第六届希望杯-六年级-第2试试卷及解析
新希望杯六年级数学试卷及解析答案.doc

新希望杯六年级数学试卷及解析答案 (满分120分;时间120分钟) 一、填空题(每题5分;共60分) 1、计算:=-+••114154.0625.3________________. 解析:原式=625.3+••54.0-••63.1=625.2+(••54.1-••63.1)=625.2+••90.0=••09715.2或 原式=8823911108291115115829=-=-+ 2、对于任意两个数x 和y ;定义新运算◆和⊗;规则如下:x ◆y =y x y x 22++;x ⊗y =3÷+⨯y x y x ;如 1◆2=221212⨯++⨯;1⊗2=5115632121==+⨯; 由此计算••63.0◆=⊗)2114(__________. 解析:=⊗)2114(345.465.045.14==+⨯;而11463.0=••;所以原式=25173211132112342114341142=++=⨯++⨯3、用4根火柴;在桌面上可以拼成一个正方形;用13根火柴可以拼成四个正方形;…;如图1;拼成的图形中;若最下面一层有15个正方形;则需火柴__________根。
解析:第二个图形比第一个图形多9根火柴;第三个图形比第二个图形多13根火柴;经尝试;第四个图形比第三个图形多17根火柴;而最下面一层有15根火柴的是第8个图形;所以共需要火柴4+(9+13+17+21+25+29+33)=151根。
4、若自然数N 可以表示城3个连续自然数的和;也可以表示成11个连续自然数的和;还可以表示成12个连续自然数的和;则N 的最小值是_________。
(注:最小的自然数是0)解析:因为奇数个连续自然数之和等于中间数乘以数的个数;所以N 能被3和11整除;也就是能被33整除;因为偶数个连续自然数之和等于中间两个数的平均值乘以数的个数;所以N 等于一个整数加上0.5再乘以12;也就是被12除余6;最小为66。
2011年希望杯六年级二试试题和答案

2011年“希望杯”复赛真题及答案详解(六年级)一、填空题1. 计算:43.6250.451_________.11+-= 2. 对于任意两个数x 和y ,定义新运算◆和⊗,规则如下:223x y x y x y x y x y x y +⨯=⊗=++÷,,◆ 如 212412611212==121225551+3⨯+⨯==⊗=+⨯, ◆。
由此计算,10.36412⎛⎫⊗= ⎪⎝⎭◆ 。
3. 用4根火柴,在桌面上可以拼成一个在正方形;用13根火柴,可以拼成四个正方形;……如下图,拼成的图形中,若最下面一层有15个正方形,则需火柴 根。
4. 若自然数N 可以表示成3个连续自然数的和,也可以表示成11个连续自然数的和,还可以表示成12个连续自然数的和,则N 的最小值是 。
(注:最小的自然数是0)5. 十进制计数法,是逢10进1,如:21010242104136531061051=⨯+⨯=⨯+⨯+⨯, ;计算机使用的是二进制计数法,是逢2进1,如:2321021027121211111121202011100=⨯+⨯+⨯==⨯+⨯+⨯+⨯=,12。
如果一个自然数可以写成m 进制数45m ,也可以写成n 进制数54,那么最小的_______________m =,___________n =。
(注n n a a a a a a =⨯⨯⨯⨯个)6. 我国除了用公历纪年外,还采用干支纪年,根据图中的信息回答:公历1949年,按干纪年法是年4根火柴 13根火柴 26根火柴……7.盒子中装有很多相同的,但分红、黄、蓝三种颜色的玻璃球,每次摸出两个球。
为了保证有5次摸出的结果相同,则至少需要摸球次。
8.根据图中的信息回答,小狗和小猪同时读出的数是。
9.下图中的阴影部分的面积是平方厘米。
( 取3)10.甲、乙两人合买了n个篮球,每个篮球n元。
付钱时,甲先乙后,10元10元地轮流付钱,当最后要付的钱不足10元时,轮到乙付。
第八届希望杯-六年级-第2试试卷及解析

