指数函数及其性质 精品公开课教案
《指数函数及其性质》教案设计

《指数函数及其性质》教案设计一、教学目标1. 知识与技能:(1)理解指数函数的定义和表达形式;(2)掌握指数函数的性质,包括单调性、奇偶性、过定点等;(3)能够运用指数函数解决实际问题。
2. 过程与方法:(1)通过观察、分析和归纳,引导学生发现指数函数的性质;(2)利用信息技术工具,如图形计算器或计算机软件,进行函数图象的绘制和分析;(3)培养学生的逻辑思维能力和数学建模能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神;(3)引导学生认识数学在现实生活中的应用价值。
二、教学内容1. 指数函数的定义与表达形式2. 指数函数的单调性3. 指数函数的奇偶性4. 指数函数的过定点性质5. 实际问题中的应用三、教学重点与难点1. 教学重点:(1)指数函数的定义和表达形式;(2)指数函数的性质及其应用。
2. 教学难点:(1)指数函数的单调性的证明;(2)指数函数的奇偶性的证明;(3)指数函数在实际问题中的应用。
四、教学方法1. 采用问题驱动的教学方法,引导学生发现和探究指数函数的性质;2. 利用信息技术工具,如图形计算器或计算机软件,进行函数图象的绘制和分析;3. 采用小组讨论、合作交流的方式,培养学生的团队协作能力;4. 结合实例,展示指数函数在实际问题中的应用,提高学生的应用能力。
五、教学过程1. 导入:(1)复习指数的基本概念,如指数幂的运算;(2)引导学生思考指数函数的定义和表达形式。
2. 新课讲解:(1)讲解指数函数的定义和表达形式;(2)引导学生发现指数函数的单调性,并进行证明;(3)讲解指数函数的奇偶性,并进行证明;(4)引导学生发现指数函数的过定点性质。
3. 案例分析:(1)利用信息技术工具,如图形计算器或计算机软件,展示指数函数的图象;(2)分析指数函数的性质,如单调性、奇偶性、过定点等;(3)结合实际问题,运用指数函数解决具体问题。
高中数学《指数函数及其性质》教案

高中数学《指数函数及其性质》精品教案一、教学目标1. 让学生理解指数函数的定义,掌握指数函数的性质。
2. 培养学生运用指数函数解决实际问题的能力。
3. 提高学生对数学知识的探究和运用能力。
二、教学内容1. 指数函数的定义与表达式2. 指数函数的单调性3. 指数函数的奇偶性4. 指数函数的图像与性质5. 实际问题中的指数函数应用三、教学重点与难点1. 重点:指数函数的定义、性质及其应用。
2. 难点:指数函数图像的特点,以及如何运用指数函数解决实际问题。
四、教学方法1. 采用问题驱动的教学方法,引导学生探究指数函数的性质。
2. 利用数形结合的方法,让学生直观地理解指数函数的图像与性质。
3. 通过实际问题的引入,培养学生的应用能力。
五、教学过程1. 导入:回顾初中阶段学习的指数知识,引发学生对指数函数的好奇心。
2. 新课讲解:介绍指数函数的定义、表达式,分析指数函数的单调性和奇偶性。
3. 案例分析:分析实际问题中的指数函数应用,让学生体会数学与生活的联系。
4. 课堂练习:设计相关练习题,巩固学生对指数函数的理解。
教案仅供参考,具体实施时可根据学生实际情况进行调整。
六、教学评价1. 通过课堂提问、练习题和课后作业,评估学生对指数函数定义、性质的理解程度。
2. 观察学生在解决问题时的思维过程,评价其运用指数函数解决实际问题的能力。
3. 鼓励学生参与课堂讨论,评价其合作交流和探究能力。
七、教学资源1. 教材:高中数学教材相关章节。
2. 课件:制作精美的课件,辅助讲解指数函数的性质。
3. 练习题:设计具有梯度的练习题,巩固学生对指数函数的理解。
4. 实际问题:收集与生活相关的指数问题,激发学生的学习兴趣。
八、教学进度安排1. 第1-2课时:讲解指数函数的定义与表达式,分析单调性和奇偶性。
2. 第3课时:探讨指数函数的图像与性质。
3. 第4课时:分析实际问题中的指数函数应用。
九、课后作业1. 复习指数函数的定义、性质及其图像。
指数函数及其性质教案

指数函数及其性质教案一、教学目标1. 理解指数函数的定义和表达形式;2. 掌握指数函数的性质,包括单调性、奇偶性、周期性等;3. 学会运用指数函数解决实际问题;4. 培养学生的数学思维能力和解决问题的能力。
