七年级数学上册 第1章 有理数 1.2 数轴、相反数与绝对值 1.2.3 绝对值学案湘教版
七年级数学上册第1章有理数1.2数轴、相反数和绝对值第3课时绝对值教案1沪科版(2021年整理)

2018年秋七年级数学上册第1章有理数1.2 数轴、相反数和绝对值第3课时绝对值教案1 (新版)沪科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年秋七年级数学上册第1章有理数1.2 数轴、相反数和绝对值第3课时绝对值教案1 (新版)沪科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年秋七年级数学上册第1章有理数1.2 数轴、相反数和绝对值第3课时绝对值教案1 (新版)沪科版的全部内容。
第3课时绝对值1.理解绝对值的概念及其几何意义;(重点)2.会求一个数的绝对值,知道一个数的绝对值,会求这个数.(难点)一、情境导入从一栋房子里,跑出有两只狗(一灰一黄),有人在房子的西边3米处以及房子的东边3米处各放了一根骨头,两狗发现后,灰狗跑向西3米处,黄狗跑向东3米处分别衔起了骨头.问题:1.在数轴上表示这一情景.2.两只小狗它们所跑的路线相同吗?3.两只小狗它们所跑的路程一样吗?在实际生活中,有时存在这样的情况,有些问题我们只需要考虑数的大小而不考虑方向.这样就必须引进一个新的概念-—绝对值.二、合作探究探究点一:绝对值的代数与几何意义【类型一】求一个数的绝对值-3的绝对值是( )A.3 B.-3 C.-错误! D。
错误!解析:根据一个负数的绝对值是它的相反数,所以-3的绝对值是3。
故选A。
方法总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
【类型二】利用绝对值求有理数如果一个数的绝对值等于错误!,则这个数是__________.解析:∵错误!或-错误!的绝对值都等于错误!,∴绝对值等于错误!的数是错误!或-错误!,故填错误!或-错误!。
七年级数学上册第1章有理数1.2数轴相反数和绝对值1.2.3绝对值说课稿新版沪科版

七年级数学上册第1章有理数1.2数轴相反数和绝对值1.2.3绝对值说课稿新版沪科版05171116绝对值说课稿课程标准分析本节课要求学生借助数轴,初步理解绝对值的概念,能求一个数的绝对值,并能够利用绝对值的非负性进行相关计算.通过应用绝对值养成解决实际问题的能力;通过渗透数形结合的思想方法,注意培养学生的概括能力.最终帮助学生体会绝对值的意义和作用,感受数学在生活中的价值.教材分析1.地位与作用:绝对值是有理数的重要概念之一,在学习绝对值之前,学生已经学习了负数、数轴和相反数,学生在小学学习了非负有理数,了解了非负有理数的概念、性质及运算,为学习绝对值奠定了基础.绝对值与初等数学的许多知识和方法相联系,有着广泛和重要的应用:①有理数的大小比较,有了绝对值的概念后,有理数之间的大小比较就方便多了,特别是两个负数的比较,只比较绝对值即可,不必在数轴上表示负数后再比较.②求数轴上的两点间的距离,数a在数轴上表示的点到原点的距离为|a|,在数轴上表示a和b两点间的距离为|a-b|.③有理数的运算,一个有理数实质包含两部分:一是符号,二是绝对值;有理数的运算在确定了结果的正负号后,剩下的问题就是绝对值的运算了.④应用绝对值的非负性,一个有理数的绝对值是一个非负数,这一性质有着重要的作用.如已知|a-3|+|b+2|=0,求a-b的值,就是这一性质的直接应用.从前面四点的分析中,我们不难看出,绝对值在整个数与代数部分有着重要的地位,应用非常的广泛,是后继学习的重要基础,有着承上启下的作用.2.重点与难点:本节的重点是让学生直观理解绝对值的含义;本节的难点是正确理解绝对值的代数意义及其应用.教法分析通过引例,自然导出绝对值的几何定义,再通过尝试、归纳,进而得出常用的代数定义,要引导学生参与这一过程,并对|a|≥0这一性质有初步的直观认识.教学中要让学生了解一个有理数应由符号和绝对值两部分组成,为有理数的运算作准备,结合绝对值的学习,可以引导学生重新认识相反数的意义:绝对值相等符号相反的两个数互为相反数;零的相反数是零.绝对值是有理数教学的难点,对它的认识和掌握要有一个过程,本节课的教学要求是让学生能熟练求出一个数的绝对值,不要拓展太多,不宜向学生提出过高要求.对于|a|的化简,可以让学有余力的学生考虑这一问题,本节课主要采用自主探究,讲练结合的方法进行教学. 学法分析数轴的作用对本节的影响很大,在理解绝对值的概念时应结合数轴,理解“距离”的含义;另外在求一个数的绝对值时用了分类讨论的方法,这种方法在解答有关绝对值的问题中非常重要,应加强理解应用.1。