第八届小学“希望杯”全国数学邀请赛六年级第2试一、填空题(每小题5分,共60分)1.2.已知,其中A、B、C都是大于0但互不相同的自然数,则(A+B)÷C=( )3.有一类自然数,从左边第三位开始,每个数位上的数字都是它左边两个数位上数字之和,如21347,则这类自然数中,最大的奇数是( )4.王老师在黑板上写了这样的乘法算式:12345679×()=□□□□□□□□□,然后说道:只要同学们告诉我你喜欢1,2,3,4,5,6,7,8,9中的哪个数,我在括号里填上适当的乘数,右边的积一定全是你喜欢的数字组成.小明抢着说:我喜欢3.王老师填乘数“27”,结果12345679×(27)=333333333;小宇说:我喜欢7,只见王老师在乘数上填“63”,结果是12345679×(63)=777777777.小丽说:我喜欢8,那么在乘数上应填( )5.如图,三角形ABC中,点E在AB上,点F在AC上,BF与CE交于点P上,如果四边形AEPF与三角形BEP、三角形CFP的面积都是4,则三角形BPC的面积是( )6.张老师带六一班学生去种树,学生恰好可以平均分成5组,已知师生每人种的树一样多,共种树527棵,问六一班学生有( )人.7.两个顽皮的孩子逆着自动扶梯行驶的方向行走,从扶梯的一端到达另一端,男孩走了100秒,女孩走了300秒,已知在电梯静止时,男孩每秒走3米,女孩每秒走2米,则该自动扶梯长( )米8.有7根直径都是5厘米的圆柱形木头,现在用绳子分别在两处把它们捆在一起,则至少需要绳子( )分米(结头处绳子不计,Л取3.14)9. 一个深30厘米的圆柱形容器,外圆直径22厘米,壁厚1厘米,已装深27.5厘米的水.现放入一个底面直径10厘米,高30厘米的圆锥形铁块,则将有( )立方厘米的水溢出?10.新年联欢会共有8个节目,其中有3个非歌唱类节目.排列节目单时规定,非歌唱类节目不相邻,而且第一个和最后一个节目是歌唱类节目,则节目单有( )种不同的排法.11.有一水池,单开进水管3小时可把水池注满,单开出水管4小时把排空满池水.水池建成后,发现水池漏水,这时,若同时打开进水管与出水管14小时才能把水池注满,当水池注满后,并且关闭进水管与出水管,经过( )小时水池会漏完.12.甲乙两人分别从A、B两地同时出发,相向而行,已知甲、乙两人的速度比是6:5,他们相遇时距AB两地的中点5千米,当甲到达B时,乙距A还有( )千米二、解答题(每题15分,共60分)每题都要写出推算过程.13.有一个电子计算器的数字显示屏坏了,有部分区域在该亮时不亮,使原本的一道一位数乘以一位数,积是两位数的乘法算式,出现如图1所示怪样(不妨用火柴棒来表示),小明对此用火柴棒摆出可能算式如图2请问,图中所示的算式有哪几种?14.修一条高速公路,若甲、乙、丙合作,90天可完工;若甲、乙、丁合作,120天可完工;若丙、丁合作,180天完工;若甲、乙合作36天后,剩下的工程由四人合作,还需要多少天完工?15.甲乙两辆车在与铁路并行的道路上相向而行,一列长180米的火车以60千米/小时的速度与甲同向前进,火车从追上甲车到遇上乙车,相隔5分钟,若火车从追上并超过甲车用时30秒,从与乙车相遇到离开用时6秒,求乙车遇到火车后再过多长时间与甲车相遇?16.定义:f(n)=k(其中n是自然数,k是0.987651234658、、、、的小数点后的第n位数字),如f(1)=9,f(2)=8,f(3)=7,求5f (……f ( f ( 5 ) ) )+2f (……f ( f ( 8 ) ) )的值.505个f 2010个f862参考答案。
小升初数学专题训练——希望杯六年级考前热身—历年真题精讲(二)-数论 (含答案,全国通用)

六年级考前热身—历年真题精讲(二)------数论(1)例题1:(08年·六年级1试第19题)有一群猴子正要分56个桃子,每只猴子可以分到同样个数的桃子。
这时,又窜来4只猴子。
只好重新分配,但要使每只猴子分到同样个数的桃子,必须扔掉一个桃子。
则最后每只猴子分到桃子___个。
例题2:(09年·六年级2试第5题)已知A、B两数的最小公倍数是180,最大公约数是30,若A=90,则B= ______。
例题3:(10年·六年级1试第12题)甲、乙、丙三人一起去钓鱼,他们将钓得的鱼放在一个鱼篓中,就在原地躺下休息,结果都睡着了。
甲先醒来,他将鱼篓中的鱼平均分成3份,发现还多一条,就将多的这条鱼扔回河中,拿着其中的一份鱼回家了。
