模糊最大数聚类法

合集下载

模糊聚类分析

模糊聚类分析

模糊聚类分析是一种数学方法,它使用模糊数学语言根据某些要求对事物进行描述和分类。

模糊聚类分析通常是指根据研究对象的属性构造模糊矩阵,并在此基础上根据一定隶属度确定聚类关系,即样本之间的模糊关系由样本的数量来确定。

模糊数学方法,以客观,准确地聚类。

聚类是将数据集划分为多个类或群集,以便每个类之间的数据差异应尽可能大,并且该类内的数据差异应尽可能小基本覆盖当涉及事物之间的模糊边界时,模糊聚类分析是一种根据某些要求对事物进行分类的数学方法。

聚类分析是数学统计中的一种多元分析方法是利用数学方法定量确定样品之间的关系,从而客观地分类类型。

事物之间的某些界限是精确的,而其他界限则是模糊的。

人群中人脸的相似度之间的界限是模糊的,多云和晴天之间的界限也是模糊的。

当聚类涉及事物之间的模糊界限时,应使用模糊聚类分析方法。

模糊聚类分析广泛应用于气象预报,地质,农业,林业等领域。

通常,聚类的事物称为样本,一组事物称为样本集。

模糊聚类分析有两种基本方法:系统聚类和逐步聚类。

基本方法基本流程(1)通过计算样本或变量之间的相似系数,建立模糊相似矩阵;(2)通过对模糊矩阵进行一系列综合变换,生成模糊等效矩阵。

(3)最后,根据不同的截获水平λ对模糊等效矩阵进行分类系统聚类方法系统聚类方法是一种基于模糊等价关系的模糊聚类分析方法。

在经典聚类分析方法中,经典等价关系可用于对样本集X进行聚类。

令R为X上的经典等价关系。

对于X中的两个元素x和Y,如果XRY或(x,y)∈R ,然后x和y,否则X和y不属于同一类。

[3]使用这种方法,分类的结果与α的值有关。

α的值越大,划分的类别越多。

当α小于某个值时,X中的所有样本将被归为一类。

该方法的优点是可以根据实际需要选择α值,以获得正确的分类。

系统聚类的步骤如下:①用数字描述样品的特性。

设要聚类的样本为x = {x1,xn}。

每个样本具有p个特征,记录为Xi =(Xi1,xip);i = 1,2,…,N;XIP是描述样本Xi的第p个特征的编号。

模糊聚类

模糊聚类

9
基于模糊关系(矩阵)的方法
聚类分析: 模糊聚类分析: 问题描述:
X { x1 , x2 , , xn }是待分类事物集 , C1 , C 2 , , C m是 分类所依据的 m 个指标,其中 xi 所对应的指标为 ( xi1 , xi 2 , , xim ).
雷鸣.模糊聚类新算法的研究[D]. 天津大学.2006
陈东辉.基于目标函数的模糊聚类算法关键技术研究[D]. 西安电子科技大学.2012
18
FCM算法

目标函数:带约束的非线性函数
d(xk,vi)表示第i个聚类中心与第k个数据点间的距离度量。 vi表示第i个聚类中心,称为聚类原型向量。 m是模糊因子用来决定聚类结果模糊度的权重指数,其 经验值范围为1.5≤m ≤2.5。 该算法的约束条件:
画出动态聚类图。
16
基于模糊关系(矩阵)的模糊聚类分析法的特点
1. 传递闭包法、直接聚类法,尽管在形式上不相同,但 其聚类原则不外乎是,ui与uj在λ水平上归为一类,即 元素ui 与uj 具有等价关系R的程度不小于λ。因此,对 于同一问题,这些方法聚类结果是相同的。 2. 传递闭包法适合于计算机操作,直接聚类法当矩阵阶 数小时,容易手工实现。但是,基于模糊关系的模糊 聚类法不适用于大数据量情况,难以满足实时要求高 的场合,并且计算复杂度较高。

模糊矩阵
模糊矩阵间的关系及并、交、余运算
设R = (rij)m×n,若0≤rij≤1,则称R为模糊矩阵。 当rij只取0或1时,称R为布尔(Boole)矩阵。
பைடு நூலகம்
设A=(aij)m×n,B=(bij)m×n都是模糊矩阵,定义 相等:A = B aij = bij; 包含:A≤B aij≤bij; 并:A∪B = (aij∨bij)m×n; 交:A∩B = (aij∧bij)m×n; 余:Ac = (1- aij)m×n.