二、教学内容1. 指数函数的定义:形如y=a^x(a>0且a≠1)的函数称为指数函数;2. 指数函数的表达形式:指数函数可以写成y=e^(xln(a))的形式;3. 指数函数的单调性:当a>1时,指数函数在定义域上单调递增;当0<a<1时,指数函数在定义域上单调递减;4. 指数函数的奇偶性:指数函数既不是奇函数也不是偶函数;5. 指数函数的周期性:指数函数没有周期性;6. 指数函数的应用:解决实际问题,如人口增长、放射性衰变等。
三、教学重点与难点1. 教学重点:指数函数的定义、表达形式、单调性和应用;2. 教学难点:指数函数的单调性和应用。
四、教学方法1. 讲授法:讲解指数函数的定义、表达形式、单调性和应用;2. 案例分析法:分析实际问题,引导学生运用指数函数解决问题;3. 练习法:布置课后作业,巩固所学知识。
五、教学安排1. 第一课时:讲解指数函数的定义和表达形式;2. 第二课时:讲解指数函数的单调性;3. 第三课时:讲解指数函数的奇偶性和周期性;4. 第四课时:讲解指数函数的应用;六、教学评估1. 课堂提问:检查学生对指数函数定义和表达形式的理解;2. 课堂练习:让学生解答相关例题,检验对单调性的掌握;3. 课后作业:评估学生对奇偶性、周期性和应用的理解。
七、教学策略1. 针对不同学生的学习基础,提供多层次的学习资源;2. 利用多媒体工具,如图表、动画等,直观展示指数函数的性质;3. 鼓励学生参与课堂讨论,增强互动性。
八、教学延伸1. 探讨指数函数与其他类型函数的关系;2. 研究指数函数在数学和其他学科中的应用;3. 引入指数对数函数,比较其性质和应用。
九、课后作业1. 练习题:巩固指数函数的基本概念和性质;2. 研究题:探究指数函数在实际问题中的应用;3. 拓展题:深入了解指数函数的更深层次性质。
《指数函数及其性质》优秀教案

指数函数及其性质一、教学目标1、知识目标(1)了解指数函数模型的实际背景,从实际问题引出指数函数。
(2)理解指数函数的概念和意义,能画出具体指数函数的图象。
(3)通过指数函数的图象,归纳出指数函数的性质,并掌握其性质。
(4)能在实际环境中,根据不同的需要和条件,选择恰当的方法,运用指数函数的图象与性质解决实际问题。
2、能力目标(1)培养学生数学与实际问题相结合的能力。
(2)通过探究、思考,培养学生理性思维能力,观察能力以及分析问题的能力。
(3)在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程、数形结合的方法等。
3、情感目标(1)通过将数学与实际问题结合,提高学生的学习兴趣。
(2)通过老师与学生,学生与学生的相互交流,培养学生由具体到抽象、由特殊到一般地认识事物的意识。
(3)通过现代信息技术的合理应用,转变学生对数学学习的态度,加强学生对数形结合,分类讨论等数学思想的进一步认识。
二、教学重点理解指数函数的定义,图象与性质。
三、教学难点用数形结合的方法从特殊到一般地探索、概括指数函数的性质。
四、教具准备多媒体课件。
五、教学基本流程六、教学过程环节教学内容老师活动学生活动设计意图引入新课1)在本节的问题2中时间和碳14含量的对应关系:和问题1中时间x与GDP值y的对应关系能否构成函数?2)一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x年为自变量,残留量y的函数关系式是什么?1)组织学生思考、分小组讨论所提出的问题,注意引导学生从函数的定义出发来解释两个问题中变量之间的关系。
2)引导学生从函数的定义出发列出函数关系式并提问。
1)学生独立思考、小组讨论,推举代表解释这两个问题中变量间的关系为什么构成函数。
2)代表说出这一函数关系式。
1)用函数的观点分析碳14含量模型和GDP值增长模型中变量之间的对应关系。
2)从实际问题出发,列出函数关系式,增加学生学习兴趣。
指数函数及其性质 优秀教案

指数函数及其性质(第一课时)一、概述·指数函数是高中新引进的第一个基本初等函数,它既是函数概念及性质在高中数学的第一次应用,也是今后学习对数函数及其他初等函数的基础,当然指数函数在生活及生产实际中也有着广泛的应用.指数函数及其性质应重点研究.二、教学目标分析1.了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系.2.理解指数函数的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性和指数函数的图象所过的特殊点.3.