2019届人教B版(文科数学) 二元一次不等式(组)与简单的线性规划问题 单元测试

合集下载

二元一次不等式(组)与简单的线性规划问题(优秀经典专题及答案详解)

二元一次不等式(组)与简单的线性规划问题(优秀经典专题及答案详解)

专题7 二元一次不等式(组)与简单的线性规划问题学习目标1.会从实际情境中抽象出二元一次不等式组;2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.知识点一二元一次不等式(组)表示的平面区域不等式表示区域Ax+By+C>0 直线Ax+By+C=0某一侧的所有点组成的平面区域不包括边界直线Ax+By+C≥0包括边界直线不等式组各个不等式所表示平面区域的公共部分知识点二点P1(x1,y1)和P2(x2,y2)位于直线Ax+By+C=0的两侧的充要条件是(Ax1+By1+C)(Ax2+By2+C)<0;位于直线Ax+By+C=0同侧的充要条件是(Ax1+By1+C)(Ax2+By2+C)>0.知识点三简单的线性规划中的基本概念名称意义约束条件由变量x,y组成的不等式(组)线性约束条件由变量x,y组成的一次不等式(组)目标函数关于x,y的函数解析式,如z=2x+3y等线性目标函数关于x,y的一次函数解析式可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题考点一二元一次不等式(组)表示的平面区域【典例1】(山东烟台二中2019届模拟)(1)不等式组⎩⎪⎨⎪⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域的面积为( )A .4B .1C .5D .无穷大(2)若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a 表示的平面区域是一个三角形,则实数a 的取值范围是( )A.⎣⎡⎭⎫43,+∞ B .(0,1]C.⎣⎡⎦⎤1,43 D .(0,1]∪⎣⎡⎭⎫43,+∞【答案】(1)B (2)D【解析】(1)作出不等式组所表示的可行域如图中阴影部分所示,△ABC 的面积即所求.求出点A ,B ,C 的坐标分别为A (1,2),B (2,2),C (3,0),则△ABC 的面积为S =12×(2-1)×2=1.(2)不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧y =x ,2x +y =2,得A ⎝⎛⎭⎫23,23,由⎩⎪⎨⎪⎧y =0,2x +y =2,得B (1,0). 若原不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则直线x +y =a 中a 的取值范围是0<a ≤1或a ≥43.【方法技巧】1.求平面区域面积的方法(1)首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;(2)对平面区域进行分析,若为三角形应确定底与高.若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解.若为不规则四边形,可分割成几个规则图形分别求解再求和即可.2.平面区域的形状问题两种题型及解法(1)确定平面区域的形状,求解时先画满足条件的平面区域,然后判断其形状;(2)根据平面区域的形状求解参数问题,求解时通常先画满足条件的平面区域,但要注意对参数进行必要的讨论.【变式1】(河南开封高级中学2019届模拟)若不等式组⎩⎪⎨⎪⎧x +y ≥0,x -y +2≥0,2x -y -2≤0所表示的平面区域被直线l :mx -y +m +1=0分为面积相等的两部分,则m =( )A.12 B .2 C .-12D .-2【答案】A【解析】由题意可画出可行域为△ABC 及其内部所表示的平面区域,如图所示.联立可行域边界所在直线方程,可得A (-1,1),B ⎝⎛⎭⎫23,-23,C (4,6).因为直线l :y =m (x +1)+1过定点A (-1,1),直线l 将△ABC 分为面积相等的两部分,所以直线l 过边BC 的中点D ,易得D ⎝⎛⎭⎫73,83,代入mx -y +m +1=0,得m =12,故选A.考点二 求线性目标函数的最值【典例2】【2019年高考北京卷理数】若x ,y 满足|1|x y ≤-,且y ≥−1,则3x+y 的最大值为 A .−7 B .1C .5D .7【答案】C【解析】由题意1,11yy x y-≤⎧⎨-≤≤-⎩作出可行域如图阴影部分所示.设3,3z x y y z x =+=-,当直线0:3l y z x =-经过点()2,1-时,z 取最大值5,故选C .【方法技巧】线性目标函数的最优解一般在平面区域的顶点或边界处取得,所以直接解出可行域的顶点,将坐标代入目标函数求出相应的数值,从而确定目标函数的最值。

二元一次不等式及简单的线性规划问题

二元一次不等式及简单的线性规划问题

线性目标函数 关于x,y的_一__次__解析式
可行解 满足线性约束条件的解_(x_,__y_)_
可行域 所有可行解组成的_集__合_
最优解 使目标函数取得_最__大__值_或最__小__值__的可行解
线性规划问题
在线性约束条件下求线性目标函数的_最_大__ 值__或最__小__值__问题
课前·双基落实 课堂·考点突破
部分所示,平移直线y=-2x,当直
线平移到过点A时,目标函数取得最
大值,由
2x-y=0, x+y=3,
可得A(1,2),
此时2x+y取最大值为2×1+2=4.
答案:4
课前·双基落实
课堂·考点突破
课后·三维演练
二元一次不等式(组)及简单的线性规划问题 结 束
1.画出平面区域.避免失误的重要方法就是首先使二元一
课前·双基落实 课堂·考点突破
课后·三维演练
二元一次不等式(组)及简单的线性规划问题 结 束
2.常见的3类目标函数
(1)截距型:形如z=ax+by.
求这类目标函数的最值常将函数z=ax+by转化为
直线的斜截式:y=-
a b
x+
z b
,通过求直线的截距
z b
的最
值间接求出z的最值.
(2)距离型:形如z=(x-a)2+(y-b)2.
课后·三维演练
二元一次不等式(组)及简单的线性规划问题 结 束
[小题体验]
1.下列各点中,不在x+y-1≤0表示的平面区域内的是
()
A.(0,0)
B.(-1,1)
C.(-1,3)
D.(2,-3)
答案:C
课前·双基落实 课堂·考点突破
课后·三维演练

