北师大版初一数学下讲义整式的乘除

合集下载

北师大版七年级数学下册《整式的乘法》整式的乘除PPT优质课件

北师大版七年级数学下册《整式的乘法》整式的乘除PPT优质课件
所以2n-2-n=1且3m+1+m-6=3.
已知 求 的值.
所以m、n的值分别是m=1,n=2.
解:
所以2m+2=4且3m+2n+2=9.
故 m=1, n=2
ZYT
例2 有一块长为xm,宽为ym的长方形空地,现在要在这块地中规划一块长 xm,宽 ym的长方形空地用于绿化,求绿化的面积和剩下的面积.
3a3 ·2a2=6a5
3x2 ·4x2=12x4
5y3·3y5=15y8
×
×
×
ZYT
计算:(1) 5x3·2x2y ; (2) -3ab·(-4b2) ;(3) 3ab·2a; (4) yz·2y2z2;
(1)5x3·2x2y=(5×2)·(x3·x2)·y=10x5y.(2)-3ab·(-4b2)=[(-3)×(-4)]·a·(b·b2)=12ab3.(3)3ab·2a=(3×2)·(a·a)·b=6a2b.(4)yz·2y2z2=2·(y·y2)·(z·z2)=2y3z3.
解:
ZYT
5.若长方形的宽是a2,长是宽的2倍,则长方形的面积为 _____.【解析】长方形的长是2a2,所以长方形的面积 为a2·2a2=2a4.
2a4
6.一个三角形的一边长为a,这条边上的高的长度是它的 那么这个三角形的面积是_____.【解析】因为三角形的高为 ,所以这个三角形的 面积是
=6a3-12a2+9a-6a3-8a2
=-20a2+9a.
原式=-20×4-9×2=-98.
方法总结:在做乘法计算时,一定要注意单项式的符号和多项式中每一项的符号,不要搞错.
ZYT
先化简再求值:
解:原式=x4-x3+x2-x4+x3-x2+5x

北师大版初一数学(下)讲义--整式的乘除

北师大版初一数学(下)讲义--整式的乘除

第一章:整式的乘除1.1同底数幂的乘法复习回顾:复习七年级上册数学课本中介绍的有关乘方运算知识:探索新知1.利用乘方的意义,计算103×102. 解:103×102=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10 (乘法的结合律)=105. 2.建立幂的运算法则将上题中的底数改为a ,则有 a 3·a 2=(aaa)·(aa)=aaaaa =a 5, 即a 3·a 2=a 5=a 3+2. 用字母m ,n 表示正整数,则有即a m ·a n =a m+n .3.剖析法则思考以下问题:(1)等号左边是什么运算? (2)等号两边的底数有什么关系? (3)等号两边的指数有什么关系?(4)公式中的底数a 可以表示什么? (5)当三个以上同底数幂相乘时,上述法则是否成立? 请大家试着叙述这个法则:应用提高探讨pn m a a a ⋅⋅等于什么? 课堂训练(1)-a 2·a 6 (2)(-x)·(-x)3 (3)y m ·y m+1 (4)()3877⨯-(5)()3766⨯- (6)()()435555-⨯⨯- (7)()()b a b a -⋅-2(8)()()b a a b -⋅-2(9)x 5·x 6·x 3 (10)-b 3·b (11)-a·(-a)3 (12)(-a)2·(-a)3·(-a)1.2 幂的乘方与积的乘方(一) 复习回顾复习已学过的幂的意义及幂运算的运算法则 1、幂的意义 2、.nm nmaa a +=⋅(m 、n 为正整数)同底数幂相乘,底数不变,指数相加。