在学习的过程中,要体会研究具体函数及其性质的知识展示过程和思考方法,如从具体到抽象、由特殊到一般的思维过程,特别是运用数形结合的思想研究函数的方法等.4.通过对指数函数的研究,认识到数学的应用价值,激发学习兴趣,善于在现实生活中从数学的角度发现问题,解决问题.三、学习者特征分析1.在上一小节,学生学过了有关实数指数幂及其运算性质等知识,将指数幂由整数集推广到了实数集,这为本节学习指数函数的概念打下了学习的基础.2.学生在前面已经学过了有关函数的概念及其性质的知识,并运用函数图象理解和研究函数的性质.在研究指数函数及其性质时,学生可以类比前面讨论函数性质的思路来研究,由于正在形成运用数形结合的思想方法来研究问题,所以利用指数函数的图象获取指数函数的性质还可能会感到有所困难.四、教学策略选择与设计1.把研究抽象函数概念及性质的方法,类比地应用到研究指数函数的概念及性质.23.教学过程中要注意发挥信息技术对学生理解知识的支撑,尽量利用计算器或计算机等创设教学情境,为学生的数学探究与数学思维提供数学实验模型.4.注意渗透和运用一些数学思想方法,如数形结合的数学思想.利用指数函数图象获取指数函数的性质是重点,充分利用函数的图象,让学生发现、概括、记忆函数的性质,提高学生数形结合的能力.五、教学资源与工具设计1.教学环境:网络教室2.教具:课件,动画,投影仪,木三角板,粉笔.3.学具:计算器,铅笔,三角板,直尺.4.课件资料:从或/搜索“指数函数”材料.六、教学过程教学情景设计七、教学评价设计课后练习:1.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3个小时,这种细菌由1个可繁殖成().(A)511个(B)512个(C)1023个(D)1024个2.在同一平面直角坐标系中,函数axxf=)(与x axg=)(的图象可能是().3.指数函数①xmxf=)(②x nxg=)(满足不等式01>>>mn,则它们的图象是( ).4.曲线4321,,,CCCC分别是指数函数xx byay==,,x cy=和x dy=的图象,则dcba,,,与1的大小关系是( ).)(A d c b a <<<<1 )(B c d b a <<<<1 )(C d c a b <<<<1 ()D c d a b <<<<15.若01<<-x ,那么下列各不等式成立的是( ). (A )x x x2.022<<- (B )x x x -<<22.02(C )x xx222.0<<- (D )x x x 2.022<<-6.已知)(x f 是指数函数,且25523=⎪⎭⎫⎝⎛-f ,则____)3(=f . 7.求下列函数的定义域(1)122-=xy ; (2)xy -=3)31( ;(3)12+=x y ; (4))1,0(1)(≠>-=a a a x f x .8.请判断下列哪些函数为指数函数:xy ⎪⎭⎫⎝⎛=31,x y 3-=,x y -=π,3x y =,x y 32⋅=,14+=x y ,x y 22=,)3()2(>-=a a y x ,)1,0(≠>=x x x y x ,x y )21(-=,22x y =.9.某种放射性物质不断变化为其他物质,每经过1年这种物质的剩余量是原来的84%,请用计算器或计算机探究,经过多少年后,这种物质的剩余量是原来的一半(结果保留1个有效数字).参考答案:1.B ; 2.B ; 3.C ; 4.D ; 5.D . 6.125;7.(1)R x ∈;(2) }3|{≤x x ;(3)R x ∈;(4)由01≥-xa 得1≤xa ,当1>a 时,}0|{≤x x ;当10<<a 时,}0|{≥x x .8.解:是指数函数的有:)3()2(,2,,312>-===⎪⎭⎫⎝⎛=-a a y y y y x x x xπ;不是指数函数的有:22,)21(),1,0(,4,32,,313x xxx xxy y x x x y y y x y y =-=≠>==⋅==-=+.9.解:设这种物质最初的质量是1,经过x 年,剩留量是y . 经过1年,剩留量184.0%841=⨯=y ; 经过2年,剩留量284.0%841=⨯=y ; ……一般地,经过x 年,剩留量x y 84.0=.由上表,我们可得到:约经过4年,这种物质的剩留量是原来的一半. 另解:我们也可以用计算机画出函数xy 84.0=的图象如下:从图上看出5.0=y ,只需4≈x . 所以,约经过4年,剩留量是原来的一半.。
指数函数及其性质 优秀教案

