7-几种波导--金属薄膜波导及应用

合集下载

光波导的分类

光波导的分类

光波导的分类
1. 平面光波导呀,就好比是一条宽敞笔直的大道,各种光信息能在上面稳稳地传输。

比如说我们手机屏幕的显示,不就是平面光波导在默默发挥作用嘛!
2. 条形光波导呢,就像一条有着特定路线的轨道,让光沿着它精准前进。

像那些光纤通信里,可不就经常用到条形光波导嘛!
3. 圆柱光波导好像一个神奇的光通道,把光环绕着引导。

你想想看,那些特殊的光传感器里不就有它的身影吗?
4. 梯度折射率光波导挺有意思的,就如同给光设置了一个奇妙的魔法场。

在一些复杂的光学系统里,它可是大显身手呢!
5. 布拉格光波导呀,就像是给光安上了一把锁,控制着光的进出。

这不,在很多光学器件的制造中可少不了它!
6. 光子晶体光波导就像是给光打造了一个梦幻的宫殿,让光在这里自由穿梭又有规矩。

很多高科技的光学实验里都会用到它哦!
7. 纳米光波导那可是超级精细的存在,像微小世界里的引路人。

在纳米级的光学应用中,它的作用可关键啦!
8. 聚合物光波导呢,就像是一块有魔力的塑料,却能很好地引导光。

一些轻便的光学设备里,就经常能看到它的贡献呀!
我觉得光波导的这些分类真是各有各的神奇和用处,共同推动着光学领域的发展呀!。

波导中微波的模式

波导中微波的模式

波导中微波的模式波导是一种用来传输微波信号的导波结构,由金属壁面构成,中间空腔内充满介质。

在波导中,微波信号通过内部的反射而传播,产生各种模式。

不同模式具有不同的传播特性和分布特点,对于波导设计和应用都非常重要。

本文将介绍波导中常见的几种微波模式。

1.矩形波导模式:矩形波导是最常见的一种波导类型,由金属矩形管道组成。

在矩形波导中,有许多不同的模式,包括正交模式(TE模式)和纵向模式(TM模式)。

(1)TE模式:TE模式是横向电场模式,在矩形波导中,电场垂直于波导的横截面方向。

TE模式的特点是不含有磁场分量,只有电场分量。

TE模式分为TE10,TE20,TE01等不同的阶次。

(2)TM模式:TM模式是纵向磁场模式,在矩形波导中,磁场沿波导的横截面方向。

TM模式的特点是不含有电场分量,只有磁场分量。

TM模式也分为TM10,TM20,TM01等不同的阶次。

矩形波导模式的分布特点是波束在波导内壁上反射,形成驻波模式。

TE和TM模式可以共存,交替出现。

2.圆形波导模式:圆形波导是由金属圆管构成的波导结构。

圆形波导模式与矩形波导模式类似,也有TE模式和TM模式,但其阶次的确定方式略有不同。

(1)TE模式:TE模式是横向电场模式,电场沿着圆柱壁面方向。

TE 模式中的波动电场与壁面垂直,并且没有磁场分量。

(2)TM模式:TM模式是纵向磁场模式,磁场沿着圆柱壁面方向。

TM 模式中的波动磁场与壁面垂直,并且没有电场分量。

与矩形波导不同的是,圆形波导模式的阶次由径向模式数目(m)和角向模式数目(n)两个参数共同确定。

例如,TE11模式表示径向和角向模式都为13.表面波模式:除了矩形和圆形波导模式外,波导中还存在一种特殊的模式,称为表面波模式。

表面波模式是指波在波导壁面上沿着壁面传播的模式,不进一步传播到波导的深处。

表面波模式包括射线波、栅波和电磁波导模式。

射线波模式是指波束沿着表面传播,而不发散或收敛;栅波模式是指波束被壁面上的栅格结构所限制;电磁波导模式是指在电磁波导中,电磁波束是由电和磁场的耦合形成的。

波导相关知识(最全)

波导相关知识(最全)