探索新知根据已经学习过的知识,回忆并探讨以下实际问题:1. 乙正方体的棱长是 2 cm, 则乙正方体的体积 V 乙 = cm 3 。

2019年北师大七年级(下)数学 第一章:整式的乘除运算讲义

2019年北师大七年级(下)数学 第一章:整式的乘除运算讲义

2019年北师大七年级(下) 第一章:整式的乘除运算讲义【解题方法与策略】整式的乘法(1)单项式与单项式相乘:系数、同底数幂分别相乘作为积的因式,只有一个单项式里含有的字母,则连同它的指数作为积的一个因式.如:23234233ab a b c a b c ⋅=,两个单项式的系数分别为1和3,乘积的系数是3,两个单项式中关于字母a 的幂分别是a 和2a ,乘积中a 的幂是3a ,同理,乘积中b 的幂是4b ,另外,单项式ab 中不含c 的幂,而2323a b c 中含2c ,故乘积中含2c .(2)单项式与多项式相乘:单项式分别与多项式中的每一项相乘,然后把所得的积相加.公式为:()m a b c ma mb mc ++=++,其中m 为单项式,a b c ++为多项式.(3)多项式与多项式相乘:将一个多项式中的每一个单项式分别与另一个多项式中的每一个单项式相乘,然后把积相加.公式为:()()m n a b ma mb na nb ++=+++整式的除法(1)单项式除以单项式:系数、同底数的幂分别相除作为商的因式,对于只在被除式中含有的字母,则连同它的指数作为商的一个因式.如:2322233a b c ab ab c ÷=,被除式为2323a b c ,除式为ab ,系数分别为3和1,故商中的系数为3,a 的幂分别为2a 和a ,故商中a 的幂为21a a -=,同理,b 的幂为2b ,另外,被除式中含2c ,而除式中不含关于c 的幂,故商中c 的幂为2c .(2)多项式除以单项式:多项式中的每一项分别除以单项式,然后把所得的商相加.公式为:()a b c m a m b m c m ++÷=÷+÷+÷,其中m 为单项式,a b c ++为多项式.典例剖析【例1】 下列计算正确的是( )A .236326a a a ⋅=B .358248x x x ⋅=C .44339x x x ⋅=D .88165510y y y ⋅=【例2】 直接写出结果:(1)23232a b a b ⋅= (2)22558x y xyz ⋅=(3)3263b a b ⎛⎫⋅-= ⎪⎝⎭(4)()()2424a b b -⋅-=【例3】 计算:(1)3223152a bc ab ⎛⎫⎛⎫⋅ ⎪ ⎪⎝⎭⎝⎭(2)()()1323443m x yz x y z +⋅-(3))21).(43).(32(222z xy z yz x -- (4)33332543ab a b abc ⎛⎫⎛⎫⋅-⋅- ⎪ ⎪⎝⎭⎝⎭(4)()()1245m m a b b a -⎡⎤⎡⎤-⋅--⎣⎦⎣⎦ (6)()()()21536m n m x y x y y x +⎡⎤-⋅-⋅-⎣⎦【练习】计算2332536()()()()1245x y x y x y y x ⎡⎤+⋅--⋅--⋅-⎢⎥⎣⎦.【例4】 计算:(1)()()43322.a ab c (2)()()233222x x y -⋅-(3)()()23226.3xy x y ⎛⎫-⋅- ⎪⎝⎭(4)()32223334x x y xy ⎛⎫⎛⎫-⋅-⋅- ⎪⎪⎝⎭⎝⎭(5)()()2323m n x y x y -⋅ (6)()()()232223m n n x y x y xy -⋅-⋅-【例5】 若()18333m n m n a a b a b ++⋅=,则m = ,n = .【例6】 如果223a b x y --和35825a b a bx y ++是同类项,那么这两个单项式的积是 .【例7】 直接写出结果:(1)()62m n ---= (2)()222a a ab b --=(3)()()253a b ab -+⋅-= (4)()21684.2x x x ⎛⎫-+--= ⎪⎝⎭(5)()23413=3x x x ⎛⎫--+- ⎪⎝⎭ (6)()1=m m na a a --【例8】 计算:(1)()()22324a a b a a ab --- (2)()()222131a b ab ab ab -++-(3)()()2321322m n x x x x ⎡⎤---⎢⎥⎣⎦ (4)()()3213222m n ab b a b b a b ⎡⎤⎛⎫+--⋅- ⎪⎢⎥⎝⎭⎣⎦(5)()()()()534233515221x x y x x y ⎡⎤--⋅---⎣⎦ (6)12123111264226n n x y xy x y xy ++⎛⎫⎛⎫-⋅--⋅ ⎪ ⎪⎝⎭⎝⎭【例9】 化简求值25365(21)4(3)24m m m n m m n --+-+---,其中12m n =-=,.【例10】 解方程()()()22614116x x x x x x ---=-+.【练习】若2(31)6(3)16x x x x --+-=,则______x =.【例11】 解不等式()()()222224253x x x x x x -+-+-≤.【例12】 对代数式进行恰当的变形求代数式的值 (1)若56x y +=,求2530x xy y ++;(2)若210m m +-=,求3222013m m ++;(3)若20x y +=,求()3342x xy x y y +++.【例13】 直接写出结果:(1)()()a b m n ++= (2)()()2a b m n +-= (3)()()23x x +-= (4)()()34y y --= (5)()()3x y x y -+= (6)()()22a b a b --=【例14】 下列计算正确的是:( )A .()()22222a b a b a b +-=-B .()()22a b a b a b --+=-C .()()22333103a b a b a ab b --=-+D .