SW某固定管板换热器强度计算

合集下载

固定管板式换热器计算解析

固定管板式换热器计算解析
焊接接头系数
厚度及重量计算
形状系数
K= =
计算厚度
= =
mm
有效厚度
e=n-C1- C2=
mm
最小厚度
min=
mm
名义厚度
n=
mm
结论
满足最小厚度要求
重量
Kg
压力计算
最大允许工作压力
[Pw]= =
MPa
结论
合格
后端管箱筒体计算
计算单位
辽宁石油化工大学
计算条件
筒体简图
计算压力Pc
MPa
设计温度t
C
内径Di
MPa
压力试验允许通过
的应力水平T
T0.90s=
MPa
试验压力下
圆筒的应力
T= =
MPa
校核条件
TT
校核结果
合格
压力及应力计算
最大允许工作压力
[Pw]= =
MPa
设计温度下计算应力
t= =
MPa
t
MPa
校核条件
t≥t
结论
筒体名义厚度大于或等于GB151中规定的最小厚度6.00mm,合格
后端管箱封头计算
旋转刚度
MPa
材料名称

壳体法兰厚度
mm
法兰外径
管板和管子连接型式
管板和管子胀接(焊接)高度l
mm
胀接许用拉脱应力[q]
MPa
焊接许用拉脱应力[q]
MPa

材料名称
管箱法兰厚度
mm
法兰外径
mm

基本法兰力矩
Nmm
管程压力操作工况下法兰力
Nmm
法兰宽度

(新)换热器的强度计算

(新)换热器的强度计算

确定了换热器的结构及尺寸以后,必须对换热器的所有受压元件进行强度计算。

因为管壳式换热器一般用于压力介质的工况,所以换热器的壳体大多为压力容器,必须按照压力容器的标准进行计算和设计,对于钢制的换热器,我国一般按照GB150<<钢制压力容器>>标准进行设计,或者美国ASME标准进行设计。

