傅里叶级数及变换的本质解释和形象阐述
傅里叶变换最通俗的理解

傅里叶变换最通俗的理解傅里叶变换是一种数学工具,它可以将一个周期性信号分解成多个不同频率的正弦波,并且可以将非周期性信号转换成一个连续的频谱图。
在信号处理、图像处理、音频处理等领域中,傅里叶变换被广泛应用。
本文将从以下几个方面来解释傅里叶变换的原理和应用。
一、什么是傅里叶级数在介绍傅里叶变换之前,我们需要先了解傅里叶级数。
傅里叶级数是一种将周期性函数表示为无穷多个正弦和余弦函数之和的方法。
具体地说,给定一个周期为T的函数f(t),可以表示为以下形式:f(t) = a0 + Σ(an*cos(nωt) + bn*sin(nωt))其中ω=2π/T,a0、an和bn是常数系数。
这个式子意味着,任何一个周期函数都可以被分解成由不同频率的正弦波组成的和。
这就是傅里叶级数的基本思想。
二、什么是离散时间傅里叶变换离散时间傅里叶变换(Discrete Fourier Transform, DFT)是一种将离散时间序列(例如数字信号)转换为频域表示的方法。
它可以将一个长度为N的离散时间序列x(n)转换成一个长度为N的复数序列X(k),其中k=0,1,...,N-1。
具体地说,DFT可以用以下公式表示:X(k) = Σ(x(n)*exp(-j2πnk/N))其中j是虚数单位,n和k分别是时间和频率的索引。
这个式子意味着,任何一个离散信号都可以被分解成由不同频率的正弦波组成的和。
DFT将原始信号转换成了一组复数表示,其中每个复数表示了对应频率上正弦波和余弦波的振幅和相位。
三、什么是傅里叶变换傅里叶变换(Fourier Transform, FT)是一种将连续时间信号转换为频域表示的方法。
它可以将一个连续时间函数f(t)转换成一个连续频谱函数F(ω),其中ω是角频率。
具体地说,FT可以用以下公式表示:F(ω) = ∫f(t)*exp(-jωt)dt这个式子意味着,任何一个连续信号都可以被分解成由不同角频率的正弦波组成的积分。
傅里叶级数与傅里叶变换

傅里叶级数与傅里叶变换傅里叶级数和傅里叶变换是现代数学以及工程学领域中非常重要的概念。
它们广泛应用于信号处理、图像处理、通信系统、电子电路等方面。
本文将介绍傅里叶级数和傅里叶变换的基本概念、原理和应用。
一、傅里叶级数傅里叶级数是一种用正弦函数和余弦函数的线性组合来表示周期函数的方法。
对于任意周期为T的函数f(t),其傅里叶级数表示为:f(t) = a0 + Σ(an*cos(nωt) + bn*sin(nωt))其中,a0为零频率分量的系数,an和bn为一系列傅里叶系数,n为正整数,ω=2π/T为基本频率。
傅里叶级数展开式中的每一项都代表了函数f(t)中具有不同频率的分量。
通过计算适当的系数an和bn,我们可以将任意周期函数表示为一系列正弦和余弦函数的线性组合。
这使得我们能够分析、合成和处理不同频率的信号。
二、傅里叶变换傅里叶变换是将一个时域函数转换为频域函数的过程。
对于非周期函数f(t),它的傅里叶变换表示为:F(ω) = ∫[f(t)e^(-jωt)]dt其中,F(ω)为频域函数,ω为连续频率参数,e为自然对数的底,j为虚数单位。
傅里叶变换将时域函数转换为频域函数,可以帮助我们理解和分析信号在不同频率上的能量分布。
频域函数F(ω)表示了原始信号中不同频率的幅度和相位信息。
通过傅里叶变换,我们可以在频域对信号进行滤波、调制、解调等操作,从而实现对信号的处理和传输。
三、傅里叶级数与傅里叶变换的关系傅里叶级数和傅里叶变换在数学上是相互关联的。
傅里叶级数是对周期函数进行频谱分析的方法,而傅里叶变换则适用于各种非周期信号的频谱分析。
