 年 04 月 15 日基本不等式 一.选择题(共 14 小题) 1.( 2016?济南模拟)已知直线 ax+by=1 经过点( 1, 2),则 2a +4 b 的最小值为( ) A . B .2 C . 4 D . 4 2.( 2016?乌鲁木齐模拟)已知 x , y 都是正数,且 xy=1 ,则 的最小值为( ) A . 6 B . 5 C . 4 D . 3 3.( 2016?合肥二模)若 a , b 都是正数,则 的最小值为( ) A . 7 B . 8 C . 9 D . 10 4.( 2016?山东模拟)已知不等式 2x+m+ > 0 对一切 x ∈(1, +∞)恒成立,则实数 m 的取值范围是( ) A . m >﹣ 10 B .m <﹣ 10 C . m >﹣ 8 D .m <﹣ 8 5.( 2016?宜宾模拟)下列关于不等式的结论中正确的是( ) A .若 a > b ,则 ac 2>bc 2 B .若 a >b ,则 a 2> b 2 C .若 a <b < 0,则 a 2< ab < b 2 D .若 a < b <0,则 > 6.( 2016?金山区一模)若 m 、 n 是任意实数,且 m > n ,则( ) A . m 2> n 2 B . C . lg ( m ﹣ n )> 0 D . 7.( 2015?福建)若直线 =1( a > 0, b > 0)过点( 1, 1),则 a+b 的最小值等于( ) A . 2 B . 3 C . 4 D . 5 2 2 8.( 2015?红河州一模)若直线 mx+ny+2=0 ( m > 的 0, n > 0)截得圆( x+3) +( y+1 ) =1 弦长为 2,则 + 的最小值为( ) A . 6 B . 8 C . 10 D . 12 9.(2015?江西一模)已知不等式 的解集为 {x|a < x <b} ,点 A ( a ,b )在直线 mx+ny+1=0 上,其中 mn >0,则 的最小值为( ) A . B .8 C . 9 D . 12 10.( 2015?浙江模拟)函数 y=a x+1 ﹣ 3(a > 0, a ≠1)过定点 A ,若点 A 在直线 mx+ny= ﹣ 2 (m > 0, n > 0)上,则 + 的最小值为( ) A . 3 B . 2 C . D . 11.(2015?南市区校级模拟)若 m+n=1 ( mn > 0),则 + 的最小值为( ) A . 1 B . 2 C . 3 D . 4

线性规划和基本不等式常见题型

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、 若x 、y 满足约束条件222 x y x y ≤?? ≤??+≥? ,则z=x+2y 的取值范围是 ( ) A 、[2,6] B 、[2,5] C 、[3,6] D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将直线 向右上方平移,过点A (2,0)时,有最小值2, 过点B (2,2)时,有最大值6,故选 A 二、求可行域的面积 例2、不等式组260 302x y x y y +-≥?? +-≤??≤? 表示的平面区域的面积为 A 、4 B 、1 C 、5 D 、无穷大 解:如图,作出可行域, △ABC 的面积即为所求, 由梯形OMBC 的面积减去梯形OMAC 的面积即可,选 B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数 A 、9个 B 、10个 C 、13个 D 、14个 解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0) 2 (0,0)x y x y x y x y x y x y x y x y +≤≥≥??-≤≥? ? -+≤≥??--≤? 作出可行域如右图,是正方形内部(包括边界),容易得 到整点个数为13个,选 D 四,求非线性目标函数的最值 例4、已知x 、y 满足以下约束条件220240330x y x y x y +-≥?? -+≥??--≤? ,则 z=x 2 +y 2 的最大值和最小值分别是( ) A 、13,1 B 、13,2 C 、13,4 5 D 、

不等式与线性规划含答案

不等式与线性规划 考情解读 (1)在高考中主要考查利用不等式的性质进行两数的大小比较、一元二次不等式的解法、基本不等式及线性规划问题.基本不等式主要考查求最值问题,线性规划主要考查直接求最优解和已知最优解求参数的值或取值范围问题.(2)多与集合、函数等知识交汇命题,以填空题的形式呈现,属中档题. 1.四类不等式的解法 (1)一元二次不等式的解法 先化为一般形式ax 2+bx +c >0(a ≠0),再求相应一元二次方程ax 2+bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法 ①变形?f (x )g (x ) >0(<0)?f (x )g (x )>0(<0); ②变形?f (x )g (x ) ≥0(≤0)?f (x )g (x )≥0(≤0)且g (x )≠0. (3)简单指数不等式的解法 ①当a >1时,a f (x )>a g (x )?f (x )>g (x ); ②当0a g (x )?f (x )1时,log a f (x )>log a g (x )?f (x )>g (x )且f (x )>0,g (x )>0; ②当0log a g (x )?f (x )0,g (x )>0. 2.五个重要不等式 (1)|a |≥0,a 2≥0(a ∈R ). (2)a 2+b 2≥2ab (a 、b ∈R ). (3)a +b 2≥ab (a >0,b >0). (4)ab ≤(a +b 2 )2(a ,b ∈R ). (5) a 2+b 22≥a +b 2≥ab ≥2ab a +b (a >0,b >0). 3.二元一次不等式(组)和简单的线性规划 (1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等. (2)解不含实际背景的线性规划问题的一般步骤:①画出可行域;②根据线性目标函数的几何意义确定最优解;③求出目标函数的最大值或者最小值.