2019年高考数学一轮复习:二元一次不等式(组)与简单的线性规划问题

2019年高考数学一轮复习:二元一次不等式(组)与简单的线性规划问题

2019年高考数学一轮复习:二元一次不等式(组)与简单的线性规划问题二元一次不等式(组)与简单的线性规划问题1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的________.我们把直线画成虚线以表示区域________边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应________边界直线,则把边界直线画成________.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都________,所以只需在此直线的同一侧取一个特殊点(x0,y0)(如原点)作为测试点,由Ax0+By0+C的________即可判断Ax+By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域.2.线性规划(1)不等式组是一组对变量x,y的约束条件,由于这组约束条件都是关于x,y的一次不等式,所以又可称其为线性约束条件.Z=Ax+By是要求最大值或最小值的函数,我们把它称为________.由于Z=Ax+By是关于x,y的一次解析式,所以又可叫做________.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的________的问题,统称为线性规划问题.(3)满足线性约束条件的解(x,y)叫做________,由所有可行解组成的集合叫做________.其中,使目标函数取得最大值或最小值的可行解都叫做这个问题的________.线性目标函数的最值常在可行域的边界上,且通常在可行域的顶点处取得;而求最优整数解首先要看它是否在可行域内.(4)用图解法解决简单的线性规划问题的基本步骤:①首先,要根据_________________ (即画出不等式组所表示的公共区域).②设__________,画出直线l0.③观察、分析、平移直线l0,从而找到最优解.④最后求得目标函数的__________.(5)利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出__________条件,确定__________函数.然后,用图解法求得数学模型的解,即__________,在可行域内求得使目标函数__________.自查自纠1.(1)平面区域不包括包括实线(2)相同符号2.(1)目标函数线性目标函数(2)最大值或最小值(3)可行解可行域最优解(4)①线性约束条件画出可行域②z=0④最大值或最小值(5)约束线性目标画出可行域取得最值的解(2016·济南模拟)已知点(-3,-1)和点(4,-6)在直线3x-2y-a=0的两侧,则a的取值范围为() A.(-24,7)B.(-7,24)C.(-∞,-7)∪(24,+∞)D.(-∞,-24)∪(7,+∞)解:根据题意知(-9+2-a)(12+12-a)<0,即(a +7)(a-24)<0,解得-7<a<24.故选B.(2017·全国卷Ⅲ)设x,y满足约束条件⎩⎪⎨⎪⎧3x+2y-6≤0,x≥0,y≥0,则z=x-y的取值范围是() A.[-3,0] B.[-3,2]C.[0,2] D.[0,3]解:绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点A (0,3) 处取得最小值z =0-3=-3. 在点B (2,0) 处取得最大值z =2-0=2.故选B .(2016·北京)若x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x +y ≤3,x ≥0,则2x +y的最大值为( )A .0B .3C .4D .5解:作出可行域如图中阴影部分所示,则当z =2x +y 经过点P (1,2)时,取最大值,z max =2×1+2=4.故选C .(2017·全国卷Ⅲ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥0,则z =3x -4y 的最小值为________.解:由题意,画出可行域如图,目标函数为z =3x-4y ,则直线y =34x -z4纵截距越大,z 值越小.由图可知,在A (1,1)处取最小值,故z min =3×1-4×1=-1.故填-1.(2017届云南四川贵州百校大联考)设变量x ,y满足约束条件⎩⎪⎨⎪⎧x +2y -2≥0,2x +y -4≤0,4x -y +1≥0,则目标函数z =y -3x的最大值是________.解:作可行域如图所示,由目标函数z =y -3x 得直线y =3x +z ,当直线y =3x +z 平移经过点A ⎝⎛⎭⎫12,3时,目标函数z =y -3x 取得最大值为32.故填32.类型一 二元一次不等式(组)表示的平面区域(2016·郑州模拟)在平面直角坐标系xOy中,满足不等式组⎩⎪⎨⎪⎧|x |≤|y |,|x |<1的点(x ,y )的集合用阴影表示为下列图中的()解:|x |=|y |把平面分成四部分,|x |≤|y |表示含y 轴的两个区域;|x |<1表示x =±1所夹含y 轴的区域.故选C .【点拨】关于不等式组所表示的平面区域(可行域)的确定,可先由“直线定界”,再由“不等式定域”,定域的常用方法是“特殊点法”,且一般取坐标原点O (0,0)为特殊点.不等式组⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.解:不等式组所表示的平面区域如图中阴影部分所示,易求得|BD |=2,C 点坐标(8,-2),所以S △ABC =S △ABD +S △BCD =12×2×(2+2)=4.故填4.类型二 利用线性规划求线性目标函数的最优解(2017·天津)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y ≥0,x +2y -2≥0,x ≤0,y ≤3,则目标函数z =x +y 的最大值为( )A.23 B .1 C.32D .3解:可行域为四边形ABCD 及其内部,所以直线z =x +y 过点B (0,3)时取最大值3.故选D .【点拨】线性规划问题有三类:(1)简单线性规划,包括画出可行域和考查截距型目标函数的最值,有时考查斜率型或距离型目标函数;(2)线性规划逆向思维问题,给出最值或最优解个数求参数取值范围;(3)线性规划的实际应用. 一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.(2017·北京)若x ,y 满足⎩⎪⎨⎪⎧x ≤3,x +y ≥2,y ≤x ,则x+ 2y 的最大值为( )A .1B .3C .5D .9解:如图,画出可行域,z =x +2y 表示斜率为-12的一组平行线,当过点C (3,3)时,目标函数取得最大值z max =3+2×3=9.故选D .类型三 含参数的线性规划问题(1)(北京西城区2017届期末)实数x ,y 满足⎩⎪⎨⎪⎧x ≤3,x +y ≥0,x -y +6≥0.若z =ax +y 的最大值为3a +9,最小值为3a -3,则a 的取值范围是( )A .[-1,0]B .[0,1]C .[-1,1]D .(-∞,-1]∪[1,+∞) 解:作出不等式组对应的平面区域如图,由z =ax +y 得y =-ax +z.因为z =ax +y 的最大值为3a +9,最小值为3a -3,所以当直线y =-ax +z 经过点B (3,9)时直线截距最大,当经过点A (3,-3)时,直线截距最小. 则直线y =-ax +z 的斜率-a 满足, -1≤-a ≤1,即-1≤a ≤1.故选C .(2)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于2,则a 的值为( )A .-5B .1C .2D .3 解:如图可得阴影部分即为满足x -1≤0与x +y -1≥0的可行域,而直线ax -y +1=0恒过点(0,1),故看作直线绕点(0,1)旋转,若不等式组所表示的平面区域内的面积等于2,则它是三角形,设该三角形为△ABC ,因为△ABC 的点A 和B 的坐标分别为A (0,1)和B (1,0),且S △ABC =2,设点C 的坐标为C (1,y ),则12×1×y =2⇒y =4,将点C (1,4)代入ax -y +1=0得a =3.故选D .【点拨】例3(1)考查了简单的线性规划中的斜率问题,通过y =-ax +z 得到参数-a 是动直线y =-ax +z 的斜率,z =ax +y 的最大值为3a +9,则动直线y =-ax +z 纵截距的最大值为3a +9,最优解在三个端点处取得;例3(2)中的ax -y +1=0,即为y =ax +1,其中a 为动直线的斜率,利用数形结合的方法求解.注意把握两点:①参数的几何意义;②条件的合理转化.(1)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0.若z =ax +y 的最大值为4,则a =( )A .3B .2C .-2D .-3解:画出不等式组所表示的可行域如图中阴影部分所示,因为目标函数z =ax +y 的最大值为4,即目标函数对应直线与可行域有公共点时,在y 轴上的截距的最大值为4,所以作出过点D (0,4)的直线,由图可知,目标函数在点B (2,0)处取得最大值,有a ×2+0=4,得a =2.故选B .(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x+y 的最小值为-6,则k =________.解:易得出约束条件中三条直线两两所成的交点(k ,k ),(4-k ,k ),(2,2),且可行域如图,则k ≤2.最小值在点(k ,k )处取得,3k =-6,得k =-2.故填-2.类型四 非线性目标函数的最优解问题(2016·江苏)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,则x 2+y 2的取值范围是________.解:可行域如图中阴影部分所示,x 2+y 2为可行域中任一点(x ,y )到原点(0,0)的距离的平方.由图可知,x 2+y 2的最小值为原点到直线AC 的距离的平方,即⎝ ⎛⎭⎪⎫|-2|52=45.易求得B (2,3),最大值为OB 2=22+32=13.故填⎣⎡⎦⎤45,13. 【点拨】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域,分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值或范围.即:一画,二移,三求.其关键是准确作出可行域,理解目标函数的意义.常见的目标函数有:(1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb ,通过求直线的截距的最值间接求出z 的最值.(2)距离型:形如z =(x-a )2+(y -b )2 .(3)斜率型:形如z =y -bx -a ,本题属于距离形式.(2015·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________.解:作出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故yx 的最大值为3.故填3.类型五 线性规划与整点问题设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y -5>0,2x +y -7>0,x ≥0,y ≥0,若x ,y 为整数,则3x +4y 的最小值为( )A .14B .16C .17D .19解:画出可行域如图,令3x +4y =z ,y =-34x +z4,过x 轴上的整点(1,0),(2,0),(3,0),(4,0),(5,0)处作格子线,可知当y =-34x +z4过(4,1)时有最小值(对可疑点(3,2),(2,4),(4,1)逐个试验),此时z min =3×4+4=16.故选B .【点拨】求解整点问题,对作图精度要求较高,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点.设不等式组⎩⎪⎨⎪⎧x >0,y >0,y ≤-nx +3n (n ∈N *)所表示的平面区域为D n ,记D n 内的整点(即横坐标和纵坐标均为整数的点)个数为a n (a n ∈N *),则数列{a n }的通项公式为a n =______.解:直线y =-nx +3n =-n (x -3),过定点(3,0),由y =-nx +3n >0得x <3,又x >0,所以x =1或x =2.直线x =2交直线y =-nx +3n 于点(2,n ),直线x =1交直线y =-nx +3n 于点(1,2n ),所以整点个数a n =n +2n =3n .故填3n.类型六 线性规划在实际问题中的应用(2015·陕西)某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每甲 乙 原料限额 A (吨) 3 2 12 B (吨)128A.12万元 B .16万元 C .17万元 D .18万元 解:设每天生产甲、乙两种产品分别为x 、y 吨,利润为z 元,则⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数为z =3x +4y .作出二元一次不等式组所表示的平面区域(阴影部分),即可行域.由z =3x +4y 得y =-34x +z 4,平移直线y =-34x至经过点B 时,直线y =-34x +z4的纵截距最大,此时z 最大,解方程组⎩⎪⎨⎪⎧3x +2y =12,x +2y =8, 得⎩⎪⎨⎪⎧x =2,y =3, 即B (2,3).所以z max =3x +4y =6+12=18.即每天生产甲、乙两种产品分别为2吨、3吨,能够获得最大利润,最大的利润是18万元.故选D .【点拨】对于此类有实际背景的线性规划问题,可行域通常是位于第一象限的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形在第一象限的某个顶点.(2016·全国卷Ⅰ)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解:设某高科技企业生产产品A 和产品B 分别为x 件,y 件,生产产品A 、产品B 的利润之和为z 元,依题意得⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N , 即⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ∈N ,y ∈N ,目标函数z =2 100x +900y .作出可行域如图所示.当直线z =2 100x +900y 经过点M (60,100)时,z 取得最大值.z max =2 100×60+900×100=216 000.故生产产品A 、产品B 的利润之和的最大值为216 000元.故填216 000.1.解客观题可利用特殊点判断二元一次不等式(组)表示的平面区域所在位置,如果直线Ax +By +C =0不经过原点,则把原点代入Ax +By +C ,通过Ax +By +C 的正负和不等号的方向,来判断二元一次不等式(组)表示的平面区域所在的位置.2.求目标函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb,通过求直线的截距zb的最值间接求出z 的最值.最优解一般在顶点或边界取得.但要注意:①当b >0时,截距zb取最大值,z 也取最大值;截距zb取最小值,z 也取最小值;②当b <0时,截距z b 取最大值,z 取最小值;截距zb 取最小值时,z 取最大值.3.如果可行域是一个多边形,那么一般在其顶点处目标函数取得最大值或最小值.最优解一般是多边形的某个顶点,到底是哪个顶点为最优解,有三种解决方法:第一种方法:将目标函数的直线平行移动,最先通过或最后通过可行域的一个便是.第二种方法:利用围成可行域的直线斜率来判断. 特别地,当线性目标函数的直线与可行域某条边重合时,其最优解可能有无数组.第三种方法:将可行域所在多边形的每一个顶点P i 逐一代入目标函数Z P i =mx +ny ,比较各个ZP i ,得最大值或最小值.1.(2015·烟台模拟)不等式组⎩⎪⎨⎪⎧y ≤-x +2,y ≤x -1,y ≥0所表示的平面区域的面积为( )A .1 B.12 C.13 D.14解:作出不等式组对应的区域为如图△BCD ,由题意知x B =1,x C =2.由⎩⎪⎨⎪⎧y =-x +2,y =x -1, 得y D =12,所以S △BCD =12×(x C -x B )×12=14.故选D .2.(湖北孝感市2017届期中)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,则目标函数z =2x -y 的最大值为( ) A .-3 B.12 C .5 D .6解:作出不等式组表示的平面区域,得到如图的△ABC 及其内部,其中A (-1,-1),B (2,-1),C (0.5,0.5),将直线2x -y =0进行平移,当其经过点B 时,目标函数z 达到最大值.所以z 最大值=5.故选C . 3.(2016·天津)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0.则目标函数z =2x +5y 的最小值为( )A .-4B .6C .10D .17解:可行域为一个三角形ABC 及其内部,其中A (0,2),B (3,0),C (1,3),根据目标函数的几何意义,可知当直线y =-25x +z5过点B (3,0)时,z 取得最小值2×3-5×0=6.故选B .4.(2017·浙江)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +y -3≥0,x -2y ≤0,则z =x +2y 的取值范围是( )A .[0,6]B .[0,4]C .[6,+∞)D .[4,+∞)解:如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值.故选D .5.(2016·浙江)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=( )A .2 2B .4C .3 2D .6解:如图△PQR 为线性区域,区域内的点在直线x +y -2=0上的投影构成了线段AB .由⎩⎪⎨⎪⎧x -3y +4=0,x +y =0 得Q (-1,1),由⎩⎪⎨⎪⎧x =2,x +y =0 得R (2,-2),|AB |=|RQ |=(-1-2)2+(1+2)2=3 2.故选C .6.(2016·商丘模拟)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =( )A.14B.12C .1D .2解:作出可行域如图中阴影部分所示,当直线z =2x +y 通过A (1,-2a )时,z 取最小值,z min =2×1+(-2a )=1,所以a =12.故选B .7.(2016·全国卷Ⅲ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.解:画出可行域,如图所示阴影部分,易得A (0,1),B (-2,-1),C ⎝⎛⎭⎫1,12,可得z =x +y 在C 点处取得最大值为32.故填32.8.(山西四校2017届联考)已知y =-2x -z 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若2x +y +k ≥0恒成立,则实数k 的取值范围为________.解:可行域为一个三角形ABC 及其内部,其中A (2,0),B (-2,-2),C (0,2),直线z =-2x -y 过点B 时取最大值6,而2x +y +k ≥0恒成立等价于k ≥[-(2x +y )]max =6.故填[6,+∞).9.(2016·昆明模拟)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥0,x -2y +2≥0,x -y ≤0,求z =2x -y 的最大值. 解:作出可行域如图中阴影部分所示.当直线过点B (2,2)时,z =2x -y 取得最大值2.10.变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1.(1)假设z 1=4x -3y ,求z 1的最大值;(2)设z 2=yx ,求z 2的最小值;(3)设z 3=x 2+y 2,求z 3的取值范围.解:作出可行域如图中阴影部分,联立易得A ⎝⎛⎭⎫1,225,B (1,1),C (5,2). (1)z 1=4x -3y ⇔y =43x -z 13,易知平移y =43x 至过点C 时,z 1最大,且最大值为4×5-3×2=14.(2)z 2=yx表示可行域内的点与原点连线的斜率大小,显然直线OC 斜率最小.故z 2的最小值为25.(3)z 3=x 2+y 2表示可行域内的点到原点距离的平方,而2=OB 2<OA 2<OC 2=29.故z 3∈[2,29].11.(2015·广东模拟)某工厂生产甲、乙两种产品,每种产品都有一部分是一等品,其余是二等品,已知甲产品为一等品的概率比乙产品为一等品的概率大0.25,甲产品为二等品的概率比乙产品为一等品的概率小0.05.(1)分别求甲、乙产品为一等品的概率P 甲,P 乙; (2)已知生产一件产品需要用的工人数和资金数如表所示,且该厂有工人32名,可用资金55万元.设x ,y 分别表示生产甲、乙产品的数量,在(1)的条件下,解:(1)依题意得⎩⎪⎨⎪甲乙1-P 甲=P 乙-0.05,解得⎩⎪⎨⎪⎧P 甲=0.65,P 乙=0.4,故甲产品为一等品的概率P 甲=0.65,乙产品为一等品的概率P 乙=0.4.(2)依题意得x ,y 应满足的约束条件为⎩⎪⎨⎪⎧4x +8y ≤32,20x +5y ≤55,x ≥0,y ≥0,且z =0.65x +0.4y . 作出以上不等式组所表示的平面区域(如图阴影部分),即可行域.作直线l :0.65x +0.4y =0即13x +8y =0,把直线l 向上方平移到l 1的位置时,直线经过可行域内的点M ,且l 1与原点的距离最大,此时z 取最大值.解方程组⎩⎪⎨⎪⎧x +2y =8,4x +y =11, 得⎩⎪⎨⎪⎧x =2,y =3.故M 的坐标为(2,3),所以z 的最大值为z max =0.65×2+0.4×3=2.5.当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________. 解:作出可行域为一三角形,且易求出三个顶点坐标分别为(1,0),⎝⎛⎭⎫1,32,(2,1),都代入1≤ax +y ≤4得⎩⎪⎨⎪⎧1≤a ≤4,1≤a +32≤4,1≤2a +1≤4.解不等式组可得1≤a ≤32.故填⎣⎡⎦⎤1,32.2019年高考数学一轮复习第9 页共9 页。