对于其它一些受压元件,例如管板、折流板等,可以按照我国的GB151<<管壳式换热器>>或者美国TEMA标准进行设计。

对于其它材料的换热器,例如钛材、铜材等应按照相应的标准进行设计。

下面提供一氮气冷却器的受压元件强度计算,以供参考。

该换热器为U形管式换热器,壳体直径500mm,管程设计压力3.8MPa,壳程设计压力0.6MPa。

详细强度计算如下:1.壳程筒体强度计算2. 前端管箱筒体强度计算3. 前端管箱封头强度计算4. 后端壳程封头强度计算5.管板强度计算6. 管程设备法兰强度计算7. 接管开孔补强计算氮气冷却器(U形管式换热器)筒体计算计算条件筒体简图计算压力P c0.60MPa设计温度 t100.00︒ C内径D i500.00mm材料16MnR(热轧) ( 板材)试验温度许用应力[σ]170.00MPa设计温度许用应力[σ]t170.00MPa试验温度下屈服点σs345.00MPa钢板负偏差C10.00mm腐蚀裕量C2 1.00mm焊接接头系数φ0.85厚度及重量计算计算厚度δ == 1.04mm有效厚度δe =δn- C1- C2= 7.00mm名义厚度δn= 8.00mm 重量481.06Kg压力试验时应力校核压力试验类型液压试验试验压力值PT = 1.25P = 0.7500MPa压力试验允许通过的应力水平[σ]T[σ]T≤0.90 σs = 310.50MPa 试验压力下圆筒的应力σT = = 31.95MPa校核条件σT≤[σ]T校核结果合格压力及应力计算最大允许工作压力[P w]= = 3.99014MPa 设计温度下计算应力σt = = 21.73MPa[σ]tφ144.50MPa 校核条件[σ]tφ≥σt结论合格氮气冷却器前端管箱筒体计算计算条件筒体简图计算压力P c 3.80MPa设计温度 t100.00︒ C内径D i500.00mm材料0Cr18Ni9 ( 板材)试验温度许用应力[σ]137.00MPa设计温度许用应力[σ]t137.00MPa试验温度下屈服点σs205.00MPa钢板负偏差C10.80mm腐蚀裕量C20.00mm焊接接头系数φ0.85厚度及重量计算计算厚度δ == 8.29mm有效厚度δe =δn- C1- C2= 11.20mm名义厚度δn= 12.00mm 重量75.76Kg压力试验时应力校核压力试验类型液压试验试验压力值PT = 1.25P = 4.7500MPa压力试验允许通过的应力水平[σ]T[σ]T≤0.90 σs = 184.50MPa 试验压力下圆筒的应力σT = = 127.53MPa校核条件σT≤[σ]T校核结果合格压力及应力计算最大允许工作压力[P w]= = 5.10266MPa 设计温度下计算应力σt = = 86.72MPa[σ]tφ116.45MPa 校核条件[σ]tφ≥σt结论合格氮气冷却器前端管箱封头计算计算条件椭圆封头简图计算压力P c 3.80MPa设计温度 t100.00︒ C内径D i500.00mm曲面高度h i125.00mm材料0Cr18Ni9 (板材)试验温度许用应力[σ]137.00MPa设计温度许用应力[σ]t137.00MPa钢板负偏差C10.80mm腐蚀裕量C20.00mm焊接接头系数φ 1.00厚度及重量计算形状系数K = = 1.0000计算厚度δ = = 6.98mm有效厚度δe =δn- C1- C2= 11.20mm最小厚度δmin= 0.75mm名义厚度δn= 12.00mm 结论满足最小厚度要求重量32.23Kg压力计算最大允许工作压力[P w]= = 6.06962MPa 结论合格氮气冷却器后端壳程封头计算计算条件椭圆封头简图计算压力P c0.60MPa设计温度 t100.00︒ C内径D i500.00mm曲面高度h i125.00mm材料16MnR(热轧) (板材)试验温度许用应力[σ]170.00MPa设计温度许用应力[σ]t170.00MPa钢板负偏差C10.00mm腐蚀裕量C2 2.00mm焊接接头系数φ 1.00厚度及重量计算形状系数K = = 1.0000计算厚度δ = = 0.88mm有效厚度δe =δn- C1- C2= 6.00mm最小厚度δmin= 0.75mm名义厚度δn= 8.00mm 结论满足最小厚度要求重量19.61Kg压力计算最大允许工作压力[P w]= = 4.05567MPa 结论合格氮气冷却器管板计算设计条件0.60MPa壳程设计压力3.80MPa管程设计压力100.00︒ C壳程设计温度100.00︒ C管程设计温度8.00mm壳程筒体壁厚12.00mm管程筒体壁厚壳程筒体腐蚀裕量C 1.00mm管程筒体腐蚀裕量 C0.00mm500.00mm换热器公称直径换热管使用场合一般场合管板与法兰或圆筒连接方式 ( a b c d 型 ) a型换热管与管板连接方式 ( 胀接或焊接 ) 焊接材料(名称及类型) 0Cr18Ni970.00mm名义厚度管强度削弱系数0.40刚度削弱系数0.40材料泊松比0.30210.00mm2隔板槽面积换热管与管板胀接长度或焊脚高度l 3.50mm191000.00MPa 设计温度下管板材料弹性模量137.00MPa 设计温度下管板材料许用应力68.50MPa许用拉脱力壳程侧结构槽深h10.00mm 板管程侧隔板槽深h2 4.00mm0.00mm壳程腐蚀裕量0.00mm管程腐蚀裕量材料名称0Cr18Ni9换管子外径d19.00mm2.00mm热管子壁厚管U型管根数n138根换热管中心距 S25.00mm137.00MPa 设计温度下换热管材料许用应力垫片材料软垫片压紧面形式1a或1b垫垫片外径D o565.00mm 片垫片内径D i515.00mm a型垫片厚度δg mm 垫片接触面宽度Ωmm垫片压紧力作用中心园直径D G547.11mm 管板材料弹性模量0.00MPa ( c 型 )管板材料弹性模量0.00MPa ( d 型 )( b d 型 )管箱圆筒材料弹性模量0.00MPa ( b c 型 )壳程圆筒材料弹性模量0.00MPa ( c d 型 )管板延长部分形成的凸缘宽度0.00mm ( c 型)壳体法兰或凸缘厚度0.00mm ( d 型 )管箱法兰或凸缘厚度0.00mm参数计算管板布管区面积三角形排列正方形排列一根换热管管壁金属横截面积= 106.81mm2管板开孔前抗弯刚度b c d 型0.00N·mm 管板布管区当量直径436.43mma 型其他系数0.80系数按和查图得 : = 0.000000系数按和查图得 : = 0.000000a d 型= 0b c型0.00a ,c 型= 0b ,d 型0.00a 型= 0其他0.00旋转刚度无量刚系数0.00系数0.2696按和0.07130.0000管板厚度或管板应力计算a管板计算厚度取、大值61.345mm型管板名义厚度66.000mm管板中心处径向应力= 0MPa = 0MPab c d 布管区周边处径向应力= 0MPa型= 0MPa 边缘处径向应力= 0MPa = 0MPa管板应力校核单位:MPa|σr|r=0=b工况|σr |r=Rt=c|σr|r=R=d|σr|r=0=型工况|σr|r=Rt=|σr|r=R=换热管轴向应力计算及校核: MPa (单位)计算工况计算公式计算结果校核只有壳程设计压力, 管程设计压力=0 : |-1.59|≤合格只有管程设计压力,壳程设计压力=0 : =|6.29|≤合格壳程设计压力,管程设计压力同时作用: |4.69|≤合格换热管与管板连接拉脱力校核拉脱力q3.21 ≤[q]MPa校核合格重量64.89Kg氮气冷却器管箱法兰强度计算设计条件简图设计压力 p 3.800 MPa计算压力 pc 3.800 MPa设计温度 t 100.0 ° C轴向外载荷 F 0.0 N外力矩 M 0.0 N.mm壳材料名称0Cr18Ni9体许用应力137.0 MPa法材料名称#许用[s ]f 137.0 MPa兰应力[s ]tf 137.0 MPa材料名称40Cr螺许用[s ]b 212.0 MPa应力[s ]tb 189.0 MPa栓公称直径 d B 24.0 mm螺栓根径 d 1 20.8 mm数量 n 24 个Di 500.0 Do 660.0垫结构尺寸Db 615.0 D外565.0 D内515.0 δ0 16.0 mm Le 22.5 LA 31.5 h 35.0 δ1 26.0 材料类型软垫片N 25.0 m 2.00 y 11.0 压紧面形状1a,1b b 8.94 DG 547.1 片b0≤6.4mm b= b0 b0≤6.4mm DG= ( D外+D内 )/2b0 > 6.4mm b=2.53b0 > 6.4mm DG= D外 - 2b螺栓受力计算预紧状态下需要的最小螺栓载荷Wa Wa= πbDG y = 169119.0 N操作状态下需要的最小螺栓载荷WpWp = Fp + F = 1127044.1N所需螺栓总截面积 Am Am = max (Ap ,Aa ) = 5963.2 mm2 实际使用螺栓总截面积 AbAb = = 8117.5mm2力矩计算操FD = 0.785pc= 745750.0 N LD= L A+ 0.5δ1= 44.5mm MD= FD LD= 33185876.0N.mm作FG = Fp= 233573.5 N LG= 0.5 ( Db - DG )= 33.9mm MG= FG LG= 7928625.5N.mmMp FT = F-FD= 147150.2 N LT=0.5(LA + d 1 + LG )= 45.7mm MT= FT LT= 6728066.0N.mm外压: Mp = FD (LD - LG )+FT(LT-LG ); 内压: Mp = MD+MG+MT Mp = 47842568.0 N.mm 预紧MaW = 1492550.6 N LG = 33.9 mm Ma=W LG = 50664460.0 N.mm 计算力矩 Mo= Mp 与中大者 Mo=50664460.0N.mm螺栓间距校核实际间距= 80.5mm最小间距56.0 (查GB150-98表9-3)mm最大间距158.4mm形状常数确定89.44 h/ho = 0.4 K = Do/DI = 1.3201.6由K查表9-5得T=1.789 Z =3.694 Y =7.145 U=7.851整体法兰查图9-3和图9-4 FI=0.85944 VI=0.31415 0.00961 松式法兰查图9-5和图9-6 FL=0.00000 VL=0.00000 0.00000 查图9-7 f = 1.06578整体法兰 = 松式法兰 = 0.2由得572246.8 0.0ψ=δf e+1 =1.44 g = y /T = =0.811.59= 0.98 剪应力校核计算值许用值结论预紧状态0.00MPa操作状态0.00MPa输入法兰厚度δf = 46.0 mm时, 法兰应力校核应力性质计算值许用值结论轴向应力158.57MPa=205.5 或=342.5( 按整体法兰设计的任意式法兰, 取 )校核合格径向应力77.96MPa= 137.0校核合格切向应力54.14MPa= 137.0校核合格综合应力= 118.27MPa= 137.0校核合格法兰校核结果校核合格氮气冷却器开孔补强计算接管: a,φ219×16计算方法 : GB150-1998 等面积补强法, 单孔设计条件简图计算压力p c 3.8MPa设计温度100℃壳体型式圆形筒体壳体材料名称及类型0Cr18Ni9 板材壳体开孔处焊接接头系数φ0.85壳体内直径D i500mm壳体开孔处名义厚度δn12mm壳体厚度负偏差 C10.8mm壳体腐蚀裕量C20mm壳体材料许用应力[σ]t137MPa接管实际外伸长度100mm接管实际内伸长度0mm 接管材料0Cr18Ni9接管焊接接头系数1名称及类型管材接管腐蚀裕量0mm 补强圈材料名称补强圈外径mm补强圈厚度mm接管厚度负偏差C1t2mm 补强圈厚度负偏差C1r mm 接管材料许用应力[σ]t137MPa 补强圈许用应力[σ]t MPa开孔补强计算壳体计算厚度δ8.293mm 接管计算厚度δt 2.63mm 补强圈强度削弱系数f rr0接管材料强度削弱系数f r1开孔直径d191mm 补强区有效宽度B382mm 接管有效外伸长度h155.28mm 接管有效内伸长度h20mm 开孔削弱所需的补强面积A1584mm2壳体多余金属面积A1555.2mm2接管多余金属面积A21257mm2补强区内的焊缝面积A364mm2A1+A2+A3=1876 mm2 ,大于A,不需另加补强。