波导相关知识(最全)一、什么是波导以及它的参数有哪些波导通常指的各种形状的空心金属波导管和表面波波导,由于前者传输的电磁波完全被限制在金属管内,称封闭波导;而后者引导的电磁波则被约束在波导结构的周围,又称开波导。

被应用于微波频率的传输线,在微波炉、雷达、通讯卫星和微波无线电链路设备中用来将微波发送器和接收机与它们的天线连接起来。

因为波导是指它的端点间传递电磁波的任何线性结构。

所以波导中可能存在无限多种电磁场的结构或分布,每个电磁场的波型与对应的传播速度肯定也不一样。

会涉及到色散、传播时的损耗以及波导界面分布和它的特性阻抗。

接下来我们就从这四点去分析它的参数。

色散特性:色散特性表示波导纵向传播常数与频率的关系,常用平面上的曲线表示。

损耗:损耗是限制波导远距离传输电磁波的主要因素。

场分布:满足波导横截面边界条件的一种可能的场分布称为波导的模式,不同的模式有不同的场结构,它们都满足波导横截面的边界条件,可以独立存在。

它的两大类:电场没有纵向分量和磁场没有纵向分量。

特征阻抗:特征阻抗与传播常数有关。

在幅值上反映波导横向电场与横向磁场之比。

当不同波导连接时,特征阻抗越接近,连接处的反射越小,是量度波导连接处对电磁能反射大小的一个很有用的参量。

二、软波导与硬波导区别软波导是微波设备和馈线间起缓冲作用的传输线。

软波导内壁呈波纹结构,具有很好的柔软性,能承受复杂的弯曲、拉伸和压缩,因而被广泛用于微波设备和馈线之间的连接。

软波导的电气特性主要包括频率范围、驻波、衰减、平均功率、脉冲功率;物理机械性能主要包括弯曲半径、反复弯曲半径、波纹周期、伸缩性、充气压力、工作温度等。

下面我们来交接下软波导区别于硬波导哪些地方。

1)法兰:在许多安装和测试实验室应用中,往往很难找到具有完全合适的法兰、朝向,且设计**的硬波导结构,如通过定制,则需要等待数周至数月的交付期。

在设计、维修或更换部件等情形下,如此之长的交期必将引起不便。

简述金属圆形波导的三个常用模式及应用场合

简述金属圆形波导的三个常用模式及应用场合

简述金属圆形波导的三个常用模式及应用场合金属圆形波导是一种常用的电磁波导形式,具有良好的电磁屏蔽和传输性能,适用于高频和微波领域。

它的三个常用模式分别是TE模式、TM模式和TEM模式。

下面将对这三个模式及其应用场合进行详细介绍。

1.TE模式(横电模式)TE模式是金属圆形波导中最常见的模式之一,它是指在横向电场分量存在的情况下,在轴向磁场分量为零的模式。

在TE模式中,横向电场分量(Eθ)存在,而轴向磁场分量(Hz)为零。

TE模式可以分为多个模态,例如TE01模式、TE11模式等,不同的模式对应着不同的场分布形式和工作频率。

TE模式的应用场合主要涉及到高频电磁场的传输和射频电路的设计。

例如在微波、雷达和通信系统中,TE模式的波导可用于传输和导引高频信号。

此外,TE模式的波导还可以用于滤波器、功分器、变压器等高频电路中,其良好的传输特性为这些器件的高效工作提供了良好的支持。

2.TM模式(横磁模式)TM模式是金属圆形波导中另一个常见的模式,它是指在轴向磁场分量存在的情况下,在横向电场分量为零的模式。

在TM模式中,轴向磁场分量(Hz)存在,而横向电场分量(Eθ)为零。

TM模式也可以分为多个模态,如TM01模式、TM11模式等。

TM模式的应用场合主要涉及到微波感应加热、微波炉等高功率微波器件。

在这些设备中,TM模式的波导具有较好的电磁屏蔽性能,可以有效防止电磁波的泄漏和传输损耗,同时还能够集中能量,提高功率传输效率。

此外,TM模式的波导还可以用于高频振荡器、非线性器件等微波电子器件中,为它们的正常工作提供必要的电磁环境。

3.TEM模式(传输线模式)TEM模式是金属圆形波导中最特殊的模式,它是指在横向电场和轴向磁场同时存在的情况下,在波导内部电场和磁场都沿着波导轴向分布的模式。