指数函数及其性质(1)教学目标:1.知识与技能①通过实际问题了解指数函数的实际背景;②理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质. ③体会具体到一般数学讨论方式及数形结合的思想; 2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理. ②培养学生观察问题,分析问题的能力. 3.过程与方法展示函数图象,让学生通过观察,进而研究指数函数的性质. 批 注教学重点:指数函数的概念和性质及其应用. 教学难点:指数函数性质的归纳,概括及其应用. 教学用具:多媒体教学方法:观察法、讲授法及讨论法. 教学过程:一. 情境引入1、折纸实验:①观察对折的次数x 与所得的层数y 之间又怎样的关系?②假设现在纸张的面积为1,则对折次数x 与对折后每页纸的面积y 之间又有怎样的关系?2、①这两个关系式的共同特征是什么?这两个关系式中的底数是一个正数,自变量为指数,即都可以用xy a =(a >0且a ≠1来表示). 二.讲授新课1、指数函数的定义一般地,函数xy a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R. 提问:(1)为什么指数函数的概念中明确规定a>0,a≠1?小结:根据指数函数的定义来判断说明:因为a >0,x 是任意一个实数时,xa 是一个确定的实数,所以函数的定义域为实数集R .000,0xx a a x a ⎧>⎪=⎨≤⎪⎩x当时,等于若当时,无意义若a <0,如1(2),,8xy x x =-=1先时,对于=等等,6在实数范围内的函数值不存在.若a =1, 11,xy == 是一个常量,没有研究的意义。
因此,只有满足(0,1)xy a a a =>≠且的形式才能称为指数函数 (2)指数函数有何特征?应用1:在下列的关系式中,哪些不是指数函数,为什么? (1)x y 32∙= (2)13-=x y (3)3x y = (4)x y 3-= (5)()xy 4-= (6)x x y =(7)x y -=4 (8)x y π=应用2:已知指数函数()xf x a =(a >0且a ≠1)的图象过点(3,π),求(0),(1),(3)f f f -的值.分析:要求(0),(1),(3),,xf f f a x π-13的值,只需求出得出f()=()再把0,1,3分别代入x ,即可求得(0),(1),(3)f f f -.(3)要求出指数函数,需要几个条件?从方程思想来看,求指数函数就是确定底数,因此只要一个条件,即布列一个方程就可以了。
高中数学《指数函数及其性质》公开课优秀教学设计

高中数学《指数函数及其性质》公开课优秀教学设计本节课主要讲解指数函数及其性质,是高中数学中的一个基本初等函数。
通过研究,学生可以深化对函数概念的理解与认识,初步培养学生的函数应用意识,为今后研究其它初等函数奠定基础。
教学目标包括知识与技能目标、过程与方法目标和情感态度与价值观目标。
学生已有一定的函数基础知识,但思维的全面性、深刻性以及数形结合的思想需要进一步培养和加强。
教学重点是指数函数的概念和性质,教学难点是用数形结合的方法从具体到一般地探索、概括指数函数概念和性质。
为了突破难点,需要寻找新知生长点,建立新旧知识的联系,在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。
教学方法采用“诱思探究”教学模式和“情景式”教学模式,创设问题情景,强化指数函数概念的形成,突出图象的作用,注意数学与生活和实践的联系。
本节课介绍了指数函数及其性质,是高中数学中的一个基本初等函数。
通过研究,学生可以深化对函数概念的理解与认识,初步培养学生的函数应用意识,为今后研究其它初等函数奠定基础。
教学目标包括知识与技能目标、过程与方法目标和情感态度与价值观目标。
学生已有一定的函数基础知识,但思维的全面性、深刻性以及数形结合的思想需要进一步培养和加强。
教学重点是指数函数的概念和性质,教学难点是用数形结合的方法从具体到一般地探索、概括指数函数概念和性质。
为了突破难点,需要寻找新知生长点,建立新旧知识的联系,在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。
教学方法采用“诱思探究”教学模式和“情景式”教学模式,创设问题情景,强化指数函数概念的形成,突出图象的作用,注意数学与生活和实践的联系。