【2019版课标版】高考数学文科精品课件§7.3二元一次不等式(组)与简单的线性规划问题.pdf

【2019版课标版】高考数学文科精品课件§7.3二元一次不等式(组)与简单的线性规划问题.pdf

A.-3
B.-1
C.1
D.3
答案 D
??≥ 0, 5.(2017 浙江 ,4,5 分 ) 若 x,y 满足约束条件 { ??+ ??-3 ≥0,则 z=x+2y 的取值范围是 ( )
?-?2??≤ 0,
A.[0,6] B.[0,4]
C.[6,+ ∞)
D.[4,+ ∞)
答案 D 6.(2016 北京 ,7,5 分 ) 已知 A(2,5),B(4,1). 若点 P(x,y) 在线段 AB上 , 则 2x-y 的最大值为 ( )
的判断方法 1. 了解线性规划的意义 , 并会简单应用 2. 了解与线性规划问题有关的概念 ( 约束
条件、目标函数、可行解、可行域、最 优解等 ) 3. 会用图解法解决线性目标函数的最值
问题 4. 掌握线性规划实际问题的解决方法
要求 Ⅱ

高考示例
2016 浙江 ,4; 2015 重庆 ,10; 2014 课标 Ⅰ,11; 2014 福建 ,11; 2013 山东 ,14
.
2??-??-4 ≤0.
答案 2
考点二 简单的线性规划问题
??+ 3??≤ 3,
1.(2017 课标全国 Ⅰ,7,5 分) 设 x,y 满足约束条件 { ?-???≥ 1, 则 z=x+y 的最大值为 (
)
??≥ 0,
A.0
B.1
C.2
D.3
答案 D
2??+ 3??-3 ≤ 0,
2.(2017 课标全国 Ⅱ,7,5 分) 设 x,y 满足约束条件 { 2??-3??+ 3 ≥ 0,则 z=2x+y 的最小值是 (