在TEM模式中,横向电场和轴向磁场同时存在,并且它们的分布形式满足麦克斯韦方程组的解。

TEM模式的应用场合主要是短距离的高频信号传输和微波电路连接。

电磁场与电磁波-- 规则金属波导讲解

电磁场与电磁波-- 规则金属波导讲解

第4章 规则金属波导微波传输线是用来传输微波信号和微波能量的传输线。

微波传输线的种类很多,比较常用的有平行双线、矩形波导、圆波导、同轴线、带状线和微带线等。

导波系统中的电磁波按纵向场分量的有无,可分为以下三种波型(或模):(1) 横磁波(TM 波),又称电波(E 波):0,0≠=z z E H (2) 横电波(TE 波),又称磁波(H 波):0,0≠=z z H E (3) 横电磁波(TEM 波):0,0==z z H E其中横电磁波只存在于多导体系统中,而横磁波和横电波一般存在于单导体系统中,它们是色散波。

4-1电磁场理论基础一、导波概念: 1、思想(1) 导波思想:(2) 广义传输线思想:(3)本征模思想2、方法:波导应该采用具体措施(1)坐标匹配(2)分离变量法(3)边界确定常数二、导行波的概念及一般传输特性1、导行波的概念1)导行系统:用以约束或引导电磁波能量定向传输的结构。

其主要功能有二:(1)无辐射损耗地引导电磁波沿其轴向行进而将能量从一处传输至另一处,称这为馈线;(2)设计构成各种微波电路元件,如滤波器、阻抗变换器、定向耦合器等。

导行系统分类:按其上的导行波分为三类:(1)TEM或准TEM传输线,(2)封闭金属波导,(3)表面波波导(或称开波导)。

如书上图1.4-12)规则导行系统:无限长的笔直导行系统,其截面形状和尺寸,媒质分布情况,结构材料及边界条件沿轴向均不变化。

3)导行波的概念能量的全部或绝大部分受导行系统的导体或介质的边界约束,在有限横截面内沿确定方向(一般为轴向)传输的电磁波。

简单地说就是沿导行系统定向传输的电磁场波,简称为“导波”。

由传输线所引导的,能沿一定方向传播的电磁波称为“导行波”。

导行波的电场E 或磁场H 都是x 、y 、z 三个方向的函数。

导行波可分成以下三种类型:(1)横电磁波(TEM 波):(Transverse Electronic and magnetic Wave )各种传输线使电磁能量约束或限制在导体之间空间沿其轴向传播,其导行波是横电磁(TEM )波或准TEM 波。

第八章 金属波导

第八章 金属波导

TE30
TE11 ,TM11 TE01 TE20
单模区(Ⅱ): a < < 2a 多模区(Ⅲ): < a
TE10
2b a

2a
电磁场微波技术与天线
第8章 金属波导
说明: 截止区:
由于2a 是矩形波导中能出现的最长截止波长,因此,当工作 波长λ> 2a 时,电磁波就不能在波导中传播,故称为“截止区”。
单模传输条件
第8章 金属波导
a 1.8a,b / 2
由设计的波导尺寸实现单模传输。
截止波长相同时,传输TE10 模所要求的 a 边尺寸最小。同时 TE10 模的截止波长与 b 边尺寸无关,所以可尽量减小 b 的尺 寸以节省材料。但考虑波导的击穿和衰减问题,b 不能太小。
TE10 模和TE20 模之间的距离大于其他高阶模之间的距离, TE10 模波段最宽。 可以获得单方向极化波,这正是某些情况下所要求的。 对于一定比值a/b,在给定工作频率下TE10模具有最小的衰减。
同轴线没有电磁辐射,工作频带很宽。
电磁场微波技术与天线
2. 波导管
第8章 金属波导
矩形波导
波导是用金属管制作的导 波系统,电磁波在管内传播, 损耗很小,主要用于 3GHz ~ 30GHz 的频率范围。
电磁场微波技术与天线
圆波导
第8章 金属波导
8.1 导行电磁波概论
分析均匀波导系统时, 做如下假定:
第8章 金属波导
电磁场微波技术与天线
第8章 金属波导 导行电磁波 —— 被限制在某一特定区域内传播的电磁波 导波系统 —— 引导电磁波从一处定向传输到另一处的装置 常用的导波系统的分类 :
TEM传输线、金属波导管、表面波导。

