遗传学(终极版)
遗传学1ppt课件

图1-8 核小体形 成染色体示意图
现在认为至少存 在三个层次的卷 缩:核小体
→螺旋管 →超螺旋管 →染色体 卷缩机理不清楚
四、染色体数目
就一物种,其染色体数目是恒定的 表1-3 (P15)
A染色体:正常染色体
B染色体:额外染色体、超数染色 体、副染色体
大肠杆菌的染色体
DNA分子伸展有1100µm长,细菌直径1-2µm
图1-6 原核生物的染色体结构模型
2、真核生物染色体
(1)染色质的基本结构
染色质
DNA: 30%(重量)
RNA: 少量
组蛋白:1H1、2H2A、2H2B、
2H3和2H4 (重量相当于DNA)
非组蛋白:少量
染色质基本结构单位
核小体: 2H2A、2H2B、2H3、2H4 ----八聚体
第四节 配子形成和受精
无性生殖(繁殖) 生殖方式
有性生殖(繁殖)
一、雌雄配子的形成 高等动植物雌雄配子形成
图 1-14 高等动物性细胞形成过程
图 1-15 高等植物 雌雄配子 形成过程
二、植物授粉与受精
自花授粉:同一花朵或同株异花 授粉方式
异花授粉:不同植株间
受精:雄配子+雌配子 → 合子 精核(n)+卵细胞(n) →胚 (2n)
异固缩现象
同源染色体:形态、结构相同
非同源染色体:形态、结构不同
染色体组型分析(核型分析): 根据染色体长度、着丝粒位置、 臂比、随体有无等特点,对各对 同源染色体进行分类、编号,研 究一个细胞的整套染色体
图 1-5 人类染色体核型
三、 染色体分子结构
1、原核生物染色体
(完整word版)遗传学习题及答案

遗传学习题及答案第一章绪论一、选择题:1 涉及分析基因是如何从亲代传递给子代以及基因重组的遗传学分支是:( )A) 分子遗传学B) 植物遗传学C) 传递遗传学D) 种群遗传学2 被遗传学家作为研究对象的理想生物,应具有哪些特征?以下选项中属于这些特征的有:( )A)相对较短的生命周期B)种群中的各个个体的遗传差异较大C)每次交配产生大量的子代D)遗传背景较为熟悉E)以上均是理想的特征选择题:1 C ;2 E;第二章孟德尔式遗传分析一、选择题1 最早根据杂交实验的结果建立起遗传学基本原理的科学家是:( )A) James D. Watson B) Barbara McClintockC) Aristotle D)Gregor Mendel2 以下几种真核生物,遗传学家已广泛研究的包括:()A)酵母B) 果蝇C) 玉米D) 以上选项均是3 通过豌豆的杂交实验,孟德尔认为;()A) 亲代所观察到的性状与子代所观察到相同性状无任何关联B) 性状的遗传是通过遗传因子的物质进行传递的C) 遗传因子的组成是DNAD)遗传因子的遗传仅来源于其中的一个亲本E)A和C都正确4 生物的一个基因具有两种不同的等位基因,被称为:( )A)均一体B)杂合体C) 纯合体D)异性体E) 异型体5 生物的遗传组成被称为:( )A)表现型B) 野生型C) 表型模拟D) 基因型E)异型6 孟德尔在他著名的杂交实验中采用了何种生物作为材料?从而导致了他遗传原理假说的提出。
()A) 玉米B)豌豆C)老鼠D) 细菌E)酵母7 在杂交实验中,亲代的成员间进行杂交产生的后代被称为:( )A) 亲代B)F代C) F1代D) F2代E)M代8 孟德尔观察出,亲代个体所表现的一些性状在F1代个体中消失了,在F2代个体中又重新表现出来。
他所得出的结论是:( )A) 只有显性因子才能在F2代中表现B) 在F1代中,显性因子掩盖了隐性因子的表达C) 只有在亲代中才能观察到隐性因子的表达D) 在连续的育种实验中,隐性因子的基因型被丢失了E)以上所有结论9 在豌豆杂交实验中,决定种子饱满和皱缩性状的基因是一对等位基因,饱满性状的基因为显性。