二元一次不等式(组)与简单的线性规划问题

二元一次不等式(组)与简单的线性规划问题

二元一次不等式(组)与简单的线性规划问题最新考纲 1.会从实际情境中抽象出二元一次不等式组;2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.知 识 梳 理1.二元一次不等式(组)表示的平面区域2.点P 1(x 1,y 1)和P 2(x 2,y 2)位于直线Ax +By +C =0的两侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )<0;位于直线Ax +By +C =0同侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )>0. 3.线性规划的有关概念[微点提醒]1.画二元一次不等式表示的平面区域的直线定界,特殊点定域:(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线; (2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证. 2.判定二元一次不等式表示的区域(1)若B (Ax +By +C )>0时,区域为直线Ax +By +C =0的上方. (2)若B (Ax +By +C )<0时,区域为直线Ax +By +C =0的下方.基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( )(2)线性目标函数的最优解可能是不唯一的.( )(3)线性目标函数取得最值的点一定在可行域的顶点或边界上.( )(4)在目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( )解析 (1)不等式x -y +1>0表示的平面区域在直线x -y +1=0的下方. (4)直线ax +by -z =0在y 轴上的截距是z b. 答案 (1)× (2)√ (3)√ (4)×2.(必修5P86T3改编)不等式组⎩⎨⎧x -3y +6≥0,x -y +2<0表示的平面区域是( )解析 x -3y +6≥0表示直线x -3y +6=0及其右下方部分,x -y +2<0表示直线x -y +2=0左上方部分,故不等式表示的平面区域为选项B. 答案 B3.(必修5P91练习T1(1)改编)已知x ,y 满足约束条件⎩⎨⎧y ≤x ,x +y ≤1,y ≥-1,则z =2x +y+1的最大值、最小值分别是( ) A.3,-3 B.2,-4 C.4,-2D.4,-4解析 不等式组所表示的平面区域如图所示.其中A (-1,-1),B (2,-1),C ⎝ ⎛⎭⎪⎫12,12,画直线l 0:y =-2x ,平移l 0过B 时,z max =4, 平移l 0过点A 时, z min =-2. 答案 C4.(2019·合肥一中月考)在平面直角坐标系xOy 中,不等式组⎩⎨⎧1≤x +y ≤3,-1≤x -y ≤1表示图形的面积等于( ) A.1B.2C.3D.4解析 不等式组对应的平面区域如图,即对应的区域为正方形ABCD ,其中A (0,1),D (1,0),边长AD =2,则正方形的面积S =2×2=2.答案 B5.(2018·全国Ⅰ卷)若x ,y 满足约束条件⎩⎨⎧x -2y -2≤0,x -y +1≥0,y ≤0,则z =3x +2y 的最大值为________.解析 作出可行域为如图所示的△ABC 所表示的阴影区域,作出直线3x +2y =0,并平移该直线,当直线过点A (2,0)时,目标函数z =3x +2y 取得最大值,且z max =3×2+2×0=6.答案 66.(2017·全国Ⅲ卷)若x ,y 满足约束条件⎩⎨⎧x -y ≥0,x +y -2≤0,y ≥0,则z =3x -4y 的最小值为________.解析 画出可行域如图阴影部分所示.由z =3x -4y ,得y =34x -z4,作出直线y =34x ,平移使之经过可行域,观察可知,当直线经过点A (1,1)处时取最小值,故z min =3×1-4×1=-1. 答案 -1考点一 二元一次不等式(组)表示的平面区域【例1】 (1)(2019·北京西城区二模)在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧3x -y ≤0,x -3y +2≥0,y ≥0表示的平面区域的面积是( )A.32B. 3C. 2D.2 3(2)(2018·深圳二模)已知直线y =kx -3经过不等式组⎩⎨⎧x +y -2≥0,2x -y ≤4,y ≤4所表示的平面区域,则实数k 的取值范围是( ) A.⎣⎢⎡⎦⎥⎤-72,32B.⎝ ⎛⎦⎥⎤-∞,-72∪⎣⎢⎡⎭⎪⎫32,+∞C.⎣⎢⎡⎦⎥⎤-72,74D.⎝ ⎛⎦⎥⎤-∞,-72∪⎣⎢⎡⎭⎪⎫74,+∞解析 (1)作出不等式组表示的平面区域是以点O (0,0),B (-2,0)和A (1,3)为顶点的三角形区域,如图所示的阴影部分(含边界),由图知该平面区域的面积为12×2×3= 3.(2)画出不等组⎩⎨⎧x +y -2≥0,2x -y ≤4,y ≤4所表示的平面区域,如图所示,直线y =kx -3过定点M (0,-3),由⎩⎨⎧y =4,x +y -2=0,解得A (-2,4), 当直线y =kx -3过点A 时,k =-3-40-(-2)=-72;由⎩⎨⎧2x -y =4,x +y -2=0,解得B (2,0), 当直线y =kx -3过点B 时,k =-3-00-2=32.由图形知,实数k 的取值范围是⎝ ⎛⎦⎥⎤-∞,-72∪⎣⎢⎡⎭⎪⎫32,+∞.答案 (1)B (2)B规律方法 1.二元一次不等式(组)表示平面区域的判断方法:直线定界,测试点定域.2.求平面区域的面积:(1)首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;(2)对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和.【训练1】 (2019·玉溪模拟)已知不等式组⎩⎨⎧y ≤-x +2,y ≤kx -1,y ≥0所表示的平面区域为面积等于14的三角形,则实数k 的值为( )A.-1B.-12C.12D.1解析由题意知k >0,且不等式组⎩⎨⎧y ≤-x +2,y ≤kx -1,y ≥0所表示的平面区域如图所示.∵直线y =kx -1与x 轴的交点为⎝ ⎛⎭⎪⎫1k ,0,直线y =kx -1与直线y =-x +2的交点为⎝ ⎛⎭⎪⎫3k +1,2k -1k +1, ∴三角形的面积为12×⎝⎛⎭⎪⎫2-1k ×2k -1k +1=14,解得k =1或k =27,经检验,k =27不符合题意,∴k =1.答案 D考点二 线性规划中的最值问题 多维探究角度1 求线性目标函数的最值【例2-1】 (一题多解)(2018·全国Ⅲ卷)若变量x ,y 满足约束条件⎩⎨⎧2x +y +3≥0,x -2y +4≥0,x -2≤0,则z =x +13y 的最大值是________.解析 法一 作出不等式组表示的平面区域如图中阴影部分所示,画出直线y =-3x ,平移该直线,由图可知当平移后的直线经过直线x =2与直线x -2y +4=0的交点A (2,3)时,z =x +13y 取得最大值,故z max =2+13×3=3.法二 画出可行域(如上图),由图知可行域为三角形区域,易求得顶点坐标分别为(2,3),(2,-7),(-2,1),将三点坐标代入,可知z max =2+13×3=3.答案 3角度2 求非线性目标函数的最值【例2-2】 (1)(2019·济南一模)若变量x ,y 满足约束条件⎩⎨⎧x ≥1,x -y ≤0,x -2y +2≥0,则yx 的最大值为( ) A.1B.3C.32D.5(2)若变量x ,y 满足⎩⎨⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是()A .4B .9C .10D .12解析 (1)不等式组表示平面区域是以(1,1),⎝ ⎛⎭⎪⎫1,32,(2,2)为顶点的三角形区域(包含边界)(图略).y x 表示平面区域内的点与原点的连线的斜率,由题意得点⎝ ⎛⎭⎪⎫1,32与原点的连线斜率最大,即yx 的最大值为321=32.(2)作出不等式组所表示的平面区域,如图中阴影部分所示(包括边界),x 2+y 2表示平面区域内的点与原点的距离的平方.由图易知平面区域内的点A (3,-1)与原点的距离最大,所以x 2+y 2的最大值是10.答案 (1)C (2)C角度3 线性规划中的参数问题【例2-3】 (2019·西安质检)已知实数x ,y 满足约束条件⎩⎨⎧y ≥0,y -x +1≤0,y -2x +4≥0.若目标函数z =y -ax (a ≠0)取得最大值时的最优解有无数个,则a 的值为( ) A.2 B.1 C.1或2D.-1解析 画出不等式组表示的可行域如图阴影部分所示.由z =y -ax (a ≠0)得y =ax +z .因为a ≠0,所以要使z =y -ax 取得最大值时的最优解有无数个,故必有a >0. ①当直线y =ax +z 与直线AC 重合,即a =1时,直线y =ax +z 在y 轴上的截距最大,此时z 取得最大值,且最优解有无数个,符合条件;②当直线y =ax +z与直线BC 重合时,直线y =ax +z 在y 轴上的截距最小,此时z 取得最小值,不符合条件.故a =1. 答案 B规律方法 1.先准确作出可行域,再借助目标函数的几何意义求目标函数的最值.一般在平面区域的顶点或边界处取得.2.当目标函数是非线性的函数时,常利用目标函数的几何意义来解题.常见代数式的几何意义:(1)x 2+y 2表示点(x ,y )与原点(0,0)的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离;(2)y x 表示点(x ,y )与原点(0,0)连线的斜率,y -bx -a表示点(x ,y )与点(a ,b )连线的斜率.3.当目标函数中含有参数时,要根据临界位置确定参数所满足的条件.【训练2】 (1)(2017·全国Ⅲ卷)设x ,y 满足约束条件⎩⎨⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x-y 的取值范围是( ) A .[-3,0] B .[-3,2] C .[0,2]D .[0,3](2)已知实数x ,y 满足约束条件⎩⎨⎧2x -y ≥0,y ≥x ,y ≥-x +b ,若z =2x +y 的最小值为3,则实数b =( ) A.94B.32C.1D.34解析 (1)画出不等式组表示的可行域(如图阴影部分所示),结合目标函数的几何意义可得函数在点A (0,3)处取得最小值z =0-3=-3,在点B (2,0)处取得最大值z =2-0=2.(2)作出不等式组对应的平面区域,如图中阴影部分所示.由z =2x +y 得y =-2x +z , 平移直线y =-2x ,由图可知当直线y =-2x +z 经过点A 时,直线y =-2x +z 的截距最小,此时z 最小为3,即2x +y =3.由⎩⎨⎧2x +y =3,y =2x ,解得⎩⎪⎨⎪⎧x =34,y =32,即A ⎝ ⎛⎭⎪⎫34,32,又点A 也在直线y =-x +b 上,即32=-34+b ,∴b =94.答案 (1)B (2)A考点三 实际生活中的线性规划问题【例3】 (2016·全国Ⅰ卷)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析 设生产A 产品x 件,B 产品y 件,根据所耗费的材料要求、工时要求等其他限制条件,得线性约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *,目标函数z =2 100x +900y .作出可行域为图中的阴影部分(包括边界)内的整数点,图中阴影四边形的顶点坐标分别为(60,100),(0,200),(0,0),(90,0),在(60,100)处取得最大值,z max =2 100×60+900×100=216 000(元).答案 216 000规律方法 1.解线性规划应用题的步骤.(1)转化——设元,写出约束条件和目标函数,从而将实际问题转化为线性规划问题;(2)求解——解这个纯数学的线性规划问题;(3)作答——将数学问题的答案还原为实际问题的答案.2.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件,写出要研究的函数,转化成线性规划问题. 【训练3】 某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A ,B 两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时.A ,B 两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( ) A.320千元B.360千元C.400千元D.440千元解析 设生产甲产品x 件,生产乙产品y 件,利润为z 千元,则⎩⎨⎧x ≥0,y ≥0,2x +3y ≤480,z =2x +y ,6x +y ≤960,作出可行域如图中阴影部分中的整点,作出直线2x +y =0,平移该直线,当直线z =2x +y 经过直线2x +3y =480与直线6x +y =960的交点(150,60)(满足x ∈N,y ∈N)时,z 取得最大值,为360.