铁电薄膜的发展

铁电薄膜的发展

铁电薄膜的发展0807044234 赖辛铁电材料是这样一些晶体,它们在某温度范围具有自发极化,而且极化强度可以随外电场改变而改变。

作为一类重要的功能材料,铁电材料具有介电性、压电性、热释电性、铁电性以及电光效应、声光效应、光折变效应和非线性光学效应等重要特性,可用于制作铁电存储器、热释电红外探测器、空间光调制器、光波导、介质移相器、压控滤波器等重要的新型元器件。

这些元器件在航空航天、通信、家电、国防等领域具有广泛的应用前景。

铁电薄膜具有优越的电极化特性、热释电效应、介电效应、压电效应、电光效应高、解电系数和非线性光学性质等一系列特殊性质,可制成不同功能器件,随着铁电薄膜制备技术的发展,使现代微电子技术与铁电薄膜的多种功能相结合,必将开发出众多新型的功能材料,促进新兴技术的发展。

因此,铁电陶瓷薄膜的研究日益突出,已成为国际上新颖功能材料与器件的一个热点。

早在远古时期,人们就知道某些物质具有与温度有关的自发电偶极距,因为它们被加热时具有吸引其它轻小物体的能力。

1824年Brewster观察到许多矿石具有热释电性。

l880年约·居里和皮·居里发现当对样品施加应力时出现电极化的现象。

但是,早期发现的热释电体没有一个是铁电体。

在未经处理的铁电单晶中。

电畴的极化方向是杂乱的,晶体的净极化为零,热释电响应和压电响应也十分微小,这就是铁电体很晚才被发现的主要原因。

直到l920年,法国人valasek发现了罗息盐(酒石酸钾钠,NaKCH4O·4H2O)特异的介电性能,才掀开了自20 世纪50 年代人们开始研究铁电薄膜,至今已有几十年的历史,但由于受到薄膜制备技术的限制,研究一直进展缓慢。

直到20 世纪80 年代,薄膜制备技术取得了一系列的突破,许多物理和化学方法用于制备铁电薄膜,扫除了铁电材料与半导体工艺等技术障碍,因而铁电薄膜材料得到了飞速的发展。

利用铁电氧化物薄膜所具有的介电、铁电、压电、电致伸缩、热电、光学、电光等性能,可以制得很多种类的铁电薄膜器件,这些铁电薄膜器件都具有十分诱人的应用前景和潜在的巨大市场。