模糊聚类法

模糊聚类法

第二节模糊聚类分析方法模糊聚类分析,是从模糊集的观点来探讨事物的数量分类的一类方法。

近年来,模糊聚类分析方法在地理分区与地理事物分类研究中得到了广泛地应用。

本节,我们将主要介绍基于模糊等价关系与基于最大模糊支撑树的模糊聚类分析方法在地理分区和地理事物分类中的应用。

一、基于模糊等价关系的模糊聚类分析方法基于模糊等价关系的模糊聚类分析方法的基本思想是:由于模糊等价关上的一个普通等价关系,也就得到了关于U中被分类对象元素的一种分类。

当λ由1下降到0时,所得的分类由细变粗,逐渐归并,从而形成一个动态聚类分析方法中的一个关键性的环节。

(一)建立模糊等价关系各个分类对象之间的相似性统计量,建立分类对象集合U上的模糊相似关系1.模糊相似关系的建立关于各分类对象之间相似性统计量r ij的计算,除了采用夹角余弦公式和相似系数计算公式(分别见第二章第三节中(10)和(11)式)以外,还可以采用如下几个计算公式。

(1)数量积法:在(1)式中,M是一个适当选择之正数,一般而言,它应满足:(2)绝对值差数法:在(2)式中,c为适当选择之正数,使0≤r ij<1(i≠j)。

(3)最大最小值法:(4)算术平均最小法:(5)绝对值指数法:(6)指数相似系数法:在(6)式中,s k是第k个指标的方差,即传递性,也就是说它并不是模糊等价关系。

因此,为了聚类,我们必须采用这样下去,就必然会存在一个自然数K,使得:显然,对于第二章中表2-12所描述的九个农业区域,用夹角余弦公式计算所得的相似系数矩阵就是这九个农业区域所构成的分类对象集合上的一个模糊相似关系,经过自乘计算后可以验证:■R=R4R4=R4(二)在不同的截集水平下进行聚类结果:(1)取λ=1,得:各自成为一类。

(2)取λ=0.99,得:G6,G7归并为一类,而G1,G2,G3,G4,G8,G9各自成为一类。

(3)取λ=0.95,得:行与第3行和其它各行均不相同,故G2与G8聚为一类,G4与G9聚为一类,G5、G6、G7聚为一类,而G1和G3各自成为一类。

模糊聚类算法(FCM)

模糊聚类算法(FCM)

模糊聚类算法(FCM)伴随着模糊集理论的形成、发展和深化,RusPini率先提出模糊划分的概念。

以此为起点和基础,模糊聚类理论和⽅法迅速蓬勃发展起来。

针对不同的应⽤,⼈们提出了很多模糊聚类算法,⽐较典型的有基于相似性关系和模糊关系的⽅法、基于模糊等价关系的传递闭包⽅法、基于模糊图论的最⼤⽀撑树⽅法,以及基于数据集的凸分解、动态规划和难以辨别关系等⽅法。

然⽽,上述⽅法均不能适⽤于⼤数据量的情况,难以满⾜实时性要求较⾼的场合,因此实际应⽤并不⼴泛。

模糊聚类分析按照聚类过程的不同⼤致可以分为三⼤类:(1)基于模糊关系的分类法:其中包括谱系聚类算法(⼜称系统聚类法)、基于等价关系的聚类算法、基于相似关系的聚类算法和图论聚类算法等等。

它是研究⽐较早的⼀种⽅法,但是由于它不能适⽤于⼤数据量的情况,所以在实际中的应⽤并不⼴泛。

(2)基于⽬标函数的模糊聚类算法:该⽅法把聚类分析归结成⼀个带约束的⾮线性规划问题,通过优化求解获得数据集的最优模糊划分和聚类。

该⽅法设计简单、解决问题的范围⼴,还可以转化为优化问题⽽借助经典数学的⾮线性规划理论求解,并易于计算机实现。

因此,随着计算机的应⽤和发展,基于⽬标函数的模糊聚类算法成为新的研究热点。

(3)基于神经⽹络的模糊聚类算法:它是兴起⽐较晚的⼀种算法,主要是采⽤竞争学习算法来指导⽹络的聚类过程。

在介绍算法之前,先介绍下模糊集合的知识。

HCM聚类算法⾸先说明⾪属度函数的概念。

⾪属度函数是表⽰⼀个对象x ⾪属于集合A 的程度的函数,通常记做µA(x),其⾃变量范围是所有可能属于集合A 的对象(即集合A 所在空间中的所有点),取值范围是[0,1],即0<=µA(x),µA(x)<=1。

