2017年秋季新版湘教版七年级数学上学期2.3、代数式的值导学案4
2017秋湘教版七年级数学上册教案:2.3 代数式的值

2.3 代数式的值【教学目标】1.让学生领会代数式值的概念.2.了解求代数式值的解题过程及格式.3.初步领悟代数式的值随字母的取值变化而变化的情况.教学重点求代数式的值的含义及如何求代数式的值.教学难点求代数式的值的含义理解及一些应用.【教学过程】一、情景导入,初步认知通过上节课的学习,我们了解了什么?它的概念是什么?【教学说明】 通过复习最近学过的知识,使学生尽快进入学习状态.二、思考探究,获取新知1.动脑筋:今年植树节时,某校组织305位同学参加植树活动,其中有25的同学每人植树a 棵,其余同学植树2棵.你能用代数式表示他们共植树的总棵数吗?如果a =3,那么他们共植树多少棵?如果a =4,那么他们共植树又是多少棵?根据题意,他们共植树:25×305a +(1-25)×305×2 =(122a +366)棵;当a =3时,代数式122a +366=122×3+366=732(棵);当a =4时,代数式122a +366=122×4+366=854(棵);我们将上面问题中的计算结果732和854,称为代数式122a +366当a =3和当a =4时的值.【归纳结论】 如果把代数式里的字母用数代入,那么计算出的结果叫做代数式的值. 注意:(1)代数式的值不是固定不变的值,它是随着代数式中字母取值的变化而变化的.所以,求代数式的值时,要明确“当……时”,一定要按照代数式指明的运算进行.(2)代数式里的字母可以取各种不同的数值,但所取的数值必须使代数式和它表示的实际数量有意义.例如,上述问题中,代数式122a +366中的字母a 不能取负数,又如代数式a b中的字母b 不能取零. 2.思考:结合上述例题,回答下列问题:(1)求代数式的值,必须给出什么条件?(2)代数式的值是由什么值的确定而确定的?【教学说明】 引导学生回答:代数式的值是由代数式里字母的取值的确定而确定.三、运用新知,深化理解1.教材P64例2.2.(1)若x+1=4,则(x+1)2=________;(2)若x+1=5,则(x+1)2-1=________.答案:16;24.3.当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.解:当x=7,y=4,z=0时,x(2x-y+3z)=7×(2×7-4+3×0)=7×(14-4)=70.4.某企业去年的年产值为a亿元,今年比去年增长了10%.如果明年还能按这个速度增长,请你预测一下,该企业明年的年产值能达到多少亿元?如果去年的年产值是2亿元,那么预计明年的年产值是多少亿元?分析:今年的产值为(1+10%)a,明年的产值为(1+10%)2a.解:由题意可得,今年的年产值为(1+10%)a亿元,于是明年的年产值为(1+10%)2a=1.21a(亿元)若去年的年产值为2亿元,则明年的年产值为1.21a=1.21×2=2.42(亿元).答:该企业明年的年产值将能达到1.21a亿元.由去年的年产值是2亿元,可以预测明年的年产值是2.42亿元.【教学说明】通过巩固训练,让学生学会求代数式的值的方法.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.【课后作业】布置作业:教材“习题2.3”中第2、3、5题.。
湘教版数学七年级上册《2.3 代数式的值》教学设计2

湘教版数学七年级上册《2.3 代数式的值》教学设计2一. 教材分析湘教版数学七年级上册《2.3 代数式的值》是学生在掌握了有理数的混合运算、整式乘法的基础上,进一步学习代数式的值。
本节课主要让学生了解代数式的概念,掌握代数式的求值方法,培养学生的计算能力和逻辑思维能力。
教材通过具体的例子,引导学生掌握代数式的值,并能够运用所学知识解决实际问题。
二. 学情分析七年级的学生已经掌握了有理数的混合运算和整式乘法,具备一定的数学基础。