第三章规则波导

第三章规则波导

ab
kc
( m a
)2
( n b
)2
kc1
c1
2 kc1
c2
2 kc2
( )2 a
(0 b
)2
kc2
( 0 )2 ( )2 ab
2)TM波
对TM波, Hz=0, Ez(x,y,z)=Eoz(x, y)e-jβz, 此时满足
2 ( x2
2 y 2
)Eoz (x,
y)
kc2 Eoz (x,
y)e jz
Ey
m0
n0
ju kc2
m a
m H mn sin( a
x) cos(n b
y)e jz
EZ 0
H X
m0 n0
j kc2
m a
m H mn sin( a
x) cos(n b
y)e jz
HY
m0 n0
j kc2
n b
m Hmn cos( a
x) sin( n b
y)e jz
h2
H z v
), Hu
j kc2
( h1
H z u
h2
Ez v
)
Ev
j kc2
( h2
Ez v
h1
H z u
)Hv
j kc2
( h2
H z v
h1
Ez u
)
E(x, y, z) Et (x, y, z) z Ez (x, y, z)
Eot ( x, y)e jz z Eoz (x, y) e jz
H
Z
(x,
y,
z)
m0
n0
H
mn
cos(mx a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
膜厚度的增加而发生红移等现象难以合理解释。
另一种认为类Fabry-Perot (F-P)腔的作用才是产生这种现象的原因, 称之为类F-P腔理论,忽略了光栅基底介电常量对透射增强波长的影响。
应用:偏振分光器、聚焦金属平板透镜 提高氮化物基LED的出光效率和偏振特性
6
集成光波导器件:超小型化和集成化,亚波长尺寸量级
周期性波导 多量子阱光波导 金属薄膜波导 渐变折射率波导 泄露波导
金属薄膜波导及应用
1957年,Ritchie等发现电磁波沿介质-金属表面传播是由于金属 表面电子在外加TM偏振波作用下发生极化而产生。
Excitation of Surface Plasmon by prism with metal film
增强4.2倍
增强335.4倍
12
二、金属薄膜结构
1、色散关系
(1)非对称结构及其场分布: (14)
金属薄膜结构
转移矩阵方程:
(15)
理想金属膜结构的色散方程:
(16) 理想系统
13
(2)对称结构的色散方程及色散关系:
色散方程
(17)
传播常数
a. 对称模情况:
b. 反对称模情况:
对称薄膜结构SPW的色散关系
电磁波的矢量微分方程:
(1)
金属的介电常数:
两种介质简单界面 SPW的电场分布
ε =ε r iε i , ε r 0, ε r ε i
(2)
表面波场强集中于界面,并且沿法向指数衰减,试探解为:
代入 E 0 并简化得:
(3)
同样可得: (4)
8
根据边界条件得出: (1)表面等离子波一定是TM波 (5) (6)
光耦合器,可调增益均衡器
K. C. Shen… C. C. Yang, et al. Applied Phys. Lett. 92 (2007)
超分辨能力:突破衍射极限,亚波长分辨能力用于亚波 长光刻(采用365nm光源曝光,分辨率达25nm)
: sliver
7
一、光在金属和介质界面中的传播
1、表面等离子波的存在条件
4
透射增强作用
1998年,T.W.Ebbesen等人在Nature上发表:Extraordinary optical transmission through sub-wavelength hole arrays.
一束光垂直通过带有周期性小孔阵列的金属膜时,在特定波长上出现 异常透射率增强,达到经典预测值40倍左右。 经典孔径理论:一束波长为λ的光通过直径为d (d<λ)小孔时,透过率为:(d/ λ)4 λ =900nm光波长,d=150nm时,T=0.001; 实测T=0.04 。
(26)
实验分布和能流
带宽大
普通SPW的ATR曲线
长程SPW的ATR曲线
17
三、金属薄膜波导的应用
两大特点:a. 表面等离子波的波矢量是介质介电系数和厚度的灵敏函数; b.表面等离子波具有场的增强效应。
1、免疫反应的实时测量
免疫反应的实时测量 还可观察液晶分子的趋向、LB膜(超薄有机薄膜)的生产过程等。
引起衰减全反射ATR光谱分布
采用不同波长光得到不同ATR衰减峰 引起光波场激发增强效应
Reflectivity spectra
2