遗传学基本原理

遗传学基本原理遗传学基本原理指的是遗传学研究中所涉及的一系列基本概念和原则,包括遗传物质的遗传性、遗传变异的原因以及遗传信息的传递和表达等。
以下将对遗传学基本原理进行详细介绍。
遗传学基本原理的核心在于遗传物质的遗传性。
遗传物质指的是存在于细胞质内的DNA(脱氧核糖核酸),它负责携带和传递生物体的遗传信息。
遗传物质的遗传性表现为子代的遗传特征与父代相似,这是因为遗传物质在有性生殖中以遗传方式遗传给下一代。
遗传物质的遗传性是由基因决定的,基因是遗传物质上的一段DNA序列,它负责编码生物体的性状。
遗传变异是生物个体在遗传物质中发生的变化。
遗传变异是生物进化的基础,是生物适应环境变化的一种方式。
遗传变异的原因包括突变和重组。
突变指的是遗传物质中发生的基因突变或染色体变异,它是遗传物质的永久性改变。
突变是自然界产生多样性的重要途径,是进化的原始材料。
重组是指在有性生殖中,由于染色体互换(交叉互换)而产生新的基因组合。
重组增加了基因的组合可能性,促进了基因的互补和多样性。
遗传信息的传递和表达是指基因通过遗传物质的传递和转录、翻译等过程表达出来。
基因的传递发生在有性生殖中,通过受精过程,子代继承了父母的染色体。
染色体中的基因在细胞的分裂过程中被复制并传递给子细胞,确保了遗传信息的连续性。
基因的表达发生在转录和翻译过程中。
转录是指从DNA模板上合成mRNA(信使RNA)的过程,翻译是指mRNA被核糖体翻译成蛋白质的过程。
蛋白质是生物体体内广泛存在的功能分子,它决定了生物体的性状和功能。
遗传学基本原理还包括显性和隐性、分离定律和连锁等原则。
显性和隐性是指基因在表现上的差异。
显性基因始终能够表现出来,而隐性基因只有在双重显性的情况下才能表现。
分离定律指出在自交后代中,纯合子的基因以1:2:1的比例分离出现。
连锁是指两个或多个基因位点在染色体上相对固定的组合。
连锁现象可以通过遗传图谱的制作来确定基因在染色体上的位置,并帮助解析遗传病的传递。
遗传学知识点总结

遗传学知识点总结遗传学是生物学中重要的一个分支,研究遗传规律以及遗传信息的传递和变异。
本文将对遗传学的几个重要知识点进行总结,包括遗传物质、基因的结构与功能、基因的表达调控以及遗传变异。
一、遗传物质遗传物质是指能够携带和传递遗传信息的分子,在生物界中主要有两种遗传物质:核糖核酸(RNA)和脱氧核糖核酸(DNA)。
DNA是细胞中最重要的遗传物质,它通过碱基序列的不同排列组合,编码了生物体内各种蛋白质的合成信息。
二、基因的结构与功能基因是DNA上的一段特定序列,是遗传信息的单位。
基因由外显子和内含子组成,外显子决定了蛋白质的编码序列,内含子则在基因表达过程中进行剪接和去除。
基因在细胞内通过转录作用生成mRNA,然后通过翻译作用合成蛋白质,从而实现遗传信息的传递。
三、基因的表达调控在细胞中,基因的表达可以被调控,从而使不同组织和细胞类型具有不同的特征和功能。
基因的表达调控主要通过转录因子、启动子和增强子等元件实现。
转录因子结合启动子和增强子,调节基因转录的起始和速率,从而影响基因的表达水平和模式。
四、遗传变异遗传变异是指遗传物质在传递过程中发生的变异现象。
遗传变异包括基因突变、染色体结构变异和基因组重组等。
基因突变是指基因序列发生突发性的改变,可以有点突变、插入突变和缺失突变等。
染色体结构变异是指染色体的部分片段发生重排、缺失或重复等变化。
基因组重组是指染色体间的互换和基因重组等变异。
总结:遗传学涉及的知识点很多,包括遗传物质、基因结构与功能、基因的表达调控以及遗传变异等。