乙随后醒来,他将鱼篓中现有的鱼平均分成3份,发现还多一条,也将多的这条鱼扔回河中,拿着其中的一份鱼回家了。
丙最后醒来,他也将鱼篓中的鱼平均分成3份,这时也多一条鱼。
这三个人至少钓到_____条鱼。
例题4:(11年·六年级1试第7题)自然数a和b的最小公倍数是140,最大公约数是5,则a+b的最大值是______。
例题5:(11年·六年级1试第8题)买72块巧克力共需□67.9□元,则每块巧克力______元。
(□内是一位数字)1、求各位数字都是7,并能被63整除的最小自然数。
2、在8264的左右各添一个数码,使新得到的六位数能被45整除。
3、两个数的最大公约数是6,最小公倍数是144,求这两个数。
4、两个数的最大公约数是18,最小公倍数是180,两个数的差是54,求这两个数的和。
5、小马虎买了72支同样的钢笔,可是发票不慎落水浸湿,单价已无法辨认,总价数字也不全,只能认出:□11.4□元(□表示不明数字)。
你能帮助小马虎找出不明数字吗?1. 解:能被63整除,因为63=7×9,所以既能被9整除,又能被7整除。
各位数字都是7,显然能被7整除,所以只需要满足被9整除即可。
(完整版)小学希望杯全国数学邀请赛六年级第二试附答案

学习奥数的重要性1. 学习奥数是一种很好的思维训练。
奥数包含了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等二十几种思维方式。
通过学习奥数,可以帮助孩子开拓思路,提高思维能力,进而有效提高分析问题和解决问题的能力,与此同时,智商水平也会得以相应的提高。
2. 学习奥数能提高逻辑思维能力。
奥数是不同于且高于普通数学的数学内容,求解奥数题,大多没有现成的公式可套,但有规律可循,讲究的是个“巧”字;不经过分析判断、逻辑推理乃至“抽丝剥茧”,是完成不了奥数题的。
所以,学习奥数对提高孩子的逻辑推理和抽象思维能力大有帮助3. 为中学学好数理化打下基础。
等到孩子上了中学,课程难度加大,特别是数理化是三门很重要的课程。
如果孩子在小学阶段通过学习奥数让他的思维能力得以提高,那么对他学好数理化帮助很大。
小学奥数学得好的孩子对中学阶段那点数理化大都能轻松对付。
4. 学习奥数对孩子的意志品质是一种锻炼。
大部分孩子刚学奥数时都是兴趣盎然、信心百倍,但随着课程的深入,难度也相应加大,这个时候是最能考验人的:少部分孩子凭着天分,凭着在困难面前的百折不挠和愈挫愈坚的毅力,坚持了下来、学了进去、收到了成效;一部分孩子在家长的“威逼利诱”之下,硬着头皮熬了下来;不少孩子更是或因天资不足、或惧怕困难、或受不了这份苦、再或是其它原因而在中途打了退堂鼓。
我以为,只要能坚持学下来,不论最后取得什么样的结果,都会有所收获的,特别是对孩子的意志力是一次很好的锻炼,这对他今后的学习和生活都大有益处。
第八届小学“希望杯”全国数学邀请赛六年级第2试一、填空题(每小题5分,共60分)1.330.24 5.41.35⨯⨯=。
2.已知111116A116B16CC-=+++++,其中A、B、C都是大于0但互不相同的自然数,则(A+B)÷C=。
3.有一类自然数,从左边第三位开始,每个数位上的数字都是它左边两个数位上数字之和,如21347,则这类自然数中,最大的奇数是。
第六“希望杯”全国数学邀请赛 六年级第2试

数学竞赛第六届“希望杯”全国数学邀请赛六年级第2试一、填空题(每小题5分,共60分)1.(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)=__________2.若甲数是乙数的23,乙数是丙数的45,那么甲、乙、丙三数的比是。
3.若一个长方形的宽减少20%,而面积不变,则长应当增加百分之。
4.已知三位数abc与它的反序数cba的和等于888,这样的三位数有个。
5.节日期间,小明将6个彩灯排成一列,其中有2个红灯,4个绿灯如果两个红灯不相邻,则不同的排法有。
(其中“红绿红绿绿绿”与“绿绿绿红绿红”类型的算作一种)6.某小学的六年级有一百多名学生。
若按三人一行排队,则多出一人;若按五人一行排队,则多出二人;若按七人一行排队,则多出一人。
该年级的人数是。