当周期T趋于无穷大时,傅里叶级数就变成了傅里叶变换的极限形式。
傅里叶变换可以看作是傅里叶级数的一个推广,将其应用于非周期信号的频谱分析。
四、傅里叶级数与傅里叶变换的应用傅里叶级数和傅里叶变换在信号处理和通信领域有着广泛的应用。
以下是一些典型的应用场景:1. 信号滤波:通过傅里叶变换,我们可以在频域对信号进行滤波操作,以去除不需要的频率成分或者保留感兴趣的频率成分。
傅里叶级数与傅里叶变换的关系

傅里叶级数与傅里叶变换的关系傅里叶级数和傅里叶变换是数学中重要的工具,它们在信号处理、图像处理和物理学等领域中有着广泛的应用。
本文将介绍傅里叶级数和傅里叶变换的概念,并探讨它们之间的关系。
一、傅里叶级数的概念傅里叶级数是一种将周期信号分解为一系列正弦和余弦函数的方法。
它基于傅里叶分析的原理,将一个周期为T的周期信号f(t)表示为:f(t) = a0 + Σ[an*cos(nω0t) + bn*sin(nω0t)]其中,a0是信号直流分量的系数,an和bn是信号的谐波分量的系数,n为谐波的阶数,ω0为基频的角频率。
傅里叶级数可以理解为将一个周期信号分解为不同频率成分的叠加。
二、傅里叶变换的概念傅里叶变换是一种将非周期信号分解为不同频率成分的方法。
它的基本思想是将信号f(t)在整个实数轴上进行积分变换,得到频率域上的表示。
傅里叶变换的定义如下:F(ω) = ∫[f(t)*e^(-jωt)]dt其中,F(ω)表示信号在频率域上的表示,f(t)为原始信号,e^(-jωt)为旋转因子。
傅里叶变换将一个时域上的信号转换为频域上的表示,以便更好地分析信号的频谱特性。
三、傅里叶级数与傅里叶变换的关系傅里叶级数可以看作是傅里叶变换在周期信号上的特殊情况。
当一个信号f(t)为周期信号时,其傅里叶变换和傅里叶级数之间存在着对应关系。
具体而言,傅里叶级数是傅里叶变换在周期为T的周期信号上的反离散化。
通过傅里叶级数,我们可以将一个周期信号分解为多个谐波成分,每个谐波成分对应着傅里叶变换的频谱。
四、应用实例傅里叶级数和傅里叶变换在信号处理和图像处理中有着广泛的应用。
以音频信号为例,我们可以通过傅里叶级数将音频信号分解为不同频率的音调,进而进行声音合成和音乐分析。
而傅里叶变换则可以将非周期信号的频谱特性表示出来,如在图像处理中可以用于图像压缩和特征提取。
傅里叶级数和傅里叶变换的关系使得我们能够更好地理解和处理信号和图像。
总结傅里叶级数和傅里叶变换是处理周期信号和非周期信号的有效工具,它们在信号处理和图像处理中有着广泛的应用。
通俗浅谈傅里叶级数、傅里叶变换、拉普拉斯变换、z变换

通俗浅谈傅里叶级数、傅里叶变换、拉普拉斯变换、z变换中国航天科工集团二院706所宋晓秋一、傅里叶级数(1) 一个周期为2π的函数表示成不同周期的正弦函数、余弦函数之和。
f t=a02+a n cos nt+b n sin nt ∞n=1a n=1πf t cos nt dtπ−π,n=0,1,2,⋯b n=1πf t sin nt dtπ−π,n=1,2,3,⋯(2) 周期为T的函数怎么办?做下变换,令ω=2πTf t=a02+a n cos nωt+b n sin nωt ∞n=1a n=2Tf t cos nωt dtT2−T2,n=0,1,2,⋯b n=2Tf t sin nωt dtT2−T2,n=1,2,3,⋯(3) 时域、频域的概念f t是随时间t变化的函数,它转换成了不同频率(周期的倒数)三角函数的和,即对应成了反映频率特征的a n、b n。
直接分析f t那是时域分析,通过a n、b n分析那是频域分析。