了解这些知识点对于理解生物体的遗传特征和变异机制具有重要意义。
通过深入学习和研究遗传学,我们可以更好地理解生命的奥秘,为人类的健康和进步做出贡献。
以上就是对遗传学知识点的总结,希望对您有所帮助。
遗传学课件全部完整版

RNA翻译是以mRNA为模板合成蛋白质的过程。在翻译过程中,核糖体识别mRNA 上的遗传密码,并根据密码子的顺序合成相应的氨基酸序列,从而合成蛋白质。
基因突变与修复机制
基因突变的类型
基因突变包括点突变、插入突变、缺失突变等类型。这些突变可能导致遗传信息的改变,从而影响生物体 的性状和表型。
基因突变的修复机制
生物体具有多种基因突变修复机制,如直接修复、切除修复、重组修复等。这些修复机制能够识别和修复 DNA损伤,维持遗传信息的稳定性。同时,生物体还具有一套完善的DNA损伤应答机制,以应对各种内 外源因素对DNA造成的损伤。
CHAPTER 03
遗传变异与进化论基础
基因突变类型及影响
基因突变类型
遗传学课件全部完整版
CONTENTS 目录
• 遗传学基本概念与原理 • 染色体与遗传信息传递 • 遗传变异与进化论基础 • 单基因遗传病分析与诊断方法 • 多因子复杂性状和数量性状遗传学基
础 • 现代遗传学技术应用与发展趋势
CHAPTER 01
遗传学基本概念与原理
遗传学定义及研究领域
遗传学定义
与单基因性状的区别
多因子复杂性状受多个基因控制,每个基因作用较小,且易受环境 影响;而单基因性状通常受单一基因控制,遗传效应显著。
研究意义
揭示多因子复杂性状的遗传机制,为疾病预测、诊断和治疗提供理论 依据。
数量性状遗传学原理
数量性状定义
01
表现为连续变异的性状,如身高、体重等。
遗传基础
02
数量性状受多对基因控制,每对基因作用微小,呈累加效应。
临床表现
多种多样,涉及身体各个 系统和器官。
系谱分析法在单基因遗传病中应用
遗传学的基本原理

遗传学的基本原理遗传学是生物学的一个重要分支,研究遗传信息在生物体内的传递和表达过程。
遗传学的基本原理可以总结为四个方面:遗传物质、遗传变异、遗传定律和遗传规律。
一、遗传物质遗传物质是组成生物体的遗传信息的载体,也是遗传学研究的核心。
在细胞内,遗传物质主要由DNA(脱氧核糖核酸)和RNA(核糖核酸)组成。
DNA是遗传物质的主要分子,携带了生物体所有的遗传信息。
RNA在遗传物质中起到信息传递和蛋白质合成的作用。
二、遗传变异遗传变异是指遗传物质在传递和复制过程中的突变和重组。
突变是指DNA序列的突发性改变,包括点突变和插入/缺失突变等。
重组是指不同DNA分子之间的交换和重排,主要通过DNA重组酶的作用实现。
遗传变异是生物进化和个体差异的基础。
三、遗传定律遗传定律是通过研究遗传物质在个体间的传递规律得出的,其中最重要的是孟德尔遗传定律。
孟德尔通过对豌豆的杂交实验发现了遗传物质的离散性遗传规律。
他总结了两个基本定律:一是基因分离定律,即在杂合个体的后代中,纯合子个体的基因以等位基因的形式分离传递给后代;二是基因自由组合定律,即在杂合个体的后代中,不同基因对独立组合分离。
四、遗传规律遗传规律是指在遗传过程中普遍存在的规律和现象。
最经典的遗传规律包括显性与隐性遗传、连锁不平衡和基因型频率的分布等。
显性与隐性遗传是指遗传物质表现出显性性状和隐性性状的现象。
连锁不平衡是指不同基因在遗传物质中相对位置的固定组合。
基因型频率的分布是指不同基因型在群体中的比例分布。
总结起来,遗传学的基本原理涵盖了遗传物质、遗传变异、遗传定律和遗传规律四个方面。
了解和掌握这些原理可以帮助我们更好地理解生物的遗传机制,推动遗传学的发展和应用。