答案 B[思维升华]1.求最值:求二元一次目标函数z =ax +by (ab ≠0)的最值,将z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值间接求出z 的最值.最优解在顶点或边界处取得.2.利用线性规划的思想结合代数式的几何意义可以解决一些非线性规划问题. [易错防范]1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.2.在通过求直线的截距z b 的最值间接求出z 的最值时,要注意:当b >0时,截距z b取最大值时,z 也取最大值;截距z b取最小值时,z 也取最小值;当b <0时,截距z b 取最大值时,z 取最小值;截距zb取最小值时,z 取最大值.直观想象——高考命题中线性规划问题类型探析直观想象是指借助生动的几何直观和空间想象感知事物的形态变化与运动规律.线性规划问题是在一组约束条件下,利用数形结合求最优解,求解方法灵活,常考常新.类型1 目标函数含参数【例1】 设不等式组⎩⎨⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域为D ,若直线y =a (x +1)与D 有公共点,则a 的取值范围是______.解析 由可行域(如图)易知直线y =a (x +1)过定点P (-1,0).当直线y =a (x +1)经过x +3y =4与3x +y =4的交点A (1,1)时,a 取得最小值12; 当直线y =a (x +1)经过x =0与3x +y =4的交点B 时,a 取得最大值4. 故a 的取值范围为⎣⎢⎡⎦⎥⎤12,4.答案 ⎣⎢⎡⎦⎥⎤12,4评析 1.“目标函数”含参,使问题从“静态”化为“动态”,即对线性规则问题融入动态因素,用运动变化的观点来探究参数,此类试题旨在考查学生逆向思维及数形结合解决问题的能力.2.当“目标函数”含参时,可先画出可行域,然后用数形结合思想,通过比较目标函数与边界有关直线的倾斜程度,直观求解. 类型2 线性约束条件含参【例2】 已知z =2x +y ,其中实数x ,y 满足⎩⎨⎧y ≥x ,x +y ≤2,x ≥a ,且z 的最大值是最小值的4倍,则a 的值是( ) A.211B.14C.4D.112解析 作出不等式组对应的平面区域如图:由z =2x +y 得y =-2x +z ,由图可知当直线y =-2x +z 经过点A 时,直线的纵截距最大,z 取最大值. 由⎩⎨⎧x +y =2,y =x ,解得⎩⎨⎧x =1,y =1,即A (1,1), z max =2×1+1=3.当直线y =-2x +z 经过点B 时,直线的纵截距最小,此时z 最小. 由⎩⎨⎧x =a ,y =x ,解得⎩⎨⎧x =a ,y =a ,则点B (a ,a ). ∴z min =2×a +a =3a ,∵z 的最大值是最小值的4倍, ∴3=4×3a ,即a =14.答案 B评析 当“约束条件”含参时,可根据条件先确定可行域上的边界点或者边界线,进而确定“约束条件”中所含有的参数值,然后画出可行域,把问题转化为一般形式的线性规划问题. 类型3 “隐性”的线性规划问题【例3】 如果函数f (x )=12(m -2)x 2+(n -8)x +1(m ≥0,n ≥0)在区间⎣⎢⎡⎦⎥⎤12,2上单调递减,则mn 的最大值为( ) A.16B.18C.25D.812解析 f ′(x )=(m -2)x +n -8.由已知得:对任意的x ∈⎣⎢⎡⎦⎥⎤12,2,f ′(x )≤0,所以f ′⎝ ⎛⎭⎪⎫12≤0,f ′(2)≤0,所以⎩⎨⎧m ≥0,n ≥0,m +2n ≤18,2m +n ≤12.画出可行域,如图,令mn =t ,则当n =0时,t =0;当n ≠0时,m =t n.由线性规划的相关知识,只有当直线2m +n =12与曲线m =t n相切时,t 取得最大值.由⎩⎪⎨⎪⎧-t n 2=-12,6-12n =t n,解得n =6,t =18.所以(mn )max=18.答案 B评析 1.本例以函数为载体隐蔽“约束条件”,有效实现了知识模块的交汇,例3要求从题设中抓住本质条件,转化为关于“m ,n ”的约束条件.2.解题的关键是要准确无误地将已知条件转化为线性约束条件作出可行域,抓住可行域中所求点的相应几何意义.该题立意新颖,在注意基础知识的同时,渗透了等价转化思想和数形结合思想,考查了学生的综合应用能力.基础巩固题组 (建议用时:35分钟)一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A.(-24,7) B.(-7,24)C.(-∞,-7)∪(24,+∞)D.(-∞,-24)∪(7,+∞)解析 根据题意知(-9+2-a )·(12+12-a )<0,即(a +7)(a -24)<0,解得-7<a <24. 答案 B2.在平面直角坐标系中,不等式组⎩⎨⎧x ≥0,x +y ≤2,x ≤y所表示的平面区域的面积为( ) A.1B.2C.4D.8解析 不等式组表示的平面区域是以点(0,0),(0,2)和(1,1)为顶点的三角形区域(含边界),则面积为12×2×1=1.答案 A3.(2018·天津卷)设变量x ,y 满足约束条件⎩⎨⎧x +y ≤5,2x -y ≤4,-x +y ≤1,y ≥0,则目标函数z =3x +5y 的最大值为( ) A.6B.19C.21D.45解析 不等式组表示的平面区域如图中阴影部分所示,作出直线y =-35x ,平移该直线,当经过点C 时,z 取得最大值,由⎩⎨⎧-x +y =1,x +y =5得⎩⎨⎧x =2,y =3,即C (2,3),所以z max =3×2+5×3=21,故选C.答案 C4.(2017·全国Ⅱ卷)设x ,y 满足约束条件⎩⎨⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是( ) A.-15B.-9C.1D.9解析 作出不等式组表示的可行域,结合目标函数的几何意义得函数在点B (-6,-3)处取得最小值z min =-12-3=-15.答案 A5.若x ,y 满足⎩⎨⎧x +y ≥1,mx -y ≤0,3x -2y +2≥0,且z =3x -y 的最大值为2,则实数m 的值为( ) A.13B.23C.1D.2解析 若z =3x -y 的最大值为2,则此时目标函数为y =3x -2,直线y =3x -2与3x -2y +2=0和x +y =1分别交于A (2,4),B ⎝ ⎛⎭⎪⎫34,14,mx -y =0经过其中一点,所以m =2或m =13, 当m =13时, 经检验不符合题意,故m =2.答案 D6.(2019·武汉模拟)已知⎩⎨⎧x -y ≥0,3x -y -6≤0,x +y -2≥0,则z =22x +y的最小值是( )A.1B.16C.8D.4解析 作出不等式组对应的平面区域如图,设m =2x +y ,则y =-2x +m ,由图可知当直线y =-2x +m 经过点A 时,直线在y 轴上的截距最小, 此时m 最小,z 也最小,由⎩⎨⎧x -y =0,x +y -2=0解得⎩⎨⎧x =1,y =1,即A (1,1), m min =2×1+1=3,则z min =23=8. 答案 C7.(2018·成都诊断)已知点M 的坐标(x ,y )满足不等式组⎩⎨⎧2x +y -4≥0,x -y -2≤0,y -3≤0,N 为直线y =-2x +2上任一点,则|MN |的最小值是( )A.55B.255C.1D.172解析作出不等式组⎩⎨⎧2x +y -4≥0,x -y -2≤0,y -3≤0的可行域如图,因为点M 的坐标(x ,y )满足不等式组⎩⎨⎧2x +y -4≥0,x -y -2≤0,y -3≤0,N 为直线y =-2x +2上任一点,所以|MN |的最小值就是两条平行直线y =-2x +2与2x +y -4=0之间的距离,为|-2+4|12+22=255.答案 B8.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元B.16万元C.17万元D.18万元解析 设每天生产甲、乙产品分别为x 吨、y 吨,每天所获利润为z 万元,则有⎩⎨⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图阴影部分所示,可得目标函数在点A 处取到最大值. 由⎩⎨⎧x +2y =8,3x +2y =12得A (2,3). 则z max =3×2+4×3=18(万元). 答案 D 二、填空题9.(一题多解)(2018·北京卷)若x ,y 满足x +1≤y ≤2x ,则2y -x 的最小值是________.解析 法一 x +1≤y ≤2x 表示的平面区域如图中阴影部分所示,令z =2y -x ,易知z =2y -x 在点A (1,2)处取得最小值,最小值为3.法二 由题意知⎩⎨⎧x -y ≤-1,2x -y ≥0,则2y -x =-3(x -y )+(2x -y )≥3,所以2y -x的最小值为3. 答案 310.(2018·全国Ⅱ卷)若x ,y 满足约束条件⎩⎨⎧x +2y -5≥0,x -2y +3≥0,x -5≤0,则z =x +y 的最大值为________.解析 画出不等式组所表示的平面区域,如图中阴影部分所示.作出直线x +y =0,平移该直线,当直线过点B (5,4)时,z 取得最大值,z max =5+4=9.答案 911.已知实数x ,y 满足⎩⎨⎧y ≥1,y ≤2x -1,x +y ≤m .如果目标函数z =x -y 的最小值为-1,则实数m =________.解析 画出不等式组所表示的可行域如图中阴影部分所示,作直线l :y =x ,平移l 可知,当直线l 经过A 时符合题意,由⎩⎨⎧y =2x -1,x -y =-1,解得⎩⎨⎧x =2,y =3. 又A (2,3)在直线x +y =m 上,则m =5. 答案 512.已知实数x ,y 满足⎩⎪⎨⎪⎧2x -y -6>0,y ≥12x -3,x +4y ≤12,则z =y -3x -2的取值范围为________.解析 不等式组所表示的平面区域如图中阴影部分所示,z =y -3x -2表示点D (2,3)与平面区域内的点(x ,y )之间连线的斜率.因点D (2,3)与B (8,1)连线的斜率为-13且C 的坐标为(2,-2), 故由图知z =y -3x -2的取值范围为⎝⎛⎦⎥⎤-∞,-13.答案 ⎝⎛⎦⎥⎤-∞,-13能力提升题组 (建议用时:15分钟)13. 若变量x ,y 满足约束条件⎩⎨⎧x -y +1≤0,y ≤1,x >-1,则(x -2)2+y 2的最小值为()A.322B. 5C.92D .5解析 作出不等式组对应的平面区域如图中阴影部分所示.设z =(x -2)2+y 2,则z 的几何意义为区域内的点到定点D (2,0)的距离的平方,由图知C ,D 间的距离最小,此时z 也最小.由⎩⎨⎧y =1,x -y +1=0得⎩⎨⎧x =0,y =1,即C (0,1),此时z min =(x -2)2+y 2=4+1=5. 答案 D14.(2019·石家庄模拟)已知x ,y 满足约束条件⎩⎨⎧x -1≥0,x -y ≤0,x +y -m ≤0,若y x +1的最大值为2,则m 的值为( ) A.4B.5C.8D.9解析 不等式组对应的可行域如图所示:由⎩⎨⎧x =1,x +y -m =0得B (1,m -1). yx +1=y -0x -(-1)表示动点(x ,y )和点D (-1,0)连线的斜率,可行域中点B 和点D 连线的斜率最大, ∴m -11-(-1)=2,∴m =5. 答案 B15.已知O 是坐标原点,点M 的坐标为(2,1),若点N (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≤2,x ≥12,y ≥x上的一个动点,则OM→·ON →的最大值是________. 解析 依题意,得不等式组对应的平面区域如图中阴影部分所示,其中A ⎝ ⎛⎭⎪⎫12,12,B ⎝ ⎛⎭⎪⎫12,32,C (1,1).设z =OM →·ON →=2x +y ,当目标函数z =2x +y 过点C (1,1)时,z =2x +y 取得最大值3. 答案 316.为了活跃学生课余生活,我校高三年级部计划使用不超过1 200元的资金购买单价分别为90元、120元的排球和篮球.根据需要,排球至少买3个,篮球至少买2个,并且排球的数量不得超过篮球数量的2倍,则能买排球和篮球的个数之和的最大值是________. 解析 设买排球x 个,篮球y 个,买排球和篮球的个数之和z =x +y ,则⎩⎨⎧x ≥3,y ≥2,x ≤2y ,90x +120y ≤1 200,即⎩⎨⎧x ≥3,y ≥2,x ≤2y ,3x +4y ≤40.由约束条件作出可行域如图阴影部分中的整点.联立⎩⎨⎧x =2y ,3x +4y =40,解得A (8,4),化目标函数z =x +y 为y =-x +z ,由图可知,当直线y =-x +z 过点A 时,直线在y 轴上的截距最大,z 有最大值,此时z =8+4=12. 答案 12。