但部分学生对代数式的概念和求值方法可能还存在困惑。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的讲解和辅导。
三. 教学目标1.了解代数式的概念,掌握代数式的求值方法。
2.培养学生的计算能力和逻辑思维能力。
3.能够运用所学知识解决实际问题。
四. 教学重难点1.代数式的概念及其理解。
2.代数式的求值方法。
3.运用代数式的值解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探索代数式的值。
2.运用实例分析,让学生直观地理解代数式的概念和求值方法。
3.采用小组合作学习,培养学生的团队协作能力和沟通能力。
4.利用多媒体辅助教学,提高课堂效果。
六. 教学准备1.制作多媒体课件,展示代数式的实例和求值过程。
2.准备相关的练习题,巩固所学知识。
3.安排小组合作学习的任务,让学生在课堂上进行实际操作。
七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些实际问题,引导学生思考如何用数学知识解决这些问题。
例如,计算某商品的折扣价、计算长方形的面积等。
通过这些问题,激发学生的学习兴趣,引出代数式的概念。
2.呈现(10分钟)讲解代数式的概念,让学生了解代数式的定义和表示方法。
通过示例,让学生直观地理解代数式的含义。
同时,介绍代数式的求值方法,让学生掌握如何计算代数式的值。
3.操练(10分钟)让学生进行小组合作学习,共同完成一些代数式的求值练习。
教师在这个过程中,及时给予学生指导和反馈,帮助学生掌握代数式的求值方法。
2.3代数式的值-湘教版七年级数学上册教案

2.3 代数式的值-湘教版七年级数学上册教案一、知识要点1.代数式的定义2.代入数值计算代数式的值3.用代数式解决实际问题二、教学重难点1.如何理解代数式的值;2.如何将代数式代入数值求值;3.如何运用代数式解决实际问题。
三、教学方法1.通过实例引出代数式及其定义;2.运用数字例子演示如何代入数值计算代数式的值;3.针对不同实际问题进行代数式的建立和求解。
四、教学过程1. 导入环节首先,让学生观察下面的式子:6x+5请问这是什么?是否可以用任何数字代替其中的 x?引导学生根据直观感受和数学常识,理解代数式的概念。
然后再介绍代数式的定义,即由数或字母或符号按一定规则组成的式子,不含等号。
2. 计算代数式的值将学生分成小组,给出如下代数式:3a+7然后,让学生拿出纸笔,在纸上模拟计算过程,将不同的数代入 a 中求出代数式的值,并将结果填写在下面的表格里。
a 1 2 33a+7通过这个小活动可以增加学生对代数式概念的理解,以及计算代数式的值的能力。
3. 运用代数式解决实际问题现在,将学生分成若干小组,给每组一些实际问题,让他们利用代数式解决。
例题:题目:李华比他的弟弟大4岁。
他8年后的年龄是多少?解:设李华的弟弟今年的年龄为a,那么李华今年的年龄就是:a+4。
8年后他的年龄就是:a+4+8=a+12。
可以用代数式表示为:a+12这道题就被转化为求 a+12 的值,为了求出这个值,可以让学生采用代入法求出a的值,再代入进行计算,得到答案。
五、教学反思通过本次课程,学生在深刻理解代数式概念的同时,掌握了代数式的计算方法以及代数式在实际问题中的运用,提高了问题解决的能力和数学思维的灵活性。
当然,这些知识的应用也要学生课后继续进行深入探索和钻研。
湘教版七年级上2.3代数式的值导学案

桃花坪中学初一数学导学案姓名年级七年级科目数学主备人课题:代数式的值【学习目标】1、掌握代数式的值的概念2、能用具体数值代替代数式中的字母,求出代数式的值;3、培养学生的运算能力,并适当地渗透特殊与一般的辨证关系的思想。
【学习过程】(一)预习(明确学习目标,布置自主预习)阅读教材P73~74,完成以下练习。
1、用代替代数式里的字母,按指明的运算,所得的结果,叫做代数式的值。