遗传学的研究不仅对于解决生物进化、遗传疾病等重大问题具有重要意义,也对农业、医学和生物技术等领域产生了深远影响。
遗传学(全套课件752P)ppt课件

遗传学(全套课件752P)ppt课件目录•遗传学基本概念与原理•基因突变与修复•基因重组与染色体变异•遗传规律与遗传图谱分析•分子遗传学技术与应用•细胞遗传学技术与应用CONTENTSCHAPTER01遗传学基本概念与原理遗传学定义及研究领域遗传学定义研究生物遗传信息传递、表达和调控的科学。
研究领域包括基因结构、功能、表达调控,基因突变、重组、进化,以及遗传与发育、免疫、疾病等方面的关系。
遗传物质基础:DNA与RNADNA脱氧核糖核酸,是生物体主要的遗传物质,由碱基、磷酸和脱氧核糖组成。
RNA核糖核酸,在蛋白质合成过程中起重要作用,由碱基、磷酸和核糖组成。
遗传信息传递过程DNA复制在细胞分裂间期进行,以亲代DNA为模板合成子代DNA的过程。
转录以DNA为模板合成RNA的过程,发生在细胞核或细胞质中。
翻译以mRNA为模板合成蛋白质的过程,发生在细胞质中的核糖体上。
基因表达调控机制基因表达基因携带的遗传信息通过转录、翻译等过程转变为具有生物活性的蛋白质分子的过程。
调控机制包括转录水平调控(如转录因子、启动子等)、转录后水平调控(如RNA剪接、修饰等)和翻译水平调控(如蛋白质磷酸化、去磷酸化等)。
这些调控机制使得生物体能够适应不同的环境条件并维持正常的生理功能。
CHAPTER02基因突变与修复点突变包括碱基替换、插入和缺失。
染色体畸变包括染色体结构变异和数目变异。
03生物因素如某些病毒和细菌。
01物理因素如紫外线、X 射线等。
02化学因素如亚硝酸、碱基类似物等。
直接修复切除修复重组修复SOS 修复DNA 损伤修复机制01020304针对某些特定类型的DNA 损伤,通过特定的酶直接进行修复。
通过核酸内切酶将损伤部位切除,再利用DNA 聚合酶和连接酶进行修复。
在复制过程中,当遇到无法直接修复的DNA 损伤时,可通过重组机制进行修复。
当DNA 受到严重损伤时,细胞会启动SOS 修复机制,通过易错复制方式快速完成复制过程。
《遗传学课件》课件

基因表达调控是指细胞通过一系列复 杂的机制调节基因的表达水平,包括 转录水平的调控和翻译水平的调控等 。基因表达调控对于生物体的正常发 育和生理功能至关重要。
03
CHAPTER
孟德尔遗传定律
孟德尔的生平简介
孟德尔的出生和家庭背景
出生于奥地利的一个农民家庭,从小对植物学 和园艺学产生了浓厚兴趣。
染色体的结构和数目变异
染色体结构变异
染色体发生断裂、倒位、重复、缺失等结构变异,可能导致基因表达异常或产 生遗传疾病。
染色体数目变异
染色体数目异常,如非整倍性变异(如三体综合征)和多倍性变异(如三倍体 、四倍体等),可能导致生长发育异常或遗传疾病。
基因突变和表观遗传学
基因突变
基因序列发生改变,导致基因表达异常或产生遗传疾病。基因突变可分为点突变 、插入和缺失等类型。
孟德尔的教育和职业发展
在维也纳大学学习自然科学,成为一名中学教 师,并开始进行遗传学研究。
孟德尔的成就和影响
通过豌豆实验发现了遗传定律,为现代遗传学奠定了基础。
孟德尔的实验方法和发现
实验材料和方法
选择豌豆作为实验材料,通过人工授粉和统计分析进 行研究。
遗传定律的发现
提出了分离定律、独立分配定律和显性与隐性定律, 揭示了遗传的基本规律。
性状。
未来发展方向
未来,表观遗传学将进一步深入研究表观遗传修饰的机制和功能,以及它们在生物体发 育和疾病发生中的作用。同时,随着技术的不断发展,将会有更多的表观遗传修饰被发
现和鉴定。