根据注重提高学生数学思维能力的理念,教师指导学生采用自主、合作、探究的研究方法。
首先,帮助学生再现原有认知结构,为理解指数函数的概念和性质做好准备。
其次,在研究指数函数的性质时,引导学生运用分类讨论、数形结合等常见数学思想方法。
第三,通过互相交流和自主探究,让学生变被动的接受为主动地合作研究,从而完成知识的内化过程。
指数函数及其性质教学设计(共8篇)

指数函数及其性质教学设计〔共8篇〕第1篇:《指数函数及其性质》教学设计《指数函数及其性质》教学设计尚义县第一中学乔珺一、指数函数及其性质教学设计说明新课标指出:学生是教学的主体,老师的教应本着从学生的认知规律出发,以学生活动为主线,在原有知识的根底上,建构新的知识体系。
我将以此为根底对教学设计加以说明。
数学本质:探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图象打破,体会数形结合的思想。
通过分类讨论,通过研究两个详细的指数函数引导学生通过观察图象发现指数函数的图象规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。
引导学生探究出指数函数的一般性质,从而对指数函数进展较为系统的研究。
二、教材的地位和作用:本节课是全日制普通高中标准实验教课书《数学必修1》第二章2.1.2节的内容,研究指数函数的定义,图像及性质。
是在学生已经较系统地学习了函数的概念,将指数扩大到实数范围之后学习的一个重要的根本初等函数。
它既是对函数的概念进一步深化,又是今后学习对数函数与幂函数的根底。
因此,在教材中占有极其重要的地位,起着承上启下的作用。
此外,《指数函数》的知识与我们的日常消费、生活和科学研究有着严密的联络,尤其表达在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这局部知识还有着广泛的现实意义。
三、教学目的分析^p :根据本节课的内容特点以及学生对抽象的指数函数及其图象缺乏感性认识的实际情况,确定在理解指数函数定义的根底上掌握指数函数的图象和由图象得出的性质为本节教学重点。
本节课的难点是指数函数图像和性质的发现过程。
为此,特制定以下的教学目的: 1〕知识目的〔直接性目的〕:理解指数函数的定义,掌握指数函数的图像、性质及其简单应用、能根据单调性解决根本的比拟大小的问题.2〕才能目的〔开展性目的〕:通过教学培养学生观察、分析^p 、归纳等思维才能,体会数形结合和分类讨论思想,增强学生识图用图的才能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计意图 从指数函数的实 际背景引入课题. 用函数的观点来 分析拉面和细胞分裂 模型、分割绳子模 型、碳 14 含量模型和
GDP 值增长模型中变
量之间的对应关系, 为引出指数函数的概 念做准备.
问题中的时间 x 与 GDP 值 y 的对
应关系 y 1.073x (x N, x 2)
能否构成函数? 「指数函数概念」 问题
学生独立思考,提出研究 指数函数性质的基本思路.
生:独立画图,可以利用 计算器或计算机作图,同学间 互相交流;
师:引导学生用描点画图 画指数函数的图象,尽量让学 生利用信息技术,随意的取底
数 a 的值,多描出一些点,画
出图象.课堂巡视,个别辅 导,展示画得较好的部分学生 的图象.
师:利用信息技术,先展 示用描点法画出的这两个指数 函数图象,再用计算机绘制比
五、教学资源与工具设计
1.教学环境:网络教室 2.教具:课件,动画,投影仪,木三角板,粉笔. 3.学具:计算器,铅笔,三角板,直尺. 4.课件资料:从 或 /搜索“指数函数”材料.
六、教学过程
教学情景设计
教学过程如拉 面、细胞分裂、分割绳子、考古 学中碳 14 含量和国家 GDP 值增 长问题等(具体见网页课件),提 出问题:在这些实际问题中,是 否存在一定的函数关系?例如考
古学中碳 14 含量问题中时间 t 和 碳 14 含量 P 的对应关系
P
(
1
)
t 5730
和国家
GDP
值增长
2
师生活动 教师组织学生思考、分小 组讨论所提出的问题,注意引 导学生从函数的定义出发来解 释两个问题中变量之间的关 系, 学生独立思考、小组讨 论,推举代表解释这两个问题 中变量间的关系为什么构成函 数.
提炼出指数函数
模型 y a x .构建指
数函数的概念.