2、某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需个排球。
3、结合上述例题,请同学们思考以下两个问题:(1)求代数式2x+10的值,必须给出什么条件?(2)代数式的值是由什么值的确定而确定的?(二)展示(展示自学效果,展示学习疑难,合作探究释疑)1、当a=-2、b=-3时,求代数式2a2-3ab+b2的值。
2、当a=-0.5,b=0.25时,求下列代数式的值:(1)(a+b)2(2)a2+2ab+b23、若m2+3n-1的值为5,求代数式2m2+6n+3的值4、合作探究:把具体的数值代入代数式时,要注意哪些问题?(三)反馈(总结知识学法,巩固拓展训练)1、总结本节课的收获:2、(1)当x=-2时,求代数式x2-1的值;(2)当x=3.5,y=1.5时,求代数式x(x-y)的值3、当a=15,b=-5时,求下列代数式的值。
(1)(a+b)2; (2)(a-b)24、当x=5,y=3时,求代数式x(2x-5y)的值。
5、当m-n=5, mn= -2,则代数式(n-m)2-4mn=6、当x-y=2时,求代数式(x-y)2+2(y-x)+5的值.【学习反思】。
新湘教版初中数学七年级上册2.3 代数式的值导学案

23 代数式的值学习目标1.掌握代数式的值的概念,理解代数式值的实际意义,会求代数式的值。
2 培养学生准确地运算能力,并适当地渗透对应的思想。
3.体会从生活中发现数学和应用数学解决生活中问题的过程,品尝成功的喜悦,激发学生应用数学的兴趣。
4.重点:当字母取具体数值时,对应的代数式的值的求法及正确地书写格式。
5.难点:正确地求出代数式的值。
预习导学想一想:阅读教材P63“动脑筋”,完成下列填空1.当a=5时,他们共植树棵。
2.字母a表示一个数,在这个问题中,a不能取3.用具体的数值代入代数式中的,计算后得出的叫做代数式的值?学一学:阅读P64的例题,回答下列问题1 求代数式2 -3+5的值,必须给出什么条件?2 代数式的值是由什么值的确定而确定的?3 求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?4例1(1)中代入-3时,要注意什么?(2)中的a b不能取哪些值?【归纳总结】:求代数式的值时要注意:1 如果代数式中省略乘号,代入后需添上乘号.2 如果字母取值是负数、分数,作乘方运算时要加括号;3 注意书写格式,“当……时”的字样不要丢;4 代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义。
5求代数值的步骤:①代入数值 ②计算结果6相同的代数式可以看作一个字母——整体代换。
合作探究1姓名姚明 叶莉 出生1980年9月12日 1981年11月20日 身高 226厘米 190厘米 身高预测代数式:男孩成人时的身高:08.12⨯+y x ;女孩成人时的身高:293.0y x + 其中代表父亲的身高,y 代表母亲的身高。
姚小明或姚小莉身高多少?想知道自己长大后的身高吗?2 梯形上底,下底是上底的2倍,高比上底小1,用代数式表示其面积为3 若 x =4,代数式 x x a 22-+ 的值为0,则a =4 已知a=2b=-3;求 ()()a b a b +-+222 的值。
湘教版数学七年级上册2.3《代数式的值》教学设计1

湘教版数学七年级上册2.3《代数式的值》教学设计1一. 教材分析湘教版数学七年级上册2.3《代数式的值》是学生在掌握了有理数、整式等基础知识之后的进一步学习。
本节内容通过让学生计算一些代数式的值,培养学生的抽象思维能力和解决问题的能力。
教材通过具体的例子,引导学生理解代数式的概念,掌握代数式的运算方法,并能够灵活运用。
二. 学情分析七年级的学生已经掌握了有理数、整式等基础知识,对于代数式的概念和运算方法有一定的理解。
但学生在代数式的运算过程中,容易出错,对于代数式的值的理解不够深入。