换热器强度计算书

换热器强度计算书

换热器强度计算书
换热器强度计算书是一份重要的技术文件,用于评估换热器在设计条件下的结构强度和安全性。

以下是一个简要的换热器强度计算书的示例,供参考:
1. 换热器概述
对换热器的类型、设计条件、主要结构和材料进行描述。

2. 设计规范和标准
列出计算所依据的相关设计规范和标准。

3. 载荷分析
分析换热器在正常操作、停车、检修等不同工况下所承受的载荷,包括压力、温度、重量等。

4. 强度计算
根据载荷分析的结果,采用适当的计算方法(如压力容器设计规范中的计算公式)对换热器的各个部件进行强度计算,包括壳体、封头、接管、法兰等。

5. 结果评估
对强度计算的结果进行评估,判断是否满足设计规范和标准的要求。

如有不满足的情况,提出相应的改进措施。

6. 结论
总结强度计算的结果,明确换热器在设计条件下的结构强度是否满足要求。

7. 附录
包括计算所使用的主要公式、计算过程中的中间结果、材料性能数据等。

需要注意的是,这只是一个示例,实际的换热器强度计算书应根据具体的设计条件和要求进行编制,并由专业的工程师进行审核和签署。

换热器的强度计算

换热器的强度计算

确定了换热器的结构及尺寸以后,必须对换热器的所有受压元件进行强度计算。

因为管壳式换热器一般用于压力介质的工况,所以换热器的壳体大多为压力容器,必须按照压力容器的标准进行计算和设计,对于钢制的换热器,我国一般按照GB150<<钢制压力容器>>标准进行设计,或者美国ASME标准进行设计。