7.如图1,棱长分别为1厘米,2厘米,3厘米,5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是平方厘米。
8.甲、乙、丙三个生产一批玩具,甲生产的个数是乙、丙两个生产个数之和的12,乙生产的个数是甲、丙两人生产个数之和的13,丙生产了50个。
这批玩具共有个。
9.有一个不等于零的自然数,它的12是一个立方数,它的13是一个平方数,则这个数最小是。
10.在如图2所示的九宫图中,不同的汉字代表不同的数,每行,每列和两条对角线上各数的和相等。
已知中=21,学=9,欢=12,则希、望、杯的和是。
11.如图3,三角形ABC和三角形DEC都是等腰直角三角形,A和E是直角等点,阴影部分是正方形。
如果三角形DEC的面积是24平方米,那么三角形ABC的面积是平方米。
12.A、B两地相距950米。
甲、乙两人同时由A地出发往返锻炼半小时。
甲步行,每分钟走40米;乙跑步,每分钟行150米。
则甲、乙二人第次迎面相遇时距B地最近。
二、解答题(本大题共4小题,每小题15分,共60分)要求:写出过程13.有一片草场,草每天的生长速度相同。
希望杯复赛六年级试题+答案

希望杯复赛六年级试题+答案希望杯复赛六年级试题+答案第十三届小学六年级“希望杯”全国数学邀请赛第2试试题一、填空题(每小题5分,共60分.)11 1 21 2 3 11 2 3 4 101. 计算:,得__________.2. 某商品单价先上调后,再下降20%才能降回原价.该商品单价上调了__________%.3. 请你想好一个数,将它加5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是__________.4. 八进制数12345654321转化为十进数是N,那么在十进制中,N÷7与N÷9的余数的和为__________.5. 小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有__________页.6. 2015在N进制下是AABB形式的四位数,这里A,B是N进制下的不同数码,则N的值是__________.7. 方程 x x x 2 x 10的所有解的和是__________(其中 x 表示不超过x的最大整数, x 表示x的小数部分).8. 如图1,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,则第4个角上的小长方形的面积等于__________.9. 一个魔法钟,一圈有12个大格,每个大格有3个小格,时针每魔法时走一个大格,分针每魔法分走1个小格,每魔法时走两圈.那么,从时针与分针成90角开始到时针和分针第一次重合,经过了__________魔法分.10. 将1至2015这2015个自然数依次写出,得到一个多位数123456789 20142015,这个多位数除以9,余数是__________.111. 如图2,向装有水的圆柱形容器中放入三个半径都是1分米的`小球,此时水面没过小球,3且水面上升到容器高度的2处,则圆柱形容器最多可以装水5__________立方分米.(取3.14)112. 王老师开车从家出发去A地,去时,前的路程以50千米/小时的速21度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,3余下的路程行驶速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距__________千米.内容需要下载文档才能查看内容需要下载文档才能查看二、解答题(每小题15分,共60分.)每题都要写出推算过程.13. 二进制是计算技术中广泛采用的一种数制,其中二进制数转换成十进制数的方法如下:; (101) 1 22 0 21 1 20 (5)21043210; (11011) 1 2 1 2 0 2 1 2 1 2 (27)2106543210; (1110111) 1 2 1 2 1 2 0 2 1 2 1 2 1 2 (119)210(111101111) 1 28 1 27 1 26 1 25 0 24 1 23 1 22 1 21 1 20 (495)210那么,将二进制数11111011111转化为十进制数,是多少?