因此,在教学过程中,需要教师通过具体的例子,引导学生深入理解代数式的值,提高学生的运算能力。
三. 教学目标1.理解代数式的概念,掌握代数式的运算方法。
2.能够计算给定代数式的值,并能解决相关问题。
3.培养学生的抽象思维能力和解决问题的能力。
四. 教学重难点1.代数式的概念的理解。
2.代数式的运算方法的掌握。
3.代数式的值的计算和应用。
五. 教学方法采用案例教学法,通过具体的例子,引导学生理解代数式的概念,掌握代数式的运算方法。
同时,采用问题驱动法,引导学生通过解决问题,深入理解代数式的值,提高学生的抽象思维能力和解决问题的能力。
六. 教学准备1.教学PPT。
2.相关案例和问题。
3.教学黑板。
七. 教学过程1.导入(5分钟)通过一个具体的案例,引导学生理解代数式的概念,激发学生的学习兴趣。
2.呈现(10分钟)呈现一些代数式,让学生计算其值,并通过问题引导学生深入理解代数式的值。
3.操练(10分钟)让学生分组合作,解决一些关于代数式的运算问题,巩固所学知识。
4.巩固(10分钟)通过一些练习题,检查学生对代数式的概念和运算方法的理解,并对学生的错误进行讲解。
5.拓展(10分钟)引导学生思考代数式的值在实际问题中的应用,提高学生的抽象思维能力和解决问题的能力。
6.小结(5分钟)对本节课的主要内容进行总结,强调代数式的概念和运算方法的重要性。
湘教版数学七年级上册2.3《代数式的值》教学设计2

湘教版数学七年级上册2.3《代数式的值》教学设计2一. 教材分析《代数式的值》是湘教版数学七年级上册第二章第三节的内容,主要介绍了代数式的求值方法。
本节内容是在学生掌握了代数式的基本概念和运算法则的基础上进行学习的,旨在培养学生运用代数式解决实际问题的能力。
本节课的内容对于学生来说是比较抽象的,需要通过大量的练习来理解和掌握。
二. 学情分析七年级的学生已经具备了一定的代数基础,对代数式的基本概念和运算法则有一定的了解。
但是,对于代数式的值的概念和求法还不够清晰,需要通过本节课的学习来进一步理解和掌握。
同时,学生在学习过程中可能会遇到一些困难,如对于代数式的值的理解不够深刻,对于一些特殊的代数式求值方法不明确等。
三. 教学目标1.知识与技能目标:使学生掌握代数式的求值方法,能够正确求出给定代数式的值。
2.过程与方法目标:通过自主学习、合作交流的方式,培养学生解决问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生自信心,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:代数式的求值方法。
2.难点:对于一些特殊的代数式求值方法的理解和应用。
五. 教学方法1.引导法:通过问题引导,激发学生思考,培养学生解决问题的能力。
2.案例分析法:通过具体的代数式求值案例,使学生理解和掌握求值方法。
3.小组合作法:引导学生进行小组讨论,培养学生的合作意识和团队精神。
六. 教学准备1.教学课件:制作课件,内容包括代数式的求值方法、案例分析等。
2.练习题:准备一些代数式求值的练习题,用于巩固所学知识。
3.教学工具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的实际问题,引导学生运用代数式来解决问题,从而引出本节课的内容——代数式的值。
2.呈现(10分钟)利用课件呈现代数式的求值方法,并结合具体案例进行讲解,使学生理解和掌握求值方法。
3.操练(10分钟)学生独立完成一些代数式求值的练习题,教师巡回指导,解答学生疑问。
湘教版数学七年级上册2.3《代数式的值》说课稿

湘教版数学七年级上册2.3《代数式的值》说课稿一. 教材分析湘教版数学七年级上册2.3《代数式的值》这一节主要讲述了代数式的值的概念和求法。
通过这一节的学习,学生能够理解代数式的值的概念,掌握求代数式值的方法,并能运用这些方法解决实际问题。
二. 学情分析七年级的学生已经掌握了代数的基本概念,如字母、变量等,但对代数式的值的概念和求法还不太了解。