对于其它一些受压元件,例如管板、折流板等,可以按照我国的GB151<<管壳式换热器>>或者美国TEMA标准进行设计。

对于其它材料的换热器,例如钛材、铜材等应按照相应的标准进行设计。

下面提供一氮气冷却器的受压元件强度计算,以供参考。

该换热器为U形管式换热器,壳体直径500mm,管程设计压力3.8MPa,壳程设计压力0.6MPa。

详细强度计算如下:1.壳程筒体强度计算2. 前端管箱筒体强度计算3. 前端管箱封头强度计算4. 后端壳程封头强度计算5.管板强度计算6. 管程设备法兰强度计算7. 接管开孔补强计算氮气冷却器(U形管式换热器)筒体计算计算条件筒体简图计算压力P c0.60MPa设计温度 t100.00︒ C内径D i500.00mm材料16MnR(热轧) ( 板材)试验温度许用应力[σ]170.00MPa设计温度许用应力[σ]t170.00MPa试验温度下屈服点σs345.00MPa钢板负偏差C10.00mm腐蚀裕量C2 1.00mm焊接接头系数φ0.85厚度及重量计算计算厚度δ == 1.04mm有效厚度δe =δn- C1- C2= 7.00mm名义厚度δn= 8.00mm 重量481.06Kg压力试验时应力校核压力试验类型液压试验试验压力值PT = 1.25P = 0.7500MPa压力试验允许通过的应力水平[σ]T[σ]T≤0.90 σs = 310.50MPa 试验压力下圆筒的应力σT = = 31.95MPa校核条件σT≤[σ]T校核结果合格压力及应力计算最大允许工作压力[P w]= = 3.99014MPa 设计温度下计算应力σt = = 21.73MPa[σ]tφ144.50MPa 校核条件[σ]tφ≥σt结论合格氮气冷却器前端管箱筒体计算计算条件筒体简图计算压力P c 3.80MPa设计温度 t100.00︒ C内径D i500.00mm材料0Cr18Ni9 ( 板材)试验温度许用应力[σ]137.00MPa设计温度许用应力[σ]t137.00MPa试验温度下屈服点σs205.00MPa钢板负偏差C10.80mm腐蚀裕量C20.00mm焊接接头系数φ0.85厚度及重量计算计算厚度δ == 8.29mm有效厚度δe =δn- C1- C2= 11.20mm名义厚度δn= 12.00mm 重量75.76Kg压力试验时应力校核压力试验类型液压试验试验压力值PT = 1.25P = 4.7500MPa压力试验允许通过的应力水平[σ]T[σ]T≤0.90 σs = 184.50MPa 试验压力下圆筒的应力σT = = 127.53MPa校核条件σT≤[σ]T校核结果合格压力及应力计算最大允许工作压力[P w]= = 5.10266MPa 设计温度下计算应力σt = = 86.72MPa[σ]tφ116.45MPa 校核条件[σ]tφ≥σt结论合格氮气冷却器前端管箱封头计算计算条件椭圆封头简图计算压力P c 3.80MPa设计温度 t100.00︒ C内径D i500.00mm曲面高度h i125.00mm材料0Cr18Ni9 (板材)试验温度许用应力[σ]137.00MPa设计温度许用应力[σ]t137.00MPa钢板负偏差C10.80mm腐蚀裕量C20.00mm焊接接头系数φ 1.00厚度及重量计算形状系数K = = 1.0000计算厚度δ = = 6.98mm有效厚度δe =δn- C1- C2= 11.20mm最小厚度δmin= 0.75mm名义厚度δn= 12.00mm 结论满足最小厚度要求重量32.23Kg压力计算最大允许工作压力[P w]= = 6.06962MPa 结论合格氮气冷却器后端壳程封头计算计算条件椭圆封头简图计算压力P c0.60MPa设计温度 t100.00︒ C内径D i500.00mm曲面高度h i125.00mm材料16MnR(热轧) (板材)试验温度许用应力[σ]170.00MPa设计温度许用应力[σ]t170.00MPa钢板负偏差C10.00mm腐蚀裕量C2 2.00mm焊接接头系数φ 1.00厚度及重量计算形状系数K = = 1.0000计算厚度δ = = 0.88mm有效厚度δe =δn- C1- C2= 6.00mm最小厚度δmin= 0.75mm名义厚度δn= 8.00mm 结论满足最小厚度要求重量19.61Kg压力计算最大允许工作压力[P w]= = 4.05567MPa 结论合格氮气冷却器管板计算设计条件0.60MPa壳程设计压力3.80MPa管程设计压力100.00︒ C壳程设计温度100.00︒ C管程设计温度8.00mm壳程筒体壁厚12.00mm管程筒体壁厚壳程筒体腐蚀裕量C 1.00mm管程筒体腐蚀裕量 C0.00mm500.00mm换热器公称直径换热管使用场合一般场合管板与法兰或圆筒连接方式 ( a b c d 型 ) a型换热管与管板连接方式 ( 胀接或焊接 ) 焊接材料(名称及类型) 0Cr18Ni970.00mm名义厚度管强度削弱系数0.40刚度削弱系数0.40材料泊松比0.30210.00mm2隔板槽面积换热管与管板胀接长度或焊脚高度l 3.50mm191000.00MPa 设计温度下管板材料弹性模量137.00MPa 设计温度下管板材料许用应力68.50MPa许用拉脱力壳程侧结构槽深h10.00mm 板管程侧隔板槽深h2 4.00mm0.00mm壳程腐蚀裕量0.00mm管程腐蚀裕量材料名称0Cr18Ni9换管子外径d19.00mm2.00mm热管子壁厚管U型管根数n138根换热管中心距 S25.00mm137.00MPa 设计温度下换热管材料许用应力垫片材料软垫片压紧面形式1a或1b垫垫片外径D o565.00mm 片垫片内径D i515.00mm a型垫片厚度δg mm 垫片接触面宽度Ωmm垫片压紧力作用中心园直径D G547.11mm 管板材料弹性模量0.00MPa ( c 型 )管板材料弹性模量0.00MPa ( d 型 )( b d 型 )管箱圆筒材料弹性模量0.00MPa ( b c 型 )壳程圆筒材料弹性模量0.00MPa ( c d 型 )管板延长部分形成的凸缘宽度0.00mm ( c 型)壳体法兰或凸缘厚度0.00mm ( d 型 )管箱法兰或凸缘厚度0.00mm参数计算管板布管区面积三角形排列正方形排列一根换热管管壁金属横截面积= 