2022年秋七年级数学上册 第1章 有理数 1.2 数轴、相反数与绝对值 1.2.3 绝对值课件 (

•
9、 人的价值,在招收诱惑的一瞬间被决定 。2022/3/12022/3/1Tuesday, March 01, 2022
•
10、低头要有勇气,抬头要有低气。2022/3/12022/3/12022/3/13/1/2022 8:39:43 AM
•
11、人总是珍惜为得到。2022/3/12022/3/12022/3/1M ar-221- Mar-22
B.原点或原点左侧
C.原点右侧
D.原点或原点右侧
2. 已知在数轴上,O为原点,A,B两点所表示的数 分别为a,b,利用下列A,B,O三点在数轴上的位置关 系,可以判断|a|<|b|的选项是( B )
A
B
C
D
3. 下列说法中正确的是( C ) A.任何一个有理数的绝对值都是正数 B.负数的绝对值是负数 C.若|a|+|b|=0,则|a|=0且|b|=0 D.若a≠b,则|a|≠|b| 4. 化简:|π-3.14|= π-3.14 , -|-25|= -25 .
【解析】当 a=0 时,A、B、C 说法均不正确,而|a| +1≥1,一定是正数,故 D 项正确.
6. 若|x-3|+|y-2|=0,则|x+y|的值为 5 . 7. a,b 在数轴上位置如图,化简|a|-|b|=-a-b .
1.若|a|=-a,则实数 a 在数轴上的对应点一定在
(B) A.原点左侧
②|-6|= 6 ;|-3.1|= 3.1 ;|-2.7|= 2.7 ; ③|0|= 0 . (2)根据(1)中的规律发现,不论正数、负数和0,它 们的绝对值一定是 非负数 ,即|a|≥0.
(3)根据(2)解决下列问题: ①当x= 0 时,|x|+5有最小值,此时的最小值 是 5; ②当x= 1 时,7-|x-1|有最大值,此时的最大值 是7.
人教版七年级数学上册 第一至第四章全册知识点归纳

人教版初一数学上册知识点归纳七年级数学上册知识点第一章有理数1.1 正数与负数①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
3、一个数同0相加,仍得这个数。
加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。
乘法交换律/结合律/分配律②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
湘教版七年级上册 数学 练习课件 1.2.3 绝对值

7
10.求下列各数的绝对值:
(1)+38;
(2)-0.15;
解:(1)+38=38.
(3)|0|=0.
(3)0;
(4)-a.
(2)|-0.15|=0.15. aa是正数,
(4)|-a|=0a=0, -aa是负数.
8
11.如果|a-1|与|b-2|互为相反数,那么a+b的值是多少? 解:因为|a-1|与|b-2|互为相反数,所以|a-1|+|b-2|=0,所以a-1=0,b- 2=0,即a=1,b=2,所以a+b=3.
能力提升
12.下列说法中,正确的是
A.一个有理数的绝对值可以等于它自身
(2)若电瓶车充足一次电能行驶15千米,则该电瓶车能否在一开始充好电而途中 不充电的情况下完成此次任务?请计算说明.
13
解:(1)如图:
(2)电瓶车一共走的路程为|2|+|2.5|+|-8.5|+|4|=17(千米).因为17>15,所以 该电瓶车不能在一开始充好电而途中不充电的情况下完成此次任务.