(3)能给出指数函数的定义 吗?
(4)问题:你能根据指数函 数的定义解决一些问题吗?
给出一些判断函数是否是指 数函数和求函数定义域的题目.
「指数函数图象」 问题
你能类比前面讨论函数性质 时的思路,提出研究指数函数性 质的方法吗?
问题 (1)如何画指数函数的图
如 y 3x 和 y (1)x , 3
利用指数函数的 定义解决一些问题, 巩固指数函数的概 念.
给出研究指数函 数性质的思路.
指出研究函数性 质首先画出指数函数 的图象.
会用描点法画指 数函数的图象.
总结出两个指数
函数图象关于 y 轴对
称时其解析式的特 点,并利用轴对称性 画指数函数的图象.
可否利用 y 2x 的图象画出 y ( 1 )x 的图象?
生:利用信息技术作图, 并观察图象及表格,表述自己 的发现.
师生:概括出根据对称性 画指数函数图象的方法.
四、教学策略选择与设计
1.把研究抽象函数概念及性质的方法,类比地应用到研究指数函数的概念及性质.
2. 函数实际背景
建立函数模型
研究图象性质
3.教学过程中要注意发挥信息技术对学生理解知识的支撑,尽量利用计算器或计算机等 创设教学情境,为学生的数学探究与数学思维提供数学实验模型.
4.注意渗透和运用一些数学思想方法,如数形结合的数学思想.利用指数函数图象获取 指数函数的性质是重点,充分利用函数的图象,让学生发现、概括、记忆函数的性质,提高学 生数形结合的能力.
2
y 4 x 和 y ( 1 ) x 等这样类 4
型的函数图象,让学生自己任 意画底数互为倒数的两个函数 图象,得出结论.
让学生观察这几对函数图
象之间的关系.然后给学生演 示底数变化,但两个函数的底 数始终互为倒数的函数图象间 的关系,引导学生总结具有这 种对称关系的两组函数图象的 解析式的特点.
(1)这几个函数有什么共同 特征?
(2)如果用字母 a 分别来代
1
替 2, 1 , 1 5730 , 1.073 ,那 2 2
么以上几个函数可以表示为什么 形式?
教师提出问题,注意引导
学生把对应关系概括到 y a x
的形式,注意提示 a 的取值范
围. 学生思考,归纳概括共同
特征,尝试说出指数函数的定 义.
三、学习者特征分析
1.在上一小节,学生学过了有关实数指数幂及其运算性质等知识,将指数幂由整数集推 广到了实数集,这为本节学习指数函数的概念打下了学习的基础.
2.学生在前面已经学过了有关函数的概念及其性质的知识,并运用函数图象理解和研究 函数的性质.在研究指数函数及其性质时,学生可以类比前面讨论函数性质的思路来研究,由 于正在形成运用数形结合的思想方法来研究问题,所以利用指数函数的图象获取指数函数的性 质还可能会感到有所困难.
象?
(2)画出指数函数 y 2x 和 y ( 1 )x 的图象?
2
(3)从画出的图象中你能发
现函数 y 2x 的图象和函数 y ( 1 )x 的图象有什么关系?
2
生:独立思考,尝试解决 问题,并且小组讨论、交流;
师:课堂巡视,个别辅 导,针对学生的共同问题集中 解决.
教师引导学生回顾需要研 究函数的哪些性质,讨论研究 指数函数性质的方法,强调数 形结合,强调函数图象在研究 性质中的作用,注意从具体到 抽象,从特殊到一般的思想方 法的应用,渗透概括能力的培 养.指出研究指数函数性质首 先需要画出指数函数的图象.
指数函数及其性质
(第一课时)
一、概述
·指数函数是高中新引进的第一个基本初等函数,它既是函数概念及性质在高中数学的第 一次应用,也是今后学习对数函数及其他初等函数的基础,当然指数函数在生活及生产实际中 也有着广泛的应用.指数函数及其性质应重点研究.
二、教学目标分析
1.了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系. 2.理解指数函数的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单 调性和指数函数的图象所过的特殊点. 3.在学习的过程中,要体会研究具体函数及其性质的知识展示过程和思考方法,如从具 体到抽象、由特殊到一般的思维过程,特别是运用数形结合的思想研究函数的方法等. 4.通过对指数函数的研究,认识到数学的应用价值,激发学习兴趣,善于在现实生活中 从数学的角度发现问题,解决问题.