106.81mm2管板开孔前抗弯刚度b c d 型0.00N·mm管板布管区当量直径436.43mma 型其他系数0.80系数按和查图得 : = 0.000000系数按和查图得 : = 0.000000a d 型= 0b c型0.00a ,c 型= 0b ,d 型0.00a 型= 0其他0.00旋转刚度无量刚系数0.00系数0.2696按和0.07130.0000管板厚度或管板应力计算a 管板计算厚度取、大值61.345mm型管板名义厚度66.000mm管板中心处径向应力= 0MPa = 0MPab c d 布管区周边处径向应力= 0MPa型= 0MPa 边缘处径向应力= 0MPa = 0MPa管板应力校核单位:MPa|σr|r=0=b工况|σr |r=Rt=c|σr|r=R=d|σr|r=0=型工况|σr|r=Rt=|σr|r=R=换热管轴向应力计算及校核: MPa (单位)计算工况计算公式计算结果校核只有壳程设计压力, 管程设计压力=0 : |-1.59|≤合格只有管程设计压力,壳程设计压力=0 : =|6.29|≤合格壳程设计压力,管程设计压力同时作用: |4.69|≤合格换热管与管板连接拉脱力校核拉脱力q3.21 ≤[q]MPa校核合格重量64.89Kg氮气冷却器管箱法兰强度计算设计条件简图设计压力 p 3.800 MPa计算压力 pc 3.800 MPa设计温度 t 100.0 ° C轴向外载荷 F 0.0 N外力矩 M 0.0 N.mm壳材料名称0Cr18Ni9体许用应力137.0 MPa法材料名称#许用[s ]f 137.0 MPa兰应力[s ]tf 137.0 MPa材料名称40Cr螺许用[s ]b 212.0 MPa应力[s ]tb 189.0 MPa栓公称直径 d B 24.0 mm螺栓根径 d 1 20.8 mm数量 n 24 个Di 500.0 Do 660.0垫结构尺寸Db 615.0 D外565.0 D内515.0 δ0 16.0 mm Le 22.5 LA 31.5 h 35.0 δ1 26.0 材料类型软垫片N 25.0 m 2.00 y 11.0 压紧面形状1a,1b b 8.94 DG 547.1 片b0≤6.4mm b= b0 b0≤6.4mm DG= ( D外+D内 )/2b0 > 6.4mm b=2.53b0 > 6.4mm DG= D外 - 2b螺栓受力计算预紧状态下需要的最小螺栓载荷Wa Wa= πbDG y = 169119.0 N操作状态下需要的最小螺栓载荷WpWp = Fp + F = 1127044.1N所需螺栓总截面积 Am Am = max (Ap ,Aa ) = 5963.2 mm2 实际使用螺栓总截面积 AbAb = = 8117.5mm2力矩计算操FD = 0.785pc= 745750.0 N LD= L A+ 0.5δ1= 44.5mm MD= FD LD= 33185876.0N.mm作FG = Fp= 233573.5 N LG= 0.5 ( Db - DG )= 33.9mm MG= FG LG= 7928625.5N.mmMp FT = F-FD= 147150.2 N LT=0.5(LA + d 1 + LG )= 45.7mm MT= FT LT= 6728066.0N.mm外压: Mp = FD (LD - LG )+FT(LT-LG ); 内压: Mp = MD+MG+MT Mp = 47842568.0 N.mm 预紧MaW = 1492550.6 N LG = 33.9 mm Ma=W LG = 50664460.0 N.mm 计算力矩 Mo= Mp 与中大者 Mo=50664460.0N.mm螺栓间距校核实际间距= 80.5mm最小间距56.0 (查GB150-98表9-3)mm最大间距158.4mm形状常数确定89.44 h/ho = 0.4 K = Do/DI = 1.3201.6由K查表9-5得T=1.789 Z =3.694 Y =7.145 U=7.851整体法兰查图9-3和图9-4 FI=0.85944 VI=0.31415 0.00961 松式法兰查图9-5和图9-6 FL=0.00000 VL=0.00000 0.00000 查图9-7 f = 1.06578整体法兰 = 松式法兰 = 0.2由得572246.8 0.0ψ=δf e+1 =1.44 g = y /T = =0.811.59= 0.98 剪应力校核计算值许用值结论预紧状态0.00MPa操作状态0.00MPa输入法兰厚度δf = 46.0 mm时, 法兰应力校核应力性质计算值许用值结论轴向应力158.57MPa=205.5 或=342.5( 按整体法兰设计的任意式法兰, 取 )校核合格径向应力77.96MPa= 137.0校核合格切向应力54.14MPa= 137.0校核合格综合应力= 118.27MPa= 137.0校核合格法兰校核结果校核合格氮气冷却器开孔补强计算接管: a,φ219×16计算方法 : GB150-1998 等面积补强法, 单孔设计条件简图计算压力p c 3.8MPa设计温度100℃壳体型式圆形筒体壳体材料名称及类型0Cr18Ni9 板材壳体开孔处焊接接头系数φ0.85壳体内直径D i500mm壳体开孔处名义厚度δn12mm壳体厚度负偏差 C10.8mm壳体腐蚀裕量C20mm壳体材料许用应力[σ]t137MPa接管实际外伸长度100mm接管实际内伸长度0mm 接管材料0Cr18Ni9接管焊接接头系数1名称及类型管材接管腐蚀裕量0mm 补强圈材料名称补强圈外径mm补强圈厚度mm接管厚度负偏差C1t2mm 补强圈厚度负偏差C1r mm 接管材料许用应力[σ]t137MPa 补强圈许用应力[σ]t MPa开孔补强计算壳体计算厚度δ8.293mm 接管计算厚度δt 2.63mm 补强圈强度削弱系数f rr0接管材料强度削弱系数f r1开孔直径d191mm 补强区有效宽度B382mm 接管有效外伸长度h155.28mm 接管有效内伸长度h20mm 开孔削弱所需的补强面积A1584mm2壳体多余金属面积A1555.2mm2接管多余金属面积A21257mm2补强区内的焊缝面积A364mm2A1+A2+A3=1876 mm2 ,大于A,不需另加补强。