(4) 傅里叶级数的复数表达形式基础知识:复数e ix=cos x+i sin x,可知cos nωt=12e inωt+e−inωtsin nωt=12ie inωt−e−inωt将其代入下式的傅里叶级数(这里ω=2πT)f t=a02+a n cos nωt+b n sin nωt ∞n=1a n=2Tf t cos nωt dtT2−T2,n=0,1,2,⋯b n=2Tf t sin nωt dtT2−T2,n=1,2,3,⋯得到傅里叶级数的复数表达形式f t=F n e inωt∞n=−∞F n=1Tf(t)e−inωt dtT2−T2,n=⋯,−2,−1,0,1,2,⋯同理,直接分析f t那是时域分析,通过F n分析那是频域分析。
记住周期函数的傅里叶级数复数表达形式,由此引出傅里叶变换。
二、傅里叶变换对于非周期函数怎么办?当然是让T→∞了,可以证明此时有f t=F n e inωt∞n=−∞→12πF(iΩ)e iΩt dΩ∞−∞F n T = f (t )e −inωt dt T 2−T 2→ f (t )e −iΩt dt ∞−∞=F (iΩ)直接分析 f t 那是时域分析,通过 F (iΩ)分析那是频域分析。
傅里叶级数和傅里叶变换

傅里叶级数和傅里叶变换傅里叶级数和傅里叶变换是数学中常见且重要的概念,它们在信号处理、图像处理、电路分析以及物理学等领域中起着重要的作用。
本文将介绍傅里叶级数和傅里叶变换的基本原理、应用以及它们之间的关系。
一、傅里叶级数傅里叶级数是将一个周期性函数表示为正弦函数和余弦函数的无限级数。
在数学上,一个周期为T的函数f(t)可以表示为傅里叶级数的形式:f(t) = a0/2 + ∑(an*cos(nω0t) + bn*sin(nω0t))其中,a0表示直流分量,an和bn分别表示函数f(t)在一个周期内的cosine分量和sine分量,n为正整数,ω0为角频率,ω0 = 2π/T。
傅里叶级数的基本原理是,任何一个函数都可以用一系列基本的正弦和余弦函数来表示。
通过计算函数f(t)在一个周期内的各种正弦和余弦分量的系数,我们可以将函数f(t)展开成傅里叶级数的形式。
傅里叶级数在信号处理中有广泛的应用,例如音频信号的分析与合成、图像压缩等。
通过对信号进行傅里叶级数分解,我们可以得到信号的频率成分,从而对信号进行频域分析和处理。
二、傅里叶变换傅里叶变换是将一个非周期性函数或一个有限区间内的函数表示为连续频谱的方法。
傅里叶变换可以将一个时域上的函数转换为频域上的函数,从而能够更方便地观察信号在不同频率上的分量。
函数f(t)的傅里叶变换定义为:F(ω) = ∫f(t) * exp(-jωt) dt其中,F(ω)表示函数f(t)的频域表示,ω为频率。
傅里叶变换将函数f(t)从时域转换到频域,提供了频域上对信号进行分析和处理的方法。
傅里叶变换在信号处理中有广泛的应用,例如频率滤波、信号去噪、图像处理等。
通过对信号进行傅里叶变换,我们可以将信号表示为一系列复指数函数的线性组合,从而得到信号的频谱信息。
三、傅里叶级数与傅里叶变换的关系傅里叶级数和傅里叶变换之间存在着密切的关系。
事实上,傅里叶级数可以看作是傅里叶变换的一种特殊形式,即周期为T的函数的傅里叶级数可以看作是傅里叶变换在频率上的离散表示。
傅里叶级数和傅里叶变换的数学性质

傅里叶级数和傅里叶变换的数学性质傅里叶级数和傅里叶变换是数学中很重要的概念,它们在物理学、通信工程、信号处理等领域中得到广泛的应用。
傅里叶级数是将周期函数分解为无穷多个简单的正弦函数和余弦函数的和,而傅里叶变换则是将信号在频域上分解为各个频率分量的和。
本文将从数学的角度探讨傅里叶级数和傅里叶变换的数学性质。
一、傅里叶级数的性质傅里叶级数是将周期函数表示为正弦函数和余弦函数的无限和,因此它具有一些很有趣的性质。