因此,在教学过程中,需要引导学生理解代数式的值的概念,并通过示例让学生掌握求代数式值的方法。
三. 说教学目标1.理解代数式的值的概念,知道代数式的值是代数式中字母的取值后,代数式所表示的数。
2.掌握求代数式值的方法,并能运用这些方法解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 说教学重难点1.重点:代数式的值的概念和求代数式值的方法。
2.难点:理解代数式的值的概念,掌握求代数式值的方法。
五. 说教学方法与手段1.采用问题驱动的教学方法,通过引导学生思考和解决问题,让学生理解代数式的值的概念和求代数式值的方法。
2.使用多媒体课件和板书相结合的手段,帮助学生直观地理解代数式的值的概念和求代数式值的方法。
六. 说教学过程1.引入新课:通过提问,让学生回顾已学的代数基本概念,如字母、变量等,然后引导学生思考代数式有值吗,引出代数式的值的概念。
2.讲解代数式的值的概念:解释代数式的值是代数式中字母的取值后,代数式所表示的数,并通过示例让学生理解这一概念。
3.讲解求代数式值的方法:介绍代数式值的四则运算法则,并通过示例让学生掌握求代数式值的方法。
4.练习与讨论:让学生练习求一些代数式的值,并通过讨论让学生总结求代数式值的方法。
5.应用拓展:让学生运用所学的求代数式值的方法解决实际问题,如计算一些实际问题的代数式值。
6.小结:对本节课的内容进行总结,强调代数式的值的概念和求代数式值的方法。
七. 说板书设计板书设计如下:1.代数式的值的概念–代数式中字母的取值后,代数式所表示的数2.求代数式值的方法–四则运算法则八. 说教学评价本节课的教学评价主要通过以下几个方面进行:1.学生对代数式的值的概念的理解程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第19课时、代数式的值
学习目标:1、理解代数式的值的概念以及会求代数式的值;
2、通过代数式的值的过程,培养运算能力。
重点:代数式的值的概念及其求法。
难点:用整体代入法求代数式的值。
目标导学:(2分钟)
一次摄影活动中,全校有210人参加,在活动中有的人每人拍a张,其余的人每人拍3张。
你能用代数式表示他们拍照的总张数吗?
自学自研:(20分钟)
模块一、求代数式的值
阅读教材P63,完成下面的填空:
在目标导学中,当a=5时,他们共拍了多少张照片?当a=10呢?
归纳:像这样,如果把代数式里面的字母用数,那么后得出的结果就叫做代数式的值。
学习教材P64例1,解答下面的例题:
例1、已知x=,y=-2,求代数式x2+2xy+y2的值。
变式、已知(p+2)2+=0,求p2+3pq+6-8p2的值。
模块二、求代数式的值的应用
阅读教材P64例2,完成下面例题:
例2、如果用c 表示摄氏温度,用f 表示华氏温度,请完成下表:
变式、某校举办跳绳比赛,第一组有男生m 人,女生n 人,男生平均每分钟跳105次,女生平均每分钟跳110次,一分钟第一组学生共跳绳多少次?当m=5,n=5时,结果是多少?
交流展示:(15分钟)
按照各组分配任务进行展示探讨。
当堂检测:(5分钟)
1、代数式x
211
-中的x 的值不能等于 .
2、当a =5,b =3时,代数式(a+b)2= ,a 2+2ab+b 2= ,知(a+b)2 a 2+2ab+b 2
.
3、若m =2
1,n =31时,代数式m 2-n 2= ,( m+n)(m-n)= ,知m 2-n 2
(m+n)(m-n).
4、当x =4,y =2时,代数式y
x y
x 5423+-的值是 .
5、某班有学生a 人,若再增加5名男生,则女生人数为男生人数的80%. (1)写出表示原有男生人数的代数式. (2)当a =58时,求原有男生人数.
6、当
b
a b
a +-=2时,求代数式)(3)(4
b a b a +--b a b a -+)(2的值.
课堂小结:。