固定管板式换热器计算

固定管板式换热器计算
系数(带膨胀节时 代替Q)

系数(按K,Q或Qex查图30)
法兰力矩折减系数
管板边缘力矩变化系数

法兰力矩变化系数

管板开孔后面积Al= A- 0.25nd2
mm2


管板布管区面积
(三角形布管)
(正方形布管)
mm2

管板布管区当量直径
mm
系数

系数

系数

系数(带膨胀节时 代替Q)

管板布管区当量直径与壳体内径之比
Wp=Fp+F=
N
所需螺栓总截面积Am
Am= max (Ap,Aa) =
mm2
实际使用螺栓总截面积Ab
Ab= =
mm2
力矩计算

FD= 0.785 pc
=
N
LD=LA+ 0.5δ1
=
mm
MD=FDLD
=
N.mm

FG=Fp
=
N
LG= 0.5 (Db-DG)
=
mm
MG=FGLG
=
N.mm
Mp
FT=F-FD
mm
材料
试验温度许用应力
MPa
设计温度许用应力t
MPa
试验温度下屈服点s
MPa
钢板负偏差C1
mm
腐蚀裕量C2
mm
焊接接头系数
厚度及重量计算
计算厚度
= =
mm
有效厚度
e=n-C1- C2=
mm
名义厚度
n=
mm
重量
Kg
压力试验时应力校核
压力试验类型

固定管板式换热器结构设计与强度计算

固定管板式换热器结构设计与强度计算

毕业设计任务书一.题目:固定管板式换热器的结构设计与强度计算二.主要完成内容:在已知工艺参数的基础上,经过工艺计算确定换热器的工艺尺寸,在此基础上进行结构设计。

正确选择换热器的材料和设计方法,确定换热器的总体结构尺寸,对U型膨胀节、鞍座等零部件结构进行设计计算,学会标准件的选用,并熟悉GB150-98和GB151-98的使用。

用AUTOCAD2008绘出换热器的结构装配图及必要的零部件图。

已知参数:管程压力 4.0Mpa(绝对压力) 壳程压力 2.5MPa((绝对压力) 热水进口温度90℃热水出口温度68℃冷水进口温度10℃冷水出口温度18℃冷却水流量35kg/s三.进程安排:(按12周计)1---------1 借阅资料,熟悉设计内容。

学院内2--------2 确定用材及设计思路。

学院内完成基本工艺计算。

3--------5 完成换热器结构设计和强度计算。

学院内6-------6 U型膨胀节设计和鞍座校核。

学院内7------8 标准零部件选用。

学院内9------10 AUTOCAD绘图,发图。

学院内11 整理、完成设计说明书,提交全部内容。

学院内12 准备答辩学院内四.参考资料:(1)《GB150---98压力容器设计规范》标准出版社(2)《GB151---98钢制管壳式换热器设计规范》标准出版社(3)《过程设备设计》化学工业出版社(4)《换热器设计》化学工业出版社(5)《化工原理》化学工业出版社(6)《材料与零部件》(上)化学工业出版社五.指导教师:徐向红六.学生姓名:化机102 阿依努尔·艾拜。