12
19.某景区一保安接到任务从景区大门骑电瓶车出发,向东行驶2千米到达A景 区,继续向东行驶2.5千米到达B景区,然后又回头向西行驶8.5千米到达C景区,最 后回到景区大门.
(1)以景区大门为原点,向东为正方向,以1个单位长度表示1千米,建立数轴, 请在数轴上表示出上述A,B,C三个景区的位置;
11
18.已知有理数:-2020,+21,-3.8,0,43,-34,-0.001. (1)写出上面各数的绝对值; (2)上面的数中哪个数的绝对值最大?哪个数的绝对值最小? (3)由(1)(2)探究: ①有理数中哪个数的绝对值最小? ②所有有理数的绝对值是什么数?有负数吗?
七年级数学上册第1章有理数1.2数轴相反数与绝对值1.2.3绝对值课时作业新版湘教版

绝对值(30分钟50分)一、选择题(每小题4分,共12分)1.(2014·黄冈模拟)下面各对数中互为相反数的是( )A.2与-|-2|B.-2与-|2|C.|-2|与|2|D.2与-(-2)【解析】选A.因为-|-2|=-2,且2与-2互为相反数,所以A中2与-|-2|互为相反数.【知识归纳】化简题中的括号与绝对值化简或计算时,要按运算顺序进行,如果既有“括号”,又有“绝对值符号”,要注意运算顺序.(1)如果绝对值号里有括号,应该先化简括号,再求绝对值.(2)如果括号里有绝对值号,可以先求绝对值,再化简括号,也可以先化简括号,再求绝对值.2.下列说法中正确的是( )A.-|a|一定是负数B.若|a|=|b|,则a=bC.若|a|=|b|,则a与b互为相反数D.若一个数小于它的绝对值,则这个数是负数【解析】选D.当a=0时,-|a|=0,故A错误;若|a|=|b|,则a=b或a=-b,故B,C错误.3.(2013·菏泽中考)如图,数轴上的A,B,C三点所表示的数分别为a,b,c,其中AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在( )A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边【解析】选C.因为|a|>|c|>|b|,所以点A到原点的距离最大,点C到原点的距离其次,点B到原点的距离最小,又因为AB=BC,所以原点O的位置在点B与点C之间,且靠近点B的地方.【一题多解】排除法选C.若原点在A点左侧,则|c|>|b|>|a|,因此排除选项A;若原点在点A与点B之间,则|c|最大,因此排除选项B;若原点在点B与点C之间,则|a|最大,此时,若原点靠近点B,则|c|>|b|;若原点在点C的右边,则|a|>|b|>|c|,因此排除选项D.二、填空题(每小题4分,共12分)4.(2013·南充中考)-3.5的绝对值是.【解析】根据绝对值的意义,负数的绝对值是它的相反数,所以-3.5的绝对值是3.5.答案:3.55.(2014·黄冈中学质检)若|a|=|-3|,则a= .【解析】因为|a|=|-3|=3,所以a=3或-3.答案:3或-3【互动探究】若把|a|变为|-a|,则a= .【解析】因为|-a|=3,所以-a=±3,所以a=±3.答案:±36.当a为时,式子8-|2a-6|有最大值,最大值是.【解析】因为|2a-6|≥0,所以当|2a-6|=0,即2a-6=0,a=3时,8-|2a-6|有最大值,最大值是8.答案:3 8【知识归纳】绝对值的两个应用(1)若|a|+|b|=0,则a=b=0.(2)m-|a|有最大值m,m+|a|有最小值m.三、解答题(共26分)7.(8分)(2014·任县三中质检)计算:(1)|-5|+|-2|.(2)÷.(3)×|-24|.(4).【解题指南】先利用绝对值的意义去掉绝对值符号,再按四则运算进行计算.【解析】(1)|-5|+|-2|=5+2=7.