µA(x)=1 表⽰x 完全⾪属于集合A,相当于传统集合概念上的x∈A。

⼀个定义在空间X={x}上的⾪属度函数就定义了⼀个模糊集合A,或者叫定义在论域X={x}上的模糊⼦集A’。

模糊数学ppt课件

模糊数学ppt课件

1 2
,则有rij'
பைடு நூலகம்[0,1]
。也可以
用平移—极差变换将其压缩到[0,1]上,从而得到模糊相似矩阵
R (rij )nm
(2)绝对值指数法. 令
m
rij exp{ xik x jk }(i, j 1, 2, , n) k 1
则 R (rij )nm
(3)海明距离法. 令
rij
1
d (xi , x j )
(6)主观评分法:设有N个专家组成专家组,让每一位专家对
所研究的对象 x i 与 x j 相似程度给出评价,并对自己的自信度
作出评估。如果第k位专家 Pk 关于对象 x i与 x j 的相似度评价
为 rij (k ),对自己的自信度评估为aij (k ) (i, j 1,2,, n),则相关 系数定义为
)2
(i, j 1,2,, n)
其中E为使得所有 rij [0,1](i, j 1, 2, , n) 的确定常数.则 R (rij )nm
(5)切比雪夫距离法. 令
rij
d (xi ,
1 xj)
Q
d
m
k 1
( xi xik
,
x
j ), x jk
(i, j 1,2,, n)
其中Q为使所有 rij [0,1](i, j 1, 2, , n) 的确定常数.则 R (rij )nm
第三步. 聚类 所谓模糊聚类方法是根据模糊等价矩阵将所研究的对象进
行分类的方法。对于不同的置信水平 [0,1] ,可以得到不同 的分类结果,从而形成动态聚类图。 (一)传递闭包法
通常所建立的模糊矩阵R 只是一个模糊相似矩阵,即R 不 一定是模糊等价矩阵。为此,首先需要由R 来构造一个模糊等

基于模糊的聚类算法

基于模糊的聚类算法

基于模糊的聚类算法
基于模糊的聚类算法,是一种将数据对象分组的方法,其目的是使得
同一组内的对象相似度较高,不同组之间的相似度较低。

与传统聚类
算法不同的是,基于模糊的聚类算法允许一个数据对象属于多个不同
的组别。

基于模糊的聚类算法主要有两种:Fuzzy C-Means (FCM) 和Possibilistic C-Means (PCM)。

FCM 算法是一种常用且经典的基于模糊聚类算法,它通过对每个数据点分配一个隶属度来确定其所属群体。

隶属度越高,则该数据点越可能属于该群体。

PCM 算法则是 FCM 算
法的改进版,它通过引入不确定性因素来减少分类错误率。

基于模糊的聚类算法在实际应用中具有广泛的应用价值。

例如在图像
分割、文本分类、生物信息学等领域都有着重要作用。

在图像分割中,可以使用基于模糊的聚类算法将图像中相似区域进行分割,并进行后
续处理;在文本分类中,可以使用该算法将文本进行分类,并进行相
关统计和分析;在生物信息学中,可以使用该算法将基因进行分类,
以便更好地研究其生物功能。

总之,基于模糊的聚类算法是一种非常有效的数据分析方法,可以帮
助我们对大量的数据进行分类和分析。

随着人工智能技术的不断发展,该算法在未来的应用前景也将会越来越广泛。

模糊聚类法

模糊聚类法

模糊聚类分析法及其应用(汽车学院钟锐2011122071)摘要模糊聚类分析方法是一种多元统计分析方法, 它通过多个指标将样本划分为若干类, 这种分类方法能很好地应用于交通规划、交通流分析、安全评价等多个方面。

文章以交通调查的选择为例说明了模糊聚类分析在规划过程中的具体应用, 并分析了模糊聚类分析在交通规划其他方面的应用。

在交通调查中, 可利用模糊聚类分析将交通分区按工业、居住、公建、道路绿化广场等各项用途来进行分类。

可相应减少同类交通分区的相似调查工作量。

关键词模糊聚类分析; 交通规划; 交通调查1 问题的提出交通规划旨在确定公路和城市道路交通建设的发展目标, 设计达到这些目标的策略、过程与方案。

交通规划包括目标确定、组织工作、数据调查、相关基本模型分析、分析预测、方案设计、方案评价、方案实施过程中的信息反馈和修改等工作阶段。

在交通规划的很多阶段, 需要进行分类。

例如可将众多的交通小区划分成几大类, 将具有相似特性的交通小区归于一类, 可以减少调查的工作量; 对线路网络进行分析评价时, 也需要进行分类。

单一的指标往往不能全面反映交通分区之间的关系, 需要用多个指标来进行。

在分类方法中, 聚类分析是一种应用很广泛的方法, 它在交通规划领域应用较多。

2 聚类分析方法聚类分析取意于“人以群分, 物以类聚”的俗语, 即将一组事物根据其性质上亲疏远近的程度进行分类, 把性质相近的个体归为一类, 使得同一类中的个体具有高度的同质性, 不同类之间的个体具有高度的异质性。

为使分类合理, 必须描述个体之间的亲疏程度。

对此, 通常有距离法、相关系数法等方法。

距离法是将每个样本看成m( m为统计指标的个数)维空间的一个点,在m维空间中定义点与点之间的某种距离; 相关系数法是用某种相似系数来描述样本之间的关系, 如相关系数。