换热器结构设计及强度计算 说明书

换热器结构设计及强度计算   说明书

摘要本次设计的题目为汽提塔冷凝器。

汽提塔冷凝器是换热器的一种应用,这里我设计成浮头式换热器。

浮头式换热器是管壳式换热器系列中的一种,它的特点是两端管板只有一端与外壳固定死,另一端可相对壳体滑移,称为浮头。

浮头式换热器由于管束的膨胀不受壳体的约束,因此不会因管束之间的差胀而产生温差热应力,另外浮头式换热器的优点还在于拆卸方便,易清洗。

在化工工业中应用非常广泛。

本文对浮头式换热器进行了整体的设计,按照设计要求,在结构的选取上,采用了1-2型,即壳侧一程,管侧两程。

首先,通过换热计算确定换热面积与管子的根数初步选定结构。

然后按照设计的要求以及一系列国际标准进行结构设计,之后对各部分进行校核。

本次毕业设计任务是流量为3500kg/h,浮头式换热器的机械设计,工作压力管程为0.43MPa、壳程为0.042MPa,工作温度管程为61℃、壳程为80℃。

通过本次毕业设计,我熟悉了浮头式换热器的工艺流程,掌握了浮头式换热器的结构及计算方法,了解了浮头式化热器的制造要求及安装过程。

但是,限于经验不足和水平有限,一定存在缺点甚至错误之处,敬请老师批评指正。

关键词:换热器;浮头式;管程;壳程AbstractThe topic of my study is the design of stripper condenser. stripper condenser is one of applications heat exchanger.In here, my design is the floating head heat exchanger. The floating head heat exchanger is a special type of tube and shell heat exchanger. It is special for its floating head. One of its tube sheet is fixed,while another can float in the shell,so called floating head. As the tubes can expand without the restriction of the shell,it can avoid thermal stress. Another advantage is that it can be dismantled and clean easily . It is widely used in chemical industry. In this study an overall design of the floating head heat exchanger is carried out .According to the demand the type 1-2 is chosen to be the basic type,which has one segment in shell and two segment in tubes. First,heat transfer is calculated to determine the heat exchange surface area and the number of tubes that needed. Then,according to the request and standards,structural of system is well designed. After that,the finite element analysis of the shell is completed.The graduation design task is 3500kg/h flow of the floating head heat exchanger, the mechanical design, working pressure tube 0.4 3MP, shell, work process of 0.042MP for 61 ℃, the temperature tube for 80 ℃shell cheng. Through the graduation design, I am familiar with the floating head heat exchanger process, mastered the structure of floating head heat exchanger and calculation method of floating head, learned the heat exchanger is manufacturing requirements and installation process. But, due to lack of experience and limited ability, certain shortcomings and even mistakes, please the teacher criticism and corrections.KEY WORDS:HEAT EXCHANGER;FLOATING HEAD;TUBE-SIDE;SHELL-SIDE目录第一章 换热器概述 (1)1.1 换热器的应用 (1)1.2 换热器的主要分类 (1)1.2.1 换热器的分类及特点 (1)1.2.2 管壳式换热器的分类及特点 (2)1.3 管壳式换热器特殊结构 (5)1.4 换热管简介 (5)第二章 工艺计算 (7)2.1 设计条件 (7)2.2换热器传热面积与换热器规格: (8)2.2.1 流动空间的确定 (8)2.2.2 初算换热器传热面积'A .......................................................................................... 8 2.2.3 传热管数及管程的确定 ........................................................................................... 9 2.2.4管心距的计算 (9)2.2.5换热器型号、参数的确定 (9)2.2.6壳体内径计算 (9)2.2.7折流板的计算 (10)2.3换热器核算 (10)2.3.1传热系数核算 (11)2.3.2换热器的流体阻力 (13)2.3.3换热器的选型 (14)第三章 换热器的结构计算和强度计算 (15)3.1换热器的壳体设计 (15)3.2筒体材料及壁厚 (15)3.3封头的材料及壁厚 (16)3.4管箱材料的选择及壁厚的计算 (16)3.5开孔补强计算 (17)3.6水压试验及壳体强度的校核 (19)3.7 换热管 (20)3.7.1 换热管的排列方式 (20)3.7.2 布管限定圆L D (20)3.7.3 排管 (21)3.7.4 换热管束的分程 (21)3.8 管板设计 (22)3.8.1 管板与壳体的连接 (22)3.8.2 管板计算 (22)3.8.3 管板重量计算 (26)3.9折流板 (26)3.9.1 折流板的型式和尺寸 (27)3.9.2 折流板排列 (27)3.9.3 折流板的布置 (27)3.10拉杆与定距管 (27)3.10.1 拉杆的结构形式 (27)3.10.2 拉杆的直径、数量及布置 (28)3.10.3 定距管 (28)3.11法兰和垫片 (28)3.11.1固定端的壳体法兰、管箱法兰与管箱垫片 (28)3.11.2外头盖侧法兰、外头盖法兰与外头盖垫片、浮头垫片 (30)3.11.3 接管法兰型式与尺寸 (31)3.12钩圈式浮头 (32)3.12.1 浮头盖的设计计算 (33)3.13分程隔板 (38)3.14鞍座 (38)3.14.1 支反力计算如下 (38)3.14.2 鞍座的型号及尺寸 (40)3.15接管的最小位置 (40)3.15.1壳程接管位置的最小尺寸 (40)3.15.2 管箱接管位置的最小尺寸 (41)附录外文翻译 (45)参考文献 (55)第一章换热器概述过程设备在生产技术领域中的应用十分广泛,是在化工、炼油、轻工、交通、食品、制药、冶金、纺织、城建、海洋工程等传统部门所必需的关键设备,而换热设备则是广泛使用的一种通用的过程设备。