合成生物学和基因编辑技术的发展
合成生物学
基因编辑技术
合成生物学是利用工程学原理和方法 来研究和改造生命系统的学科。它通 过设计和构建人工生物系统,来探索 生命本质和实现特定功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论1、遗传学:是研究生物遗传和变异的科学遗传:亲代与子代相似的现象就是遗传。
如“种瓜得瓜、种豆得豆”变异:亲代与子代、子代与子代之间,总是存在着不同程度的差异,这种现象就叫做变异。
2、遗传学研究就是以微生物、植物、动物以及人类为对象,研究他们的遗传和变异。
遗传是相对的、保守的,而变异是绝对的、发展的。
没有遗传,不可能保持性状和物种的相对稳定性;没有变异,不会产生新的性状,也就不可能有物种的进化和新品种的选育。
遗传、变异和选择是生物进化和新品种选育的三大因素。
3、1953年瓦特森和克里克通过X射线衍射分析的研究,提出DNA分子结构模式理念,这是遗传学发展史上一个重大的转折点。
4.(分离规律)(Mendel’s first law) (孟德尔第一定律)一对基因在杂合状态互不干扰,保持相互独立,在配子形成时,各自分配到不同的配子中去。
正常情况下,配子分离比为1∶1,F2代基因型比是1∶2∶1,F2代表型比为3∶1。
5.(独立分配规律,自由组合规律) (孟德尔第二定律)控制两对性状的两对等位基因,分别位于不同的同源染色体上。
在减数分裂形成配子时,每对同源染色体上的每一对等位基因各自独立分离,而位于非同源染色体上的基因之间则自由组合。
6.遗传的第三定律------连锁遗传规律1910年以后,摩尔根(Morgan TH)同样发现性状连锁现象,并提出--连锁遗传规律。
7.遗传学的诞生和发展第二章遗传的物质基础1.染色质:在细胞尚未进行分裂的核中,可以见到许多由于碱性染料而染色较深的、纤细的网状物,这就是染色质。
2.染色体:含有许多基因的自主复制核酸分子。
细菌的全部基因包容在一个双股环形DNA 构成的染色体内。
真核生物染色体是与组蛋白结合在一起的线状DNA双价体;整个基因组分散为一定数目的染色体,每个染色体都有特定的形态结构,染色体的数目是物种的一个特征。
3.染色单体:由染色体复制后并彼此靠在一起,由一个着丝点连接在一起的姐妹染色体。
4.细胞的膜体系包括哪些膜结构?细胞质里包括哪些主要的细胞器?各有什么特点?答:细胞的膜体系包括膜结构有:细胞膜、线粒体、质体、内质网、高尔基体、液泡、核膜。
细胞质里主要细胞器有:线粒体、叶绿体、核糖体、内质网、中心体。
5.一般染色体的外部形态包括哪些部分?染色体形态有哪些类型?答:一般染色体的外部形态包括:着丝粒、染色体两个臂、主溢痕、次溢痕、随体。
一般染色体的类型有:V型、L型、棒型、颗粒型。
6.有丝分裂和减数分裂有什么不同?用图表示并加以说明。
答:有丝分裂只有一次分裂。
先是细胞核分裂,后是细胞质分裂,细胞分裂为二,各含有一个核。
称为体细胞分裂。
减数分裂包括两次分裂,第一次分裂染色体减半,第二次染色体等数分裂。
细胞在减数分裂时核内,染色体严格按照一定的规律变化,最后分裂成为4个子细胞,发育成雌性细胞或者雄性细胞,各具有半数的染色体。
也称为性细胞分裂。
减数分裂偶线期同源染色体联合称二价体。
粗线期时非姐妹染色体间出现交换,遗传物质进行重组。
双线期时各个联会了的二价体因非姐妹染色体相互排斥发生交叉互换因而发生变异。
有丝分裂则都没有。
减数分裂的中期I 各个同源染色体着丝点分散在赤道板的两侧,并且每个同源染色体的着丝点朝向哪一板时随机的,而有丝分裂中期每个染色体的着丝点整齐地排列在各个分裂细胞的赤道板上,着丝点开始分裂。