(2)÷=÷=×=.(3)×|-24|=×24=4+54+32=90.(4)===.8.(8分)有一只小昆虫在数轴上爬行,它从原点开始爬,“+”表示此昆虫由原点向右,“-”表示此昆虫由原点向左,总共爬行了10次,其数据统计如下(单位:cm):+3,-2,-3,+1,+2,-2,-1,+1,-3,+2.如果此昆虫每分钟爬行4cm,则此昆虫爬行过程中,它用了多少分钟?【解析】由题意知,这只昆虫所爬的路程为:|+3|+|-2|+|-3|+|+1|+|+2|+|-2|+|-1|+|+1|+|-3|+|+2|=20(cm),所以它所用的时间为:20÷4=5(min).【培优训练】9.(10分)北京航天研究院所属工厂,制造“嫦娥三号”上的一种螺母,要求螺母内径可以有±0.02mm的误差,抽查5个螺母,超过规定内径的毫米数记做正数,没有超过规定内径的毫米数记做负数,检查结果如下:+0.010,-0.018,+0.006,-0.002,+0.015.(1)指出哪些产品是合乎要求的?(即在误差范围内的)(2)指出合乎要求的产品中哪个质量好一些,哪个质量稍差一些?【解析】(1)因为|+0.010|=0.010<0.02,|-0.018|=0.018<0.02,|+0.006|=0.006<0.02,|-0.002|=0.002<0.02,|+0.015|=0.015<0.02,所以所抽查的产品都合乎要求.(2)绝对值越接近0质量越好,|-0.002|=0.002最接近0,所以质量好一些;|-0.018|=0.018最大,所以质量稍差一些.【变式训练】某工厂为组装学校的新桌椅,生产了一批配套的螺母.产品质量要求是:螺母的内径可以有0.20mm的误差.抽查7只螺母,超过规定内径的毫米数记做正数,不足规定的记做负数,检测结果如表:(单位:mm)(1)其中第几号螺母不合格?(2)第几号螺母的尺寸最标准?(3)误差最大的螺母与6号螺母相差多少mm?【解析】(1)2,3 (2)5(3)误差最大的螺母是2号,故|+0.30|+|-0.01|=0.31(mm),即误差最大的螺母与6号螺母相差0.31mm.文末学习倡导书:学习不是三天打鱼,两天晒网。
七年级数学上册 第1章 有理数 1.2 数轴、相反数与绝对值1.2.2相反数课件 湘教版

【想一想】 决定化简结果符号的因素是什么? 提示:多重符号的结果由“-”的个数决定,与“+”无关.
【备选例题】(1)化简下列各数:
-(-5),-(+5),-[-(+5)],-{-[-(+5)]}.
(2)猜想:当+5前面有2015个正号时,化简的结果为
;当
+5前面有2015个负号时,化简的结果为
【微点拨】相反数的特征 1.相反数是成对出现的,不能单独存在. 2.一对相反数除符号不同外其他部分相同,如-3与+2虽符号不 同,但不是相反数.
【方法一点通】 求相反数的“两个步骤” 1.确定:确定原数的符号,是“+”还是“-”. 2.变号:改变原数的符号,即“+”变为“-”,“-”变为“+”.
1.2.2 相反数
一、相反数的定义 1.如果两个数只有_符__号__不同,那么其中一个数叫做另一个数的 相反数,也称这两个数互为相反数,0的相反数是_0_. 2.表示互为相反数的两个数的点,在数轴上分别位于原点的 _两__侧__,并且与原点的距离_相__等__. 二、相反数的求法 在一个数的前面添上“_负__”号,就得到原数的相反数,a的相 反数是_-_a_.
知识点二 多重符号的化简
【示范题2】化简下列各数: (1)-(-6).(2)-(+0.8).(3)[ ( 1 )].
3
【思路点拨】先看数前的符号,如果是“+”号,结果就是原数, 如果是“-”号,结果是其相反数.
【自主解答】(1)-(-6)=6.(2)-(+0.8)=-0.8. (3) [(1)]1.