文科数学高考真题分类汇编 二元一次不等式(组)与简单的线性规划问题

文科数学高考真题分类汇编 二元一次不等式(组)与简单的线性规划问题

+
y

4
,则目标函数 z = 3x − y 的取值范
4 x − y …−1
围是
A.

3 2
,6
B.

3 2
,−1
C. −1,6
D.

6,3 2
x + y − 3 0, 29.(2012 福建)若直线 y = 2x 上存在点 (x, y)满足约束条件x − 2 y − 3 0 , 则实数 m 的
x − y „ 1
A.12
B.11
C.3
D.-1
x + y 1 27.(2012 广东)已知变量 x, y 满足约束条件 x +1 0 ,则 z = x + 2 y 的最小值为
x − y 1
A. 3
B.1
C. −5
D. −6
x + 2y …2
28.(2012
山东)设变量
x,
y
满足约束条件
2x
______.
45.(2015 北京)如图,△ ABC 及其内部的点组成的集合记为 D , P(x, y) 为 D 中任意一
点,则z = 2x +3y 的最大值为_________.
x + y −2≤0
0 y 15
A.20
B.35
C.45
D.55
0 x 2
32.(2011
广东)已知平面直角坐标系 xOy 上的区域
D
由不等式 x
2
给定,若
x 2 y
M (x, y) 为 D 上的动点,点 A 的坐标为( 2,1) ,则 z= OM ·OA 的最大值为
A.3

2019年高三文科数学一轮复习:二元一次不等式(组)与简单的线性规划问题(解析版附后)

2019年高三文科数学一轮复习:二元一次不等式(组)与简单的线性规划问题(解析版附后)