细胞经过减数分裂,形成四个子细胞,,染色体数目成半,而有丝分裂形成二个子细胞,染色体数目相等。
9.有丝分裂和减数分裂意义在遗传学上各有什么意义在遗传学上?l 有丝分裂的遗传学意义:(1)维持个体的正常生长和发育。
使子细胞获得与母细胞同样数量和质量的染色体(2)保证了物种的连续性和持续性。
均等式的细胞分裂,使每一个细胞都得到与当初受精卵所具有的同一套遗传性息l 减数分裂的遗传学意义:(1)维持物种染色体数目的稳定性(2)为生物的变异提供了重要的物质基础3.简述DNA双螺旋结构及其特点?答:根据碱基互补配对的规律,以及对DNA分子的X射线衍射研究的成果,提出了DNA双螺旋结构。
特点:⑴. 两条多核苷酸链以右手螺旋的形式,彼此以一定的空间距离,平行的环绕于同一轴上,很像一个扭曲起来的梯子。
⑵. 两条核苷酸链走向为反向平行。
⑶. 每条长链的内侧是扁平的盘状碱基。
⑷. 每个螺旋为3.4nm长,刚好有10个碱基对,其直径为2nm。
⑸. 在双螺旋分子的表面有大沟和小沟交替出现。
第三章孟德尔遗传定律第四章连锁与交换规律第一节连锁与交换*连锁遗传:同一染色体上的某些基因以及它们所控制的性状结合在一起传递的现象。
1906年英国学者贝特森(Bateson)和潘耐特(Pannett)研究香豌豆两对性状遗传时,首先发现的。
一、连锁与交换的遗传现象连锁现象是1906年英国学者贝特森(Bateson)和潘耐特(Pannett)研究香豌豆两对性状遗传时,首先发现的。
后来,摩尔根等发现连锁分二类:完全连锁和不完全连锁。
香豌豆两对相对性状杂交试验.花色:紫花(P)对红花(p)为显性;花粉粒形状:长花粉粒(L)对圆花粉粒(l)为显性。
1. 紫花、长花粉粒×红花、圆花粉粒.2. 紫花、圆花粉粒×红花、长花粉粒.杂交组合1:紫花、长花粉粒×红花、圆花粉粒;试验结果:1、F1两对相对性状均表现为显性,F2出现四种表现型;2、F2四种表现型个体数的比例与9:3:3:1相差很大,并且两亲本性状组合类型(紫长和红圆)的实际数高于理论数,而两种新性状组合类型(紫圆和红长)的实际数少于理论数。
杂交组合2:紫花、圆花粉粒×红花、长花粉粒;试验结果:1、F1两对相对性状均表现为显性,F2出现四种表现型;2、F2四种表现型个体数的比例与9:3:3:1相差很大,并且两亲本性状组合类型(紫圆和红长)的实际数高于理论数,而两种新性状组合类型(紫长和红圆)的实际数少于理论数。
(一)完全连锁:位于同一条染色体上的非等位基因,在形成配子过程中,作为一个整体随染色体传递到配子中,同源染色体之间不发生染色体片段的交换,杂合体在形成配子时,只有亲本组合类型的配子。
完全连锁在生物界很少见,只在雄果蝇(XY)和雌家蚕(ZW)中发现(注意雌雄连锁不同)。
霍尔丹定律:凡是较少发生交换的个体必定是异配性别的个体。
例如:果蝇的体色、翅膀的遗传P 灰身残翅BBvv♂×bbVV♀黑身长翅↓F1 灰身长翅BbVv ♂× bbvv黑身残翅↓bbVv BbvvF2 黑身长翅灰身残翅(亲本类型)因为F1 BbVv♂在形成配子时,只形成了bV和Bv两种配子,即bV完全连锁,Bv也完全连锁。
果蝇的体色、和眼睛颜色遗传:P 灰身紫眼b+b+prpr × bbpr+pr+黑身红眼↓F1 b+bpr+pr × (bbprpr黑身紫眼测交)↓测交后代灰身紫眼b+bprpr:bbpr+pr黑身红眼拟等位基因:完全连锁的、控制同一形性状的非等位基因。
(二)不完全连锁:位于同源染色体上的非等位基因,在形成配子时,除有亲型配子外,还有少数重组型配子产生。