(注:2n 2 2n 2 2,20 1)14. 已知寒假一共有29天,小明10天可以完成寒假作业.小明每天可以选择做作业或者不做作业.如果小明在寒假作业完成之前就连续3天不做作业,或者寒假没完成作业,爸爸就会惩罚他.那么小明在不被爸爸惩罚的情况下有多少种度过寒假的安排方式?15. 一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的体的个数.16. 点M、N分别是边长为4米的正方形ABCD的一组对边AD、BC的中点,P、Q两个动点同时从M出发,P沿正方形的边逆时针方向运动,速度是1米/秒;Q沿正方形的边顺时针方向运动,速度是2米/秒.求:(1)第1秒时△NPQ的面积;(2)第15秒时△NPQ的面积;(3)第2015时△NPQ的面积.。
第6届希望杯六年级2试详解

第六届小学“希望杯’,全国数学邀请赛, _ 六年级 第2试一、填空题(每,J 、题5分,共60分。
)1.(10.120.23)(0.120.230.34)(10.120.230.34)(0.120.23)++⨯++-+++⨯+=______。
2.若甲数是乙数的32,乙数是丙数的54,那么甲、乙、丙三数的比是_____。
3.若一个长方形的宽减少20%,而面积不变,则长应当增加百分之______。
4.已知三位数abc 与它的反序数cba 的和等于888,这样的三位数有______个。
5.节日期间,小明将6个彩灯排成一列,其中有2个红灯,4个绿灯。
如果两个红灯不相邻,贝 不同的排法有____种(其中“红绿红绿绿绿”与“绿绿绿红绿红”类型的算作一种)。
6.某小学的六年级有一百多名学生。
若按三人一行排队,则多出一人若按五人一行排队,则多出二人;若按七人一行排队,则多出一人。
该年级的人数是______。
7.如图1,棱长分别为l 厘米、2厘米、3厘米、5厘米的四个正方体紧贴在一起。
则所得到的多面体的表面积是______平方厘米。
8.甲、乙、丙三人生产一批玩具,甲生产的个数是乙、丙两人生产个数之和的21,乙生产的个数 是甲、丙两人生产个数之和的31。
丙生产了50个。
这批玩具共有______个。
9.有一个不等于0的自然数,它的21是一个立方数,它的31是一个平方数,则这个数最 小是______。
10.在如图2所示的九官图中,不同的汉字代表不同的数,每行、每列和两条对角线上各数的和相等。
已知中=21,学=9,欢=12,则希,望,杯的和是______。
11.如图 3,三角形ABC 和三角形DEC 都是等腰直角三角形,A 和E 是直角顶点,阴影部分是正方形.。
如果三角形DEC 的面积是24平方米,那么三角形ABC 的面积是______平方米。
12.A 、B 两地相距950米。
甲、乙两人同时由A 地出发往返锻炼半小时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六届小学“希望杯”全国数学邀请赛六年级第2试
一、填空题(每小题5
分,共60分)
1.(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)=
2.若甲数是乙数的2
3
,乙数是丙数的
4
5
,那么甲、乙、丙三数的比是 .
3.若一个长方形的宽减少20%,而面积不变,则长应当增加百分之 .
4.已知三位数abc与它的反序数cba的和等于888,这样的三位数有个.
5.节日期间,小明将6个彩灯排成一列,其中有2个红灯,4个绿灯如果两个红灯不相邻,则不同的排法
有 .(其中“红绿红绿绿绿”与“绿绿绿红绿红”类型的算作一种)
6.某小学的六年级有一百多名学生.若按三人一行排队,则多出一人;若按五人一行排队,则多出二人;若按七人一行排队,则多出一人.该年级的人数是 .
7.如图1,棱长分别为1厘米,2厘米,3厘米,5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是平方厘米.
8.甲、乙、丙三个生产一批玩具,甲生产的个数是乙、丙两个生产个数之和的1
2
,乙生产的个数是甲、丙两
人生产个数之和的1
3
,丙生产了50个.这批玩具共有个.。