固定管板式换热器管板的应力分析和强度评定

固定管板式换热器管板的应力分析和强度评定

固定管板式换热器管板的应力分析和强度评定作者:杨翠娟来源:《名城绘》2019年第04期摘要:换热器设备在化工、石油、食品等多种工业生产中应用广泛。

在换热器制造过程中,管板与换热管之间的连接结构和连接质量一定程度上决定了换热器的质量优劣和使用寿命。

由于管板与换热管连接区域结构不连续,从而易产生各种连接质量问题,因此在危险工况下对管板与换热管连接部位进行应力分析和强度校核是十分必要的。

关键词:固定管板式换热器;管板;应力分析;强度评定目前,对换热器管板结构进行应力分析的研究已有较多成果。

应用ANSYS软件对固定管板式换热器在机械载荷和温度载荷共同作用下的应力强度进行分析,并对危险截面进行强度校核,得出应在不同危险工况下,对换热器不同部位进行分析和评定才能保证其安全可靠运行的结论;分析了不同操作工况下管板模型的应力场,得出除了筒体上的一次薄膜应力起控制作用外,管板的强度控制因素是位于管板与筒体连接圆角过渡处的一次应力加二次应力,且最大值发生在热载荷和壳程压力同时作用的操作工况下的结论;通过建立包括壳体、管束在内的管板三维实体有限元模型,将法兰垫片用等效的均布比压来代替,分析了管板在包括开工、正常工作和停车等过程中可能出现的七种瞬态和稳态操作工况下的强度状况。

1管板结构的静力分析在反映结构力学特性的前提下,模拟时进行以下简化:1)不考虑管板与换热管焊接热应力影响;2)不考虑管板与壳体的连接焊缝;3)不考虑管板兼做法兰螺栓对其的受力。

选择管板一侧面与所有换热管孔面施加450℃的温度载荷,并在该侧面施加2MPa的压力载荷;在管板另一侧面施加147℃的温度载荷和0.6MPa的压力载荷;沿半径方向,对换热器管板最外边缘施加全约束。

分析应力发现,该工况下管板结构的最大应力为46.9MPa,管板最大应力发生外侧管孔局部区域,其他区域应力值并不大。

采用管板材料为Q345R,450℃板厚为80mm的钢板许用应力为66MPa。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

软件批准号:CSBTS/TC40/SC5-D01-1999
DATA SHEET OF PROCESS EQUIPMENT DESIGN
工程名:
PROJECT
设备位号:
ITEM
设备名称:
EQUIPMENT
图 号:
DWG NO。

设计单位:压力容器专用计算软件
DESIGNER
设 计 Designed by 日期Date
校 核 Checked by 日期Date
审 核 Verified by 日期Date
批 准 Approved by 日期Date
固定管板换热器设计计算 计算单位压力容器专用计算软件
设 计 计 算 条 件
壳 程 管 程
设计压力 p
2.4 MPa设计压力 p t0.6 MPa
s
设计温度 t
100 °C设计温度 t t60 °C s
壳程圆筒外径Do 325 mm 管箱圆筒外径Do 325 mm 材料名称 20(GB8163) 材料名称 20(GB8163)
简 图
计 算 内 容
壳程圆筒校核计算
前端管箱圆筒校核计算
前端管箱封头(平盖)校核计算
后端管箱圆筒校核计算
后端管箱封头(平盖)校核计算
管箱法兰校核计算
开孔补强设计计算
管板校核计算
延长部分兼作法兰固定式管板 设计单位 压力容器专用计算软件
设 计 计 算 条 件 简 图
设计压力 p s 2.4 MPa
设计温度 T s 100 C °
平均金属温度 t s 0 °
C 装配温度 t o
15 °
C
壳 材料名称 20(GB8163)
设计温度下许用应力[σ]t
147 Mpa 程 平均金属温度下弹性模量 E s 2.023e+05 Mpa
平均金属温度下热膨胀系数αs
1.076e-05
mm/mm °
C
圆 壳程圆筒内径 D i 309 mm 壳 程 圆 筒 名义厚 度 δs 8 mm 壳 程 圆 筒 有效厚 度 δse
5.8 mm 筒 壳体法兰设计温度下弹性模量 E f ’
1.97e+05 MPa 壳程圆筒内直径横截面积 A=0.25 π D i 2 7.499e+04 mm 2
壳程圆筒金属横截面积 A s =πδs ( D i +δs )
5736 mm 2 管 设计压力p t 0.6 MPa
箱 设计温度T t 60 °
C
圆 材料名称
20(GB8163) 筒 设计温度下弹性模量 E h 2.01e+05 MPa 管箱圆筒名义厚度(管箱为高颈法兰取法兰颈部大小端平均值)δh 8 mm 管箱圆筒有效厚度δhe
7 mm 管箱法兰设计温度下弹性模量 E t ” 1.99e+05 MPa
材料名称
BFe10-1-1 换 管子平均温度 t t
0 °
C
设计温度下管子材料许用应力 [σ]t t 63 MPa 设计温度下管子材料屈服应力σs t 94 MPa 热 设计温度下管子材料弹性模量 E t t
1.21e+05 MPa 平均金属温度下管子材料弹性模量 E t 1.249e+05 MPa 平均金属温度下管子材料热膨胀系数αt 1.153e-05 mm/mm °
C 管 管子外径 d 9.5 mm
管子壁厚δt
0.6
mm
注:。

相关文档
最新文档