SPR, SPW ?
表面等离子波(SPW): 存在于具有自由电子的材料表面的电荷密度波,沿着导体和电 解质的界面传播。发生在金属薄层和电介质分界面上的物理光学现 象。光与介质界面发生全内反射时产生的倏逝波激发金属表面的自 由电子产生。 表面等离子体共振(SPR): 当入射光(角度或波长)满足一定条件时,SPW与倏逝波的频率 和波数相等,两者发生共振,入射光波被吸收使反射光能量急剧下 降,从而在反射光谱上出现共振峰。 是一种发生在金属薄层和电介质分界面上的物理光学现象。
3
介质-金属界面等离子体波的场分布
z x
For propagating bound waves: - kx is real - kz is imaginary
表面等离子波矢量Ksp, 介质波矢量Ks, 等离子共振频率ωp
电磁场幅值沿z轴方向呈指数衰减,在介质中衰减比在金属中慢,即能量主 要集中在介质内。从色散曲线看,波矢Ksp沿x方向比自由空间传播波矢大, 因此在x方向能够表现出比物体更细微的结构,使得表面等离子体波具有超 分辩等能力。
18
2、表面等离子波显微技术
表面等离子波显微术的图像表示: (a)样品配置 (b)反射率曲线
用于观察金属表面凹凸不平的涂层图像。
19
3、表面增强吸收的应用——探测溶液中化学试剂
纯水
纯水 污染水
污染水
表面等离子波等离子波增强吸收测量法
(SPW方法:吸收增强达70倍)
全内反射测量法(不银膜)
用于模拟计算的参数表
15
(2)对称金属薄膜结构 色散方程: (22)
微扰传播常数: (23)
金属薄膜的有效厚度: 损耗距离:
(24)
(25)
超薄金属结构中,损耗极小的对称模式称为长程表面等离子波,即可传输较长的距离,但毫米量级以下!
16
3、长程表面等离子波的激发和增强效应
利用衰减全反射ATR技术激发长程表面等离子波 磁场分布:
Ebbesen效应! 金属薄膜上周期性排列小孔或狭缝;
带周期结构的连续金属薄膜;金属膜上只有一个小孔或狭缝的结构
5
• Schroter 等人,利用散射矩阵法给出了光透过一维金属光栅 时同样具有这种增强效应!(1998, Phys.Rev.)
理解:光与金属亚波长光栅相互作用时,金属栅表面电子在入射光作 用下沿栅条方向自由振荡,但在垂直于栅条方向上受到限制,因而体 现出强烈的偏振和透射增强光学特性。 两种解释:一种认为金属膜表面等离子体激元的共振激发和耦合导致 了这种增强效应,表面等离子体波(SPW)理论。对于透射增强波长随金属
正比关系
(11)
10
3、表面等离子波的激发
SPW的两种棱镜耦合激发方式:
(也可以由光栅激发)
以Kretschmann方式为例:
磁场分布:
(12)
实际衰减全反射(ATR)结构
满足共振条件,B2处的反射 反射率公式:
(13)
ATR曲线
11
4、表面等离子波的场增强效应
增强18.8倍
n2 1.515 d 45nm ε1 17.3 i 0.68 n0 1.0
(9)
(1)考虑金属无吸收情况(物理上不可能实现):ε i 2 0
β r k0 βi 0
ε1ε r 2 ε1 ε r 2
(10) 忽略虚部,仅仅是略去了SPW的损耗特性!
(2)考虑金属吸收情况: ε i 2 0
β r k0
ε1ε r 2 ε1 ε r 2
ε i 2ε 1 ε1ε r 2 β i k0 2ε r 2 (ε1 ε r 2 ) ε1 ε r 2
20
4、表面等离子增强的双光子激发荧光应用
激发荧光强度是全内反射方法的90倍
荧光强度随入射角变化的实验曲线 双光子激发荧光实验
蓝宝石激光器波长800nm,脉冲宽度200fs,峰值功率50kW,重频76MHz,Ag膜厚度50nm
21
TE波(E y , H x , H z ) TM波(H y , E x , Ez )
(2)表面等离子波只存在于界面两侧介质的 介电常数符号相反的情况 (7) (3)表面等离子波的有效折射率为:
(8)
9
2、表面等离子波的损耗特性
设介质2为金属:
ε 2 =ε r 2 iε i 2 , ε r 2 0, ε i 2 0
2、金属薄膜结构的损耗特性
处理思路: 把普通金属薄膜结构(复数)看作理想金属薄膜结构(实数)的微扰系统,导出理想 系统传播常数的微扰,微扰传播常数的虚部就是传导模的损耗系数。
(1)非对称金属薄膜结构 实际系统 色散方程: (18)
微扰传播常数:
(19)纯虚数,仅影响金属薄膜结构的损耗特性!
金属薄膜的有效厚度: (20) 损耗距离: (21)
相关文档
最新文档