(同源染色体的非姊妹染色单体发生交换)例如:果蝇体色、翅膀的遗传:P bbVV×BBvv → F1 BbVv♀× bbvv♂黑长灰残↓F2 Bbvv bbVv BbVv bbvv0.42 0.42 0.08 0.08香豌豆花色、花粉粒形状遗传:P 紫花、长花粉粒×红花、圆花粉粒PPLL ↓ ppllF1紫花、长花粉粒PpLl↓ 自交F2紫、长紫、圆红、长红、圆总数P_L_ P_ll ppL_ ppll实际个体数4831 390 393 1338 6952按9:3:3:1推算的理论数3910.5 1303.5 1303.5 434.5 6952从上图看出,F2代也出现四种表现型,但二种新组合的表现型比理论推算少得多,即象亲本组合的实际数偏多,而重新组合的实际数偏少。
P 紫花、圆花粉粒×红花、长花粉粒PPll ↓ ppLLF1紫花、长花粉粒PpLl↓自交F2紫、长紫、圆红、长红、圆总数P_L_ P_ll ppL_ ppll实际个体数226 95 97 1 419按9:3:3:1推算的理论数235.8 78.5 78.5 26.2 419这二个试验的结果都不能用独立分配规律来解释。
亲组合:亲代原有的组合。
重组合:亲代没有的组合。
二、交叉与交换的关系1、同源染色体在减数分裂配对时,偶尔在相应的位置发生断裂,然后错接,造成同源染色体中的非姐妹染色单体之间染色体片段的互换,这个过程叫交换或重组2、每发生一次有效交换,形成1个交叉,将产生两条重组染色体,两条非重组染色体(亲染色体),含有重组染色体的配子叫重组合配子,含有非重组染色体的配子叫亲组合配子。
三、交换值及其测定(一)重组值(交换值)的概念重组值(率):指重组型配子数占总配子数的百分率。
有时也叫交换值。
1、每1次交换,只涉及四条非姊妹染色单体中的2条。
2、发生交换的性母细胞的百分率是重组合配子百分率的2倍。
因此如果交换值为4%,则表明有8%的性母细胞发生了交换。
3、重组值的范围0—50%之间,重组值越大,基因之间连锁的程度越小。
(二)重组值(Rf)的测定1、测交法:用于异花授粉植物是易进行。
测交后代(Ft)的表现型的种类和比例直接反映被测个体(如F1)产生配子的种类和比例。
即算公式:重组值= 交换型的个体数*100%测交后代个体总数赫钦森(C. B. Hutchinson, 1922)玉米色粒遗传的测交试验:籽粒颜色:有色(C)、无色(c);籽粒饱满程度:饱满(Sh)、凹陷(sh)相引组(相):杂交的双亲是显性基因与显性基因相连锁,隐性基因与隐性基因想相连锁的杂交组合。
相斥(组)相:杂交的双亲中,一个是显性基因与隐性基因相连锁,另一个是相对应的隐性基因与显性基因相连锁的杂交组合。
C-Sh相引相的重组值为3.6%;C-Sh相斥相的重组值为3.0%。
相引相测交试验与相斥相测交试验结果分析:(1)F1产生的四种类型配子比例不等于1:1:1:1;(2)亲本型配子比例高于50%,重组型配子比例低于50%;(3)亲本型配子数基本相等,重组型配子数也基本相等。
根据实验计算的重组值(Rf)是估算值,其标准误差Se的计算公式是:Se= n:是总配子数或测交个体总数。
相引组:Se= =±?2、自交法:适用于自花授粉的植物。
(1)平方根法:不同的杂交组合计算方法不同相引组:AB/AB×ab/ab 相斥组:Ab/Ab×aB/aBF1基因型:AB/ ab Ab/ aBF2表型4种:A-B-;A-bb;aaB-;aabbF2后代数量:a1 a2 a3 a4在相引组中,AB和ab配子是亲型配子,且AB=ab的频率=q.亲型配子的总频率=AB+ab=2q重组配子的频率(重组值)=1-2q在相斥组中,AB和ab配子是重组型配子。