首先,傅里叶级数是周期函数,其周期与原函数相同。
其次,傅里叶级数是线性的,即如果有两个函数的傅里叶级数分别是a_n和b_n,那么它们的线性组合c_n=a_n+b_n的傅里叶级数就是这两个函数的线性组合。
第三,若原函数为偶函数,则傅里叶级数只包含余弦项,若原函数为奇函数,则傅里叶级数只包含正弦项。
傅里叶级数的性质还包括Parseval定理,它是对傅里叶级数的能量守恒原理的定量表述。
具体而言,Parseval定理指出,如果S是傅里叶级数的系数,则原函数在一个周期内的平方积分与各个傅里叶系数的平方和相等,即∫|f(x)|^2 dx=∑|S_n|^2。
二、傅里叶变换的性质傅里叶变换是将信号在频域上分解的方法。
在实际应用中,我们通常将连续时间信号离散化,因此离散傅里叶变换(Discrete Fourier Transform)的应用更为广泛。
傅里叶变换也具有许多重要的性质。
首先,傅里叶变换是线性的,它满足叠加原理。
具体而言,若x和y分别是两个信号的傅里叶变换,则它们的线性组合z=ax+by的傅里叶变换就是ax的傅里叶变换和by的傅里叶变换的和。
其次,傅里叶变换具有频移性质。
如果x(t)的傅里叶变换是X(f),则x(t)cos(2πf0t)的傅里叶变换是X(f-f0)/2+X(f+f0)/2。
这个性质表明,将一个信号乘上一个不同频率的正弦波,等价于将原信号在频域上移动到新的频率处。
最后,傅里叶变换还有卷积定理。
傅里叶级数与傅里叶变换的原理与应用

傅里叶级数与傅里叶变换的原理与应用傅里叶级数和傅里叶变换是数学中重要的分析工具,广泛应用于信号处理、图像处理、通信系统等领域。
本文将介绍傅里叶级数和傅里叶变换的原理,以及它们在实际应用中的一些例子。
一、傅里叶级数的原理与应用傅里叶级数是将一个周期函数分解成一系列基本频率的正弦和余弦函数的和,它的原理可以用以下数学公式表示:其中,f(t)表示周期函数,ω为基本频率,A_n和B_n分别为正弦和余弦函数的系数。
傅里叶级数的应用非常广泛,例如在电力系统中,我们需要分析电压和电流的波形,使用傅里叶级数可以将复杂的波形分解成一系列基本频率的波形,从而更好地分析、计算电力传输和能效。
二、傅里叶变换的原理与应用傅里叶变换是将一个信号从时域转换到频域的数学工具,它的原理可以用以下数学公式表示:其中,F(ω)表示原信号在频域上的变换结果,f(t)表示原信号在时域上的函数,e^(-iωt)为指数函数。
傅里叶变换在信号处理中经常用于频谱分析和滤波器设计。
例如在音频处理中,我们常常需要对音频信号进行频率分析,使用傅里叶变换可以将音频信号从时域转换为频域,得到音频的频谱图,从而帮助我们理解音乐的频率成分和谐波等特性。
三、傅里叶级数和傅里叶变换的关系傅里叶级数和傅里叶变换在数学上有密切的联系。
事实上,傅里叶级数是傅里叶变换在周期函数上的特殊应用。
傅里叶变换将非周期函数转换为连续频谱,而傅里叶级数则是将周期函数转换为离散频谱。
两者可以通过极限的方式进行转换。
在实际应用中,我们可以根据具体的问题选择合适的方法,使用傅里叶级数或傅里叶变换来分析信号。
四、傅里叶级数和傅里叶变换的实际应用举例1. 通信系统:在数字通信系统中,信号经过调制、解调等过程,需要将信号从时域转换到频域进行处理。
傅里叶变换被广泛应用于调制技术、频谱分析和信号压缩等方面。
2. 图像处理:傅里叶变换可以对图像进行频域分析,帮助我们理解图像的特征和纹理。
在图像压缩和图像增强等领域,傅里叶变换也发挥了重要作用。
傅里叶级数与傅里叶变换

傅里叶级数与傅里叶变换傅里叶级数和傅里叶变换是数学中重要的概念,广泛应用于信号处理、图像处理、通信系统等领域。