2019年高三文科数学一轮复习:二元一次不等式(组)与简单的线性规划问题(解析版附后)A 组 基础达标(建议用时:30分钟)一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( )A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)2.不等式组⎩⎨⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A .32B .23C .43D .34C [平面区域如图中阴影部分所示.3.(2016·北京高考)若x ,y 满足⎩⎨⎧2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为( )A .0B .3C .4D .54.(2018·郑州模拟)若x ,y 满足约束条件⎩⎨⎧3x -y +3≥0,3x +y -3≤0,y ≥0,则当y +1x +3取最大值时,x +y 的值为( ) A .-1 B .1 C .- 3D . 35.(2017·贵阳适应性考试(二))若函数y =kx 的图象上存在点(x ,y )满足约束条件⎩⎨⎧x +y -3≤0,x -2y -3≤0,x ≥1,则实数k 的最大值为( )A .1B .2C .32D .12二、填空题6.设变量x ,y 满足约束条件⎩⎨⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数 =3x -y 的最大值为__________.7.(2016·江苏高考)已知实数x ,y 满足⎩⎨⎧x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,则x 2+y 2的取值范围是________.8.(2016·郑州第二次质量预测)已知实数x ,y 满足⎩⎨⎧2x +y ≥0,x -y ≥0,0≤x ≤a ,设b =x -2y ,若b 的最小值为-2,则b 的最大值为__________. 三、解答题9.若直线x +my +m =0与以P (-1,-1),Q (2,3)为端点的线段不相交,求m 的取值范围.10.若x ,y 满足约束条件⎩⎨⎧x +y ≥1,x -y ≥-1,2x -y ≤2.(1)求目标函数 =12x -y +12的最值;(2)若目标函数 =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围.B 组 能力提升(建议用时:15分钟)1.(2015·重庆高考)若不等式组⎩⎨⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为( ) A .-3B .1C .43D .32.(2018·安阳模拟)已知 =2x +y ,其中实数x ,y 满足⎩⎨⎧y ≥x ,x +y ≤2,x ≥a ,且 的最大值是最小值的4倍,则a 的值是( ) A .211 B .14 C .4D .1123.(2017·天津高考)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数. (1)用x ,y 列出满足题目条件的数学关系式, 并画出相应的平面区域; (2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?2019年高三文科数学一轮复习:二元一次不等式(组)与简单的线性规划问题(解析版附后)A 组 基础达标(建议用时:30分钟)一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( )A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)B [根据题意知(-9+2-a )·(12+12-a )<0, 即(a +7)(a -24)<0,解得-7<a <24.]2.不等式组⎩⎨⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A .32B .23C .43D .34C [平面区域如图中阴影部分所示.解⎩⎨⎧x +3y =4,3x +y =4得A (1,1), 易得B (0,4),C ⎝ ⎛⎭⎪⎫0,43,|BC |=4-43=83,∴S △ABC =12×83×1=43.]3.(2016·北京高考)若x ,y 满足⎩⎨⎧2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为( )A .0B .3C .4D .5C [根据题意作出可行域如图阴影部分所示,平移直线y =-2x ,当直线平移到虚线处时,目标函数取得最大值,由⎩⎨⎧2x -y =0,x +y =3,可得A (1,2),此时2x+y 取最大值为2×1+2=4.]4.(2018·郑州模拟)若x ,y 满足约束条件⎩⎨⎧3x -y +3≥0,3x +y -3≤0,y ≥0,则当y +1x +3取最大值时,x +y 的值为( ) A .-1 B .1 C .- 3D . 3D [作出可行域如图中阴影部分所示,y +1x +3的几何意义是过定点M (-3,-1)与可行域内的点(x ,y )的直线的斜率,由图可知,当直线过点A (0,3)时,斜率取得最大值,此时x ,y 的值分别为0,3,所以x +y = 3.故选D .]5.(2017·贵阳适应性考试(二))若函数y =kx 的图象上存在点(x ,y )满足约束条件⎩⎨⎧x +y -3≤0,x -2y -3≤0,x ≥1,则实数k 的最大值为( )A .1B .2C .32D .12B [约束条件对应的平面区域是以点(1,2),(1,-1)和(3,0)为顶点的三角形,当直线y =kx 经过点(1,2)时,k 取得最大值2,故选B .] 二、填空题6.设变量x ,y 满足约束条件⎩⎨⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数 =3x -y 的最大值为__________.4 [根据约束条件作出可行域,如图中阴影部分所示,∵ =3x -y ,∴y =3x - ,当该直线经过点A (2,2)时, 取得最大值,即 max =3×2-2=4.]7.(2016·江苏高考)已知实数x ,y 满足⎩⎨⎧x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,则x 2+y 2的取值范围是________.⎣⎢⎡⎦⎥⎤45,13 [根据已知的不等式组画出可行域,如图阴影部分所示,则(x ,y )为阴影区域内的动点.d =x 2+y 2可以看做坐标原点O 与可行域内的点(x ,y )之间的距离.数形结合,知d 的最大值是OA 的长,d 的最小值是点O 到直线2x +y -2=0的距离.由⎩⎨⎧x -2y +4=0,3x -y -3=0可得A (2,3),所以d max =22+32=13,d min =|-2|22+12=25,所以d 2的最小值为45,最大值为13,所以x 2+y 2的取值范围是⎣⎢⎡⎦⎥⎤45,13.]8.(2016·郑州第二次质量预测)已知实数x ,y 满足⎩⎨⎧2x +y ≥0,x -y ≥0,0≤x ≤a ,设b =x -2y ,若b 的最小值为-2,则b 的最大值为__________.10[画出可行域,如图阴影部分所示.由b =x -2y ,得y =12x -b2.易知在点(a ,a )处b 取最小值,故a -2a =-2,可得a =2.在点(2,-4)处b 取最大值,于是b 的最大值为2+8=10.]三、解答题9.若直线x +my +m =0与以P (-1,-1),Q (2,3)为端点的线段不相交,求m 的取值范围.[解] 直线x +my +m =0将坐标平面划分成两块区域,线段PQ 与直线x +my +m =0不相交,5分则点P ,Q 在同一区域内,于是⎩⎨⎧-1-m +m >0,2+3m +m >0,或⎩⎨⎧-1-m +m <0,2+3m +m <0,所以m 的取值范围是m <-12.12分10.若x ,y 满足约束条件⎩⎨⎧x +y ≥1,x -y ≥-1,2x -y ≤2.(1)求目标函数 =12x -y +12的最值;(2)若目标函数 =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围. [解] (1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0).2分平移初始直线12x -y +12=0, 过A (3,4)取最小值-2, 过C (1,0)取最大值1, 所以 的最大值为1, 最小值为-2.6分(2)直线ax +2y = 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2.10分故所求a 的取值范围为(-4,2).12分B 组 能力提升(建议用时:15分钟)1.(2015·重庆高考)若不等式组⎩⎨⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为( ) A .-3 B .1 C .43D .3B [作出可行域,如图中阴影部分所示,易求A ,B ,C ,D 的坐标分别为A (2,0),B (1-m,1+m ),C ⎝ ⎛⎭⎪⎫2-4m 3,2+2m 3,D (-2m,0).S △ABC =S △ADB -S △ADC =12|AD |·|y B -y C |=12(2+2m )·⎝ ⎛⎭⎪⎫1+m -2+2m 3=(1+m )⎝⎛⎭⎪⎫1+m -23=43,解得m =1或m =-3(舍去).] 2.(2018·安阳模拟)已知 =2x +y ,其中实数x ,y 满足⎩⎨⎧y ≥x ,x +y ≤2,x ≥a ,且 的最大值是最小值的4倍,则a 的值是( ) A .211 B .14 C .4D .112B [作出不等式组对应的平面区域如图:由 =2x +y 得y =-2x + ,平移直线y =-2x ,由图可知当直线y =-2x + 经过点A 时,直线的纵截距最大,此时 最大,由⎩⎨⎧ x +y =2,y =x 解得⎩⎨⎧ x =1,y =1, 即A (1,1), max =2×1+1=3,当直线y =-2x + 经过点B 时,直线的纵截距最小,此时 最小,由⎩⎨⎧ x =a ,y =x 解得⎩⎨⎧x =a ,y =a ,即B (a ,a ), min =2×a +a =3a ,∵ 的最大值是最小值的4倍,∴3=4×3a ,即a =14,故选B .]3.(2017·天津高考)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(1)用x ,y 列出满足题目条件的数学关系式, 并画出相应的平面区域;(2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?[解] (1)由已知,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧ 70x +60y ≤600,5x +5y ≥30,x ≤2y ,x ≥0,x ∈N ,y ≥0,y ∈N ,即⎩⎪⎨⎪⎧ 7x +6y ≤60,x +y ≥6,x -2y ≤0,x ≥0,x ∈N ,y ≥0,y ∈N , 该二元一次不等式组所表示的平面区域为图①中的阴影部分中的整数点.(2)设总收视人次为 万,则目标函数为 =60x +25y .考虑 =60x +25y ,将它变形为y =-125x +z 25,这是斜率为-125,随 变化的一族平行直线.z 25为直线在y 轴上的截距,当z 25取得最大值时, 的值就最大. 又因为x ,y 满足约束条件,所以由图②可知,当直线 =60x +25y 经过可行域上的点M 时,截距z 25最大,即 最大.解方程组⎩⎨⎧ 7x +6y =60,x -2y =0,得⎩⎨⎧ x =6,y =3,则点M 的坐标为(6,3). 所以,电视台每周播出甲连续剧6次、乙连续剧3次时,才能使总收视人次最多.。