《线性规划与基本不等式》的案例分析

高考考点:《不等关系、线性规划与基本不等式》的案例分析 一、高考要求 1.不等关系 了解现实世界和日常生活中的不等关系,了解不等式组的实际背景。 2.一元二次不等式 (1)会从实际背景中抽象出一元二次不等式模型。 (2)通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系。 (3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图。 3.二元一次不等式组与简单的线性规划问题 (1)会从实际情境中抽象出二元二次不等式组。 (2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。 (3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。 4.基本不等式: (1)了解基本不等式的证明过程。 (2)会用基本不等式解决简单的最大(小)值问题。 二、规律分析

【规律总结】 全面分析这六年来的试题,可以看出,山东卷全面落实考纲对这一部分的规定,考查不等式的解法、线性规划和基本不等式的应用,每年的考查形式稍有变化,但总体上考点不变。具体来说,有这样的规律: (1)文科几乎每年涉及一元二次不等式的解法。理科涉及绝对值不等式的解法较多,一般与集合、函数的定义域求解结合较多,以选择题为主。 (2)几乎每年都考查线性规划问题,并且基本上都是以填空题和选择题的形式出现,只有2010年在填空题中考查了基本不等式,分析发现2010年以前山东高考是填空题的形式进行考查,2011年之后,则改为以选择题的形式考查。 (2)从2011年开始,山东高考考查线性规划的比重和难度在逐渐增加,2011年只是考查求线性规划的最大值问题,2012年的高考既考查求最大值又增加了求最小值,这两年都设计一个小题,2013则是设计了两个小题,并且与解析几何相结合,难度教以往有所增加。2014年将线性规划问题文科放在了第10,理科在9,难度再次增大。

不等式及线性规划及详细答案

不等式及线性规划 1.设变量x ,y 满足约束条件????? x +y ≤5,2x -y ≤4,-x +y ≤1,y ≥0, 则目标函数z =3x +5y 的最大值为( ) A .6 B .19 C .21 D .45 2.设x ,y 满足约束条件????? x +3y ≤3,x -y ≥1, y ≥0, 则z =x +y 的最大值为( ) A .0 B .1 C .2 D .3 3设x ,y 满足约束条件????? 2x +3y -3≤0,2x -3y +3≥0, y +3≥0, 则z =2x +y 的最小值是( ) A .-15 B .-9 C .1 D .9 4.若x ,y 满足约束条件????? x -2y -2≤0,x -y +1≥0, y ≤0, 则z =3x +2y 的最大值为______. 5.若x ,y 满足约束条件????? x +2y -5≥0,x -2y +3≥0, x -5≤0,则z =x +y 的最大值为______. 6.下列三个不等式:①x +1x ≥2(x ≠0);②c a b >c >0);③a +m b +m >a b (a ,b ,m >0且a 0的解集为( ) A .{x |x <-ln 2或x >ln 3} B .{x |ln2y >0,则( ) A .1x -1y >0 B .sin x -sin y >0

不等式与线性规划问题试题

基本不等式 1. 若x >0,y >0,且x +y =18,则xy 的最大值是________. 2. 已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 3. 已知x >0,y >0,且2x +y =1,则1x +2 y 的最小值是_____________. 4. (2012·浙江)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是 ( ) A.24 5 B.28 5 C .5 D .6 5. 圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0 (a ,b ∈R )对称,则ab 的取值范围是 ( ) A.????-∞,14 B.????0,14 C.??? ?-1 4,0 D.? ???-∞,1 4 题型一 利用基本不等式证明简单不等式

例 1 已知x >0,y >0,z >0. 求证:????y x +z x ????x y +z y ???? x z +y z ≥8.

已知a >0,b >0,c >0,且a +b +c = 1. 求证:1a +1b +1c ≥9. 题型二 利用基本不等式求最值 例

2 (1)已知x >0,y >0,且2x +y =1,则1x +1 y 的 最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. (1)已知x >0,y >0,x +2y +2xy =8,则 x +2y 的最小值是 ( ) A .3 B .4 C.9 2 D.112 题型三 基本不等式的实际应用 1.(2010·惠州模拟)某商场中秋前30天月饼销售总量f (t )与时间t (0

相关文档
最新文档