它们为我们理解和分析周期信号以及非周期信号提供了有效的数学工具。
本文将分别介绍傅里叶级数和傅里叶变换的基本概念、性质和应用。
一、傅里叶级数傅里叶级数是指将一个周期函数表示成一系列正弦和余弦函数的和。
它的基本思想是利用正弦和余弦函数的基本频率,将一个周期函数分解成多个不同频率的谐波分量,从而得到函数的频谱内容。
在数学上,傅里叶级数表示为:\[f(t) = \sum_{n=-\infty}^{\infty}c_ne^{i \omega_n t}\]其中,$c_n$代表系数,$e^{i \omega_n t}$是正弦和余弦函数的复数形式,$\omega_n$是频率。
将周期函数用傅里叶级数表示的好处是,可以通过调整系数来控制频谱内容,进而实现信号的滤波、合成等操作。
傅里叶级数的性质包括线性性、对称性、频谱零点等。
线性性意味着可以将不同的周期函数的傅里叶级数叠加在一起,得到它们的叠加函数的傅里叶级数。
对称性则表示实函数的傅里叶级数中系数满足一定的对称关系。
频谱零点表示在某些特殊条件下,函数的傅里叶级数中某些频率的系数为零。
傅里叶级数的应用广泛,例如在音频信号处理中,利用它可以进行音乐合成、乐音分析和音频压缩等操作。
此外,在图像处理领域,傅里叶级数被广泛应用于图像滤波、增强、噪声消除等方面。
二、傅里叶变换傅里叶变换是傅里叶级数的推广,用于处理非周期信号。
它将时域的信号转换为频域的信号,从而可以对信号进行频谱分析和处理。
傅里叶变换的定义为:\[F(\omega) = \int_{-\infty}^{\infty}f(t)e^{-i \omega t}dt\]其中,$F(\omega)$表示信号的频域表示,$f(t)$为时域信号,$\omega$为连续的角频率。
傅里叶变换可以将时域的信号分解成不同频率的复指数函数,并用复数表示频谱信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
傅里叶级数及变换的本质解释和形象阐述(更正版)
——老师不会这么讲,书上也不会讲
注:原来上传到百度文库的文档有较多问题,或者阐述不清楚,因原文档无法删除,只能重新上传一次了。
此为更正版。
很多人学信号与系统、数字信号处理学了几年,关于傅里叶级数和傅里叶变换可能还是一知半解,只能套用公式,根本不理解为什么要这么算,也就是有什么实际含义——可以说,几乎所有信号与系统里面的数学公式都是有实实在在的物理含义的!那么,傅里叶变换到底是怎样一种变换?具体又怎么变换?有没有确切一点,或者形象一点的物理解释呢?下面笔者将尝试从以一种可理解的、物理的方式来解释,并尽量形象地讲出来,形式是探究、渐进的模式,也就是我自己的思考过程,希望对大家有所帮助。
首先,要知道傅里叶变换是一种变换,准确点说是投影。
傅里叶变换的投影问题,一直想不明白那一系列的正交函数集,到底是什么样一个函数集合,或者说是怎么样的一个空间。
所谓三角傅里叶级数当成谐波分析的时候很好理解——同一个时间轴,也就是说同一个维度的分解和叠加,肯定没错,也很实用。
但是要是从投影(或者说变换)的角度来说,怎么解释呢?书上说:这一系列正弦余弦的函数,在一个区间内,是一个完备的正交函数集,每一个函数所带的系数(或者叫权重),就是原函数在这个函数的方向上的一个投影(说方向不准确,但找不到其他的词)。
那么,原函数到底是一个什么样的函数,和各正交基函数又是怎样的一种关系呢?这个投影又是怎么投的呢?三维或者二维空间,一个矢量在各正交基上的投影很好理解,因为各矢量正交基在空间是垂直关系,原矢量在各正交基上的投影就是其模值乘以与各正交基夹角余弦值。
那么,傅里叶变换的正交基函数,也是这样一种相互垂直的关系么?投影也是取余弦值么?