人教B版高中数学必修五《3.5 二元一次不等式(组)与简单的线性规划问题 3.5.2 简单线性规划》_24

人教B版高中数学必修五《3.5 二元一次不等式(组)与简单的线性规划问题 3.5.2 简单线性规划》_24

《简单线性规划》教学设计课题:简单线性规划教材分析:本节课是《人教版(B版)普通高中课程标准实验教科书(必修5)第三章 3.5.2》在讲了二元一次不等式和二元一次不等式组表示的平面区域的基础上,简单线性规划知识的第一节课.重点是介绍线性规划的有关概念和利用图解法求解,难点是线性规划的实际应用.在教育部制订的《普通高中数学课程标准》(实验)中指出:“线性规划是优化的具体模型之一,教师应引导学生体会线性规划的基本思想,借助几何直观解决一些简单的线性规划问题.”经过仔细研究教材,结合我校学生的实际情况,我制订了本节课的教学目标和由实际问题引入,学生自主探究的主要思路.教学目标:1.知识目标:理解线性规划有关概念,初步学会解决简单的线性规划问题.2.能力目标:渗透数形结合的数学思想;加强学生自主探究、合作交流的意识;进一步培养学生在研究问题中主动借助现代信息技术手段辅助思维的习惯.3.情感目标:让学生感受探究问题的乐趣和解决问题的成就感,通过带领学生解决实际问题及对线性规划有关历史的简单回顾,感受数学的文化价值.教学重点、难点:探究解决简单线性规划问题的方法.教学方式:学生自主探究和教师引导相结合.教学手段:多媒体、几何画板.教学过程:一. 设置情境,问题引入通过实际问题,创设问题情境.问题一:资金分配前不久的四川大地震,牵动了全国人民的心,灾后重建是当务之急.北京某企业积极响应北京市对口支援什邡市重建的号召,打算对中小学教学楼的重建(包括各项附属设施)提供支援,预算投入资金不超过1000万元.根据当前实际情况,要求投入中学建设的资金不少于投入小学建设资金的1.8倍,初步估算中学教学楼的平均造价为每百平方米14万元,小学教学楼的平均造价为每百平方米8万元.并且对两者的建设面积都不低于1000平方米.请你帮该企业计算一下,如何分配这笔资金能使得教学楼重建后的面积最大?最大面积为多少?学生活动:(1)独立将实际问题转化为数学问题;(2)针对得到的“约束条件”(不等式组),做出相应的平面区域.预案:学生会比较顺利的列出不等式组,不容易想到列出“目标函数”,教师作适当引导,让学生列出二元函数表达式.说明:(1)学生已经学习了“二元一次不等式组表示平面区域”的问题,作为上述知识的应用,这里设计了从实际问题出发,创设问题情境,从而引起学生的探究兴趣;(2)放手让学生独立解决.碰到问题(如何处理一个“二元函数”的最值问题),引起认知冲突,激发求知的欲望.二. 深入研究,探求解法针对“问题一”中提出的数学问题,让学生自己探究解决的方法,教师巡视观察.设建设中学教学楼面积为x百平方米,建设小学教学楼面积y百平方米,建筑总面积为z 百平方米. z = x +y .满足: 学生活动:学生合作交流,进行自主探究.预案一:学生利用图形计算器的取点功能作出自由点,并度量其坐标,然后在所绘区域内移动该点,并直接计算x +y 的值进行比较,容易猜想出使z 取得最大值的点的位置.预案二:让学生思考使z 取某个特殊值(如60)时点的位置.部分学生容易想到:满足条件的点的集合为直线x +y =60与所画区域的交集.可再取两个特殊值让学生思考,引导他们发现直线之间的平行关系,并思考z 的几何意义:把目标函数化成y x z =-+的形式,这表示一组平行直线,而z 表示的是直线的纵截距,通过平移直线,当直线的纵截距最大时,z 取最大值.预案三:(教材解法)利用点到直线的距离公式进行转化,点到直线x + y =0的距离为:d =,把它化成x y +=.因为区域内的点的横纵坐标都是正数,所以z x y =+=.从而到直线x + y =0的距离最大的点就是使z 取最大值的点.说明:(1) 引导学生合作交流,主动寻求问题的解答; (2) 培养学生利用现代信息技术手段辅助思维的意识; (3) 教师巡视观察,适当点拨;(4) 教师配合学生的探究结果,利用“几何画板”进行动态演示. 三. 结合问题,介绍概念结合前面两个实例,介绍线性规划的有关概念:(1)目标函数(线性目标函数); (2)约束条件(线性约束条件);1481000141.881010x y x y x y +≤⎧⎪≥⨯⎪⎨≥⎪⎪≥⎩(3)线性规划问题;(4)可行解、可行域、最优解.说明:(1)强调“目标函数”是涉及两个自变量的函数;(2)总结解法时明确,涉及两个自变量的线性规划问题可以借助图形解决,但涉及更多自变量时不适用,但在中学阶段不要求.四. 巩固知识,实际演练问题二:食品配制营养学家对高一学生中午的营养配餐提出建议:每人至少需要从食物中获取0.120 kg的碳水化合物,0.024kg的蛋白质,不超过0.032kg的脂肪.现有两种食物A和B,每种食物每千克中所含成分及价格如下表:为满足上面的饮食要求,并且食物A至少需0.5kg,则两种食物如何搭配可以使花费最低?最低为多少元?学生活动:在笔记本上独立解决.设食物A需要x kg,食物B需要y kg,花费为z 元.则:z =6x+8y.满足:5455865580.5x yx yx yxy+≥⎧⎪+≥⎪⎪+≤⎨⎪≥⎪≥⎪⎩0.1200.0960.1200.0200.0320.0240.0200.0200.0320.5x yx yx yxy+≥⎧⎪+≥⎪⎪+≤⎨⎪≥⎪≥⎪⎩说明:(1)换个领域的问题,锻炼学生的类比能力;(2)通过又一个实际问题的解决,帮助学生体会线性规划问题广泛的适用性,从而初步 掌握解决简单线性规划问题的一般方法.问题三: 设变量x 、y 满足下列条件:分别求下列目标函数的最小值: (1)z = y -x ; (2)z = 2x -3y ; (3)z = x +y .学生活动:分组合作完成表格的填写.说明:(1) 借助练习,落实知识的掌握;(2) 通过题目中呈现出的最优解的不同情况,给学生一个完整的、严谨的数学概念. 五. 小结全课,概括升华带领学生从知识与方法两个方面进行回顾与总结,指出:在知识方面,初步学习了解决“简单线性规划”的一般方法;并且更重要的是通过解决问题的过程,体会“模型建立”、223435251x y x y x y x +≥⎧⎪-≤⎪⎨+≤⎪⎪>⎩“数形结合”以及转化、类比等研究数学问题的一般方法. 六. 布置作业,设疑铺垫作业:P94 — 练习1、2、3. 思考题:已知:x 、y 满足条件:求:z = x +3y 的最大值.034241,x y x y x x y ⎧-≤⎪+≤⎪⎨≥⎪⎪∈⎩N。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题
1.若x ,y 满足不等式组⎩⎪⎨⎪

x +y -3≤0,x -y +3≥0,
y ≥-1,
则 =3x +y 的最大值为
【解析】将 =3x +y 化为y =-3x + ,作出可行域如图阴影部分所示,易知当直线y =-3x + 经过点D 时,
取得最大值.联立⎩
⎪⎨
⎪⎧
x +y -3=0,
y =-1,得D (4,-1),此时 max =4×3-1=11,
2.已知x ,y 满足约束条件⎩⎪⎨⎪

x ≥2,x +y ≤4,
-2x +y +c ≥0,
目标函数 =6x +2y 的最小值是10,则 的最大值是
即D (3,1),将点D 的坐标代入目标函数 =6x +2y ,得 max =6×3+2=20.
3.若x ,y 满足⎩⎪⎨⎪

x +y -2≥0,kx -y +2≥0,
y ≥0,
且 =y -x 的最小值为-4,则k 的值为
4.若x ,y 满足约束条件⎩⎪⎨
⎪⎧
3x -y ≥0,
x +y -4≤0,
y ≥12x 2

则 =y -x 的取值范围为
【解析】作出可行域如图所示,设直线l :y =x + ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0
的交点(1,3)时, 取得最大值2;当l 与抛物线y =12x 2
相切时, 取得最小值,由⎩⎪⎨⎪⎧
z =y -x ,y =12x 2
,消去y 得
x 2-2x -2 =0,由Δ=4+8 =0,得 =-1
2
,故-12
≤ ≤2.
5.在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域⎩⎪⎨⎪

x -2≤0,x +y ≥0,
x -3y +4≥0

的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=
【解析】作出不等式组所表示的平面区域如图中阴影部分所示,过点C ,D 分别作直线x +y -2=0的垂线,
垂足分别为A ,B ,则四边形ABDC 为矩形,由⎩⎪⎨⎪

x =2,x +y =0
得C (2,-2).由⎩⎪⎨


x -3y +4=0,x +y =0
得D (-1,1).所
以|AB |=|CD |=

2
+-2-
2
=3 2.
6.已知变量x ,y 满足约束条件⎩⎪⎨⎪

x +2y -3≤0,x +3y -3≥0,
y -1≤0,
若目标函数 =ax +y (其中a >0)仅在点 (1,1)处取得
最大值,则a 的取值范围为
7.若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪

x +y -3≤0,x -2y -3≤0,
x ≥m ,
则实数m 的最大值为 .
【解析】约束条件⎩⎪⎨⎪

x +y -3≤0,x -2y -3≤0,
x ≥m
表示的可行域如图中阴影部分所示.当直线x =m 从如图所示的实线
位置运动到过A 点的虚线位置时,m 取最大值.解方程组⎩
⎪⎨
⎪⎧
x +y -3=0,
y =2x 得A 点坐标为(1,2),∴m 的最大
值是1. 【答案】1
8.已知实数x ,y 满足⎩⎪⎨⎪

x -2y +1≥0,x <2,
x +y -1≥0,
则 =2x -2y -1的取值范围是 .
【解析】画出不等式组所表示的区域,如图中阴影部分所示,可知2×13-2×2
3
-1≤ <2×2-2×(-1)-1,
即 的取值范围是⎣⎢⎡⎭
⎪⎫-53,5.
【答案】⎣⎢⎡⎭
⎪⎫-53,5 9.已知x ,y 满足⎩⎪⎨⎪

y -2≤0,x +3≥0,
x -y -1≤0,

x +y -6
x -4
的取值范围是 .
【答案】⎣
⎢⎡⎦⎥⎤1,137
10.实数x ,y 满足不等式组⎩⎪⎨⎪

x -y +2≥0,2x -y -5≤0,
x +y -4≥0,
则 =|x +2y -4|的最大值为 .
【答案】21
二、解答题
11.若x ,y 满足约束条件⎩⎪⎨⎪

x +y ≥1,x -y ≥-1,
2x -y ≤2.
(1)求目标函数 =12x -y +1
2
的最值;
(2)若目标函数 =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围.
解:(1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0).平移初始直线12x -y +12=0,可知 =1
2x -y
+1
2过A (3,4)时取最小值-2,过C (1,0)时取最大值1. 所以 的最大值为1,最小值为-2.
(2)直线ax +2y = 仅在点(1,0)处取得最小值,由图象可知-1<-a
2<2,解得-4<a <2.故所求a 的取值
范围为(-4,2).
12.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5
元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.
(1)试用每天生产的卫兵个数x与骑兵个数y表示每天的利润w(元);
(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?。

相关文档
最新文档