(2)当+5前面只有“+”时,化简的结果为正(即5),因此当+5前 面有2015个正号时,化简的结果为正(即5);当+5前面有奇数个 “-”号时,化简的结果为负(即-5),因此当+5前面有2015个负 号时,化简的结果为负(即-5);当+5前面有偶数个“-”号时,化 简的结果为正(即5),因此当+5前面有2014个负号时,化简的结 果为正(即5). 答案:5 -5 5
1.2数轴、相反数与绝对值1.2.3 绝对值七年级上册数学湘教版

新知探究 知识点 绝对值
数学上规定: 正数的绝对值是它本身; 负数的绝对值是它的相反数; 0的绝对值是0. 常用“|a|”表示一个数a的绝对值.
新知探究 知识点 绝对值
例1 求下列各数的绝对值:
0.36,12,- 3 , -7.5 , 0.
5
解 | 0.36 | = 0.36, 正数的绝对值是它本身.
新知探究 知识点 绝对值
例3任何一个有理数的绝对值一定(D于或等于0 D.大于或等于0
例4若|a|+|b-1|=0,则a=__0___, b=___1___.
绝对值的 非负性
新知探究 知识点 绝对值
做一做
画一条数轴,用数轴上的点表示 4, -4,2,-2,并求这些点与原点的距离.
解:由绝对值的非负性,得 x - 3 = 0,y - 2 = 0. 所以 x = 3,y = 2. 所以 x + y = 3 + 2 = 5.
若几个数的绝对值之和为0,则这个和式中的 每个数都为0.
随堂练习
5.已知 a,b,c 为有理数,且它们在数轴上的对应点的
位置如图所示:
-c -b
-a
(1)试判断 a,b,c 的正负性.a是负数,b,c 是正数. (2)在数轴上表示 a,b,c 的相反数. (3)根据数轴化简:
| 12 | = 12,
|
-
3 5
|
=
3, 5
| -7.5 | = 7.5,
| 0 | = 0.
负数的绝对值是它的相反数. 0 的绝对值是0.
新知探究 知识点 绝对值 议一议
如果 a 表示一个数,则 | a | 等于多少? 一般地,如果a表示一个数,则:
(1) 当a 是正数时,|a|=a;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 数轴、相反数与绝对值
1.2.3 绝对值
学习目标:
1.掌握绝对值的概念,能求一个数的绝对值;
2.使学生熟练掌握有理数绝对值的求法和有关的简单计算;
3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.
教学重点:绝对值的概念,能求一个数的绝对值.
预习导学——不看不讲
学一学:阅读教材P11的内容.
说一说:和同桌说说点A和点B所表示的数是多少,它们有什么特点?
知识点一:绝对值的概念
填一填:1.点A到原点的距离等于个单位长度.
2.点B到原点的距离等于个单位长度.
议一议:1.怎样表示这两个距离?
2.在︱a︱中的a可以是什么数?
【归纳总结】:1.一般地,数轴上表示数a的点与原点的距离叫做a的.
例如:—2的绝对值等于.记做.
2.一个数的绝对值等于数轴上表示这个数的点与的距离
知识点二:绝对值的求法
学一学:阅读教材P12的内容.
1.分别写出下列各数的绝对值︱5︱=_____,︱-2︱=_____,︱
4
9
︱=_____,
︱0︱=_____,︱-7.8︱=_____.
2. 你能得出一个数的绝对值与这个数的关系吗?
3.任何一个数的绝对值都是 .
4.如果a 表示一个数,则︱a ︱等于多少?
合作探究——不议不讲
探究一:+xx 的绝对值是 ,—75.9的绝对值是 . 探究二:教材P 12-13的练习1T. 2T. 3T.
【解】
探究三:如果一个数的绝对值是8,则这个数是 .
探究四:1.绝对值是
4
3的数有几个?各是什么?
2.绝对值是0的数有几个?各是什么?
3.有没有绝对值是-2的数?
附加题:1.绝对值小于4的正整数有 .
2. 计算:
(1) |-15|-|-6|; (2) |-3|×|-2|;
【解】
(3) |+4|×|-5|; (4) |-12|÷|+2|.
【解】 如有侵权请联系告知删除,感谢你们的配合!。