这可以很容易地想清,我们只用余弦或者只用正弦就可以,如cos(2pi*nf0)系列,显然每两个函数图像之间不可能是垂直关系!相反,可以看出这是在同一个维度里面的!所以,上面两个问题的答案是否定的。
那么,到底是怎么正交、怎么投影的呢。
出现这个问题,是因为开始看书的时候我看得太粗心太浅显,没有认真透彻地理解函数正交的含义,没想到那才是最重要最根本的,从那里面再深刻理解一下,问题就迎刃而解。
函数正交和矢量正交完全不一样,是两个概念。
函数正交是:两个函数,一个不变,另一个取共轭值,然后逐点相乘,最后再求积分。
积分就涉及到一个区间,这也很重要。
如果满足:当这两个函数不同时,积分值为0;当两函数相同,积分值不为0。
那么这两个函数在这个区间上正交。
现在再回过头去看正弦或者余弦函数序列,在各个周期内,都满足上述条件,在正弦和余弦函数之间同样满足,所以这些函数是正交的。
至于完备,很明显看出,不去证明了。
至此,第一个问题,正交函数系的问题,就解决了!现在看怎么去投影了。
为更易于理解,我们取复指数函数exp(jwt)为例。
众所周知,exp(jwt)表示的是一个圆周,我们用来作傅里叶变换的因子,正是这个形式(exp(-jwt))。
这里我还要理解一下傅里叶级数和傅里叶变换的区别:前者求的是实余弦函数组成的实级数的系数,正交函数系是cos(wt)或者sin(wt),实际上,都是cos(wt),正弦不过是余弦的变形。
系数和对应的余弦函数相乘,再求和,结果等于原函数;而后者,正交函数系是exp(jwt),可认为求的是复指数函数组成的复级数的系数。
即,每个正交函数的系数,是复数。
变换后,各系数乘以对应的复指数函数,求和,其值也等于原函数。
我们还是回到傅里叶变换,其意义是将一个任意函数变换到复指数函数系exp(jwt)组成的空间,准确地说,将原函数表示成一系列系数和对应正交函数相乘的累加,这是一种变换。
那么,我们知道exp(jwt)表示的是一个圆周,当w取很多种值(与原函数周期相关),圆周的半径也取很多种值,我们将得到一个圆面!根据上面正交函数
的理解,这些圆面上的复指数函数都正交。
也就是说,我们要将一个任意函数(当然可做傅里叶变换的)投影到一个圆面上!!!这太神奇了!怎么投影呢???怎么会投影到一个圆面上呢,投影了之后结果会等价么???