聚类的方法有很多, 如系统聚类法、模糊聚类法、分裂法、动态聚类法、有序样品的聚类、爬山法、加入法、最优分段法、图论法、预报法、 变量筛选法等,模糊聚类法是应用较为广泛的一种方法。

模糊聚类案例分析(DOC)

模糊聚类案例分析(DOC)

模糊数学方法及其应用论文题目:模糊聚类方法案例分析小组成员:王季光宋申辉兰洁陈倩芸肖仑杨洋吴云峰2013年10 月27 日模糊聚类分析方法1.1距离和相似系数为了将样品(或指标)进行分类,就需要研究样品之间关系。

目前用得最多的方法有两个:一种方法是用相似系数,性质越接近的样品,它们的相似系数的绝对值越接近1,而彼此无关的样品,它们的相似系数的绝对值越接近于零。

比较相似的样品归为一类,不怎么相似的样品归为不同的类。

另一种方法是将一个样品看作P 维空间的一个点,并在空间定义距离,距离越近的点归为一类,距离较远的点归为不同的类。

但相似系数和距离有各种各样的定义,而这些定义与变量的类型关系极大,因此先介绍变量的类型。

由于实际问题中,遇到的指标有的是定量的(如长度、重量等),有的是定性的(如性别、职业等),因此将变量(指标)的类型按以下三种尺度划分: 间隔尺度:变量是用连续的量来表示的,如长度、重量、压力、速度等等。

在间隔尺度中,如果存在绝对零点,又称比例尺度,本书并不严格区分比例尺度和间隔尺度。

有序尺度:变量度量时没有明确的数量表示,而是划分一些等级,等级之间有次序关系,如某产品分上、中、下三等,此三等有次序关系,但没有数量表示。

名义尺度:变量度量时、既没有数量表示,也没有次序关系,如某物体有红、黄、白三种颜色,又如医学化验中的阴性与阳性,市场供求中的“产”和“销”等。

不同类型的变量,在定义距离和相似系数时,其方法有很大差异,使用时必须注意。

研究比较多的是间隔尺度,因此本章主要给出间隔尺度的距离和相似系数的定义。

设有n 个样品,每个样品测得p 项指标(变量),原始资料阵为px x x np n n p p nx x x x x x x x x X X X X 2122221112112121 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=其中(1,,;1,,)ij x i n j p ==为第i 个样品的第j 个指标的观测数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
例题
有三个家庭,每家的成员为4~ 7人,其中有 一家有一个客人。取每人的照片一张放在一 起,共16张,由和这三家人素不相识的中学 生对照片两两进行比较,按相貌相似程度打 分,得到16张照片的“ 相似” 模糊关系矩阵。
11
12
13
14
15
7
几何平均最小法
8
最大树法
以模糊图为基础图,生成最大树。 从某一个定点出发,按μ从大到小的顺序依次 画边,要求不产生回路(即圈),直到所有 顶点都连通为止。构造的一个特殊的图,称 为最大树。
9
设阈值α,将μ<α的枝砍掉,就可以得到一个 聚类结果。
聚类结果:w1: {1,2,3,5}; w2: {4}
模糊聚类分析:现实的分类问题往往伴有许多模
糊性这就需要借助模糊数学的手段和方法来描述和处 理分类中的大量模糊性,从而就形成了模糊聚类分析 方法。也就是说,通过建立事物间模糊相似关系对事 物进行分类的方法,就称为模糊聚类分析。
3
模糊聚类分析
模糊聚类分析步骤: 1、设论域(订定样本); 2、定模糊关系矩阵。(求相似关系矩阵,其 应符合自反性及对称性) 3、求模糊等价关系矩阵。(即自乘得传递闭 包,直到R2k = Rk为止,则便是一个模糊 等价关系矩阵) 4、求 Rλ并进行聚类。(0 < λ ≦ 1) 5、绘制动态聚类图。
4
模糊相似关系建立方法
相关系数法
rij =
å
m k= 1
m
| x ik - x i | | x jk - x j |
ik
k= 1
邋(x
- xi )
2
m
(x jk - x j )
k= 1
m
2
其中
1 xi = m
1 x ik , x j = 邋 m k= 1
m
x jk .
k= 1
5
最大最小值法
6
算术平均最小法
模糊最大树聚类法
Agenda
1 2 3 知识回顾 最大树法的介绍 最大树法的应用
2
模糊聚类分析的相关概念
分类:分类是指对事物按要求分成若干类。通俗的
讲就是将我们研究的谓聚类分析就是对所研究的事物按一
定标准(相似程度或亲疏关系)进行分类的数学方法, 它是多元统计中研究“ 物以累聚”的一种多元分析方 法。
相关文档
最新文档