回答是肯定的。
就是投影到一个圆面上,并且,完全等价!可以这样理解,我们有一个和原函数的x轴垂直的圆面,在这个圆面上有很多种以一定的角频率w及一定半径作圆周运动的点。
那么,以某个角频率及其对应半径运动的点的轨迹就可对应一个函数的轨迹,可得到一个复指数函数,可表示为A1e-jw1t,设w1表示这个角频率,负号表示函数点在圆周上是逆时针运动的,A1是上述半径值。
对于另一个频率和其对应的半径,可对应另一个正弦函数A2e-jw2t……,所有这样的函数,构成一个完备的正交函数集。
还是接上面,当对应一个w1,假设存在一个模值A1,则对任意时间t(此时相位是w1t),A1*cos(w1t)为这个时刻复指数函数在实轴上的值,A1*sin(w1t)为虚轴上的值。
对另一个角频率w2,也存在一个模值A2,在t时刻实轴的值为A2*cos(w2t),虚轴的值为A2*sin(w2t)。
对于第三个w3,第四个w4,……,对于任意的w,均可求得t时刻函数实轴和虚轴的值。
最终,如果原信号在t时刻的值可表示为这些w对应的复指数函数在t时刻的实轴值的和,那么,原信号在t时刻就可以分解为这些频率w的复指数信号的和!而这些复指数信号的幅值,即是上述各频率复指数信号的那个模值!如果对于原信号的所有时刻t,都满足上述信号值等于所有w的复指数函数实轴值的和,那么,原信号整体就能表示成所有w的复指数信号(包含幅值)的和!这就是将原信号变换到了频(w)域,且这里w可以取所有的频率!即是,傅里叶变换后在所有频率上都有幅值,即表明原信号的带宽是所有频率。
更一般的情况是,上述w只能取一部分的频率值,或者说在一些频率值上模值为0,那么,最终原信号就等于这些有限个角频率的复指数信号(包含幅值)的和,也就是原信号的带宽不是所有频率,而是一些特定的频率。
那么,回到上述投影的问题,对于某一个频率的复指数信号,按照上述判断关系,若最终幅值不为0,则相当于在圆面上是以复指数信号的角频率为角频率,以其幅值为半径的运动的点的轨迹所表示的函数!也一定是众多正交函数中的一个!这样,就证明了傅里叶变换的本质特征——将原信号分解到正交函数系中!
作为读者的你,一定很疑惑,上述过程,如何判断对于某个频率,其幅值为0还是不为0呢?这个,正是傅里叶变换的神奇之处!不用你判断,只要你将原函数和e(-jwt)这个函数相乘,并在整个函数区间上积分,结果中自动会得到一些幅值不为0的、一些角频率的复指数信号和一些幅值为0的、另一些角频率的复指数信号!
第二个问题,投影的问题,圆满解决!
实际上,为便于理解,或者说得形象一点、简单一点,傅里叶变换是这样一种投影,首先,构造一个以x轴为轴线的、半径为很多种值的、以原函数长度为最大周期的一个“圆筒”,这些圆筒可认为是很多种不同幅值的、沿x轴方向的匀速前进(速度为1),同时沿垂直于x轴方向做逆时针匀速圆周运动(速度为w,即角速度)的点的轨迹组成的,上述运动形式也就是螺旋渐进运动;
其次,将这些点的轨迹投影在实轴上,任一时刻t的值是所有沿x轴方向运动到t 位置(因速度是1)的点投影到实轴上值的总和。
要使这个和和原信号在t时刻的值相等或者非常接近,那么上述不同幅值的、做螺旋渐进运动的点是有要求的,可理解为只有某些一定幅值、并以一定角速度运动的点才满足!这些点的运动轨迹(“圆筒”)在所有时刻都投影到实轴上,并将每个时刻的投影值都求和,最终得到的就是原信号!或者是非常非常接近原信号!这就表示原信号被这些以一定幅值、一定角速度做螺旋渐进运动的点对应的函数分解了!
最后,对每一种以一定幅值、一定角速度螺旋渐进运动的点,径向压缩其螺旋运动轨迹形成的圆筒,使成为一个圆周,这个圆周是以这个角速度为角频率,以这个幅值为半径旋转的复指数信号!这个圆周呢,在我们的直角坐标系中可以用二维图像表
示,因为它只有两个参数,半径和角速度。
而通常我们是以角速度(角频率)作横轴,以半径作纵轴。
如果把所有这些角频率对应其各自的半径画在一幅图中,于是就得到所谓的原信号的傅里叶变换图,即是频谱图!
至此,所有问题圆满解决!O(∩_∩)O~。