()()2233a b a ab b a b --+=-【例15】 下列计算正确的是:( )A .()2222a b a ab b --=-+ B .()222a b a b -=-C .()()()2244x y x y x y x y +--=-D .()()222244a b b a a ab b --=-+-【例16】 计算:(1)()()3123a a +- (2))214)(221(-+x x(3)()(2)x y x y ++ (4)()()43a b a b ---(5)(2)(2)(21)a a a -++; (6)233222()()x y x y x y -⋅-【例17】 计算:(1)(2)(3)a a a +- (2)()()0.10.20.30.4m n m n -+(3)2(23)(2)()x y x y x y -+-+ (4)2(2)(2)()a b a b a b +--+(5)22()()()x y x y y x -+--+ (6)()()22x xy y x y ++-【例18】 已知230a a --=,则(3)(2)a a -+的值是_________.【例19】 (1)若()()22345+x x ax bx c +-=+,则a = ,b = ,c = .(2)若2(2)()6x x n x mx --=-+,则___________m n ==,.【例20】 已知22()()26x my x ny x xy y ++=+-,求()m n mn +的值.【例21】 先化简再求值:()()()()3123454a a a a +----,其中2a =-.【例22】 直接写出结果:(1)52x x ÷= (2)94y y ÷= (3)88x x ÷= (4)()()106xy xy ÷= (5)()63c c -÷= (6)()1312x x -÷= (7)()323x x ⎛⎫÷-= ⎪⎝⎭(8)()5122ax x -÷=(9)()()7426=3a b b a -÷- (10)()0π 3.14-=【例23】 计算:(1)()42m m nx x x ÷⋅ (2)42m m n x x x ÷⋅(3)()()233223a b a÷ (4)211528n n a a -⎛⎫-÷ ⎪⎝⎭(5)()()2483pq m n n m ⎡⎤--÷-⎣⎦ (6)()()21212n n x y x y +⎡⎤⎡⎤+÷+⎢⎥⎣⎦⎣⎦【练习】计算:(1)222(4)8x y y ÷(2)2322393m n m n n m a b c a b ---÷(3)3232213()()34a b ab ÷ (4)2322(0.8)(4)n n x y x y ÷【例24】 若()28332233m n ax y x y x y ÷=,求a m n 、、的值.【例25】 化简求值:()()()43242322422a a a a a a ⎡⎤⎡⎤⋅-÷-÷-⋅⎢⎥⎢⎥⎣⎦⎣⎦,其中5a =-.【例26】 直接写出结果:(1)()269123x x -+÷= (2)()()32281477x x x x --÷-= (3)()()32121866x x x x -+÷-= (4)()()433226892x y x y x y xy -+÷-=【例27】 计算:(1)472632211()()393a b a b ab -÷-(2)()282342336( 1.8)0.655a b a b a b ab --÷(3)()323453360.90.645a x a x ax ax ⎡⎤-+-÷⎢⎥⎣⎦(4)()()2233735322728217m n m m n m n m n ⎡⎤+-÷-⎢⎥⎣⎦【例28】 先化简,再求值:()()()2232a b ab b b a b a b --÷-+- ,其中15a =-,1b =- .【练习】()()()()32322524a b a b a b a b a +--+--÷⎡⎤⎣⎦,其中23a b =-=,.【例29】 已知2610x x -+=,求221x x +的值.【练习】已知23530x x --=,求221x x +的值.【例30】 已知多项式322x x ax -+的除式为1bx -,商式为22x x -+,余式为2,求a b 、的值.【例31】 将一多项式()()221734x x ax bx c ⎡⎤-+-++⎣⎦,除以()56x +后,得商式为()21x +余式为1 求a b c --= .【例32】 (3)x +与(2)x m -的积中不含x 的一次项,则________m =.【例33】 如果2(1)(5)x x ax a +-+的乘积中不含2x 项,则a 为_________.【练习】已知23(536)(12)x mx x x -+--的计算结果中不含3x 的项,则m 的值为 .【例34】 计算322(25)(231)x x x x -+--+.【例35】 已知21ax bx ++与2231x x -+的积不含3x 的项,也不含x 的项,试求a 与b 的值.【练习】使22(8)(3)x px x x q ++-+的积中不含2x 和3x ,求p ,q 的值.【例36】 在()()22231x ax b x x ++--的积中,3x 项的系数是5-,2x 项的系数是6-,求a b 、的值.【练习】已知多项式432222(1)(2)x x x x mx x nx +++≡++++,求m 与n 的值.【例37】 已知实数a b x y 、、、满足35ax by ay bx +=-=,.求()()2222a b x y ++的值.【例38】 规定一种新运算“*”:a *()()()()2534b a b a b =++-++,试化简()1m -*()1n +.【练习】规定一种新运算“*”:对于任意实数()x y ,恒有()x y ,*()()211x y x y x y =++--,,.若实数a b ,满足()a b ,*()()=a b b a ,,,则a b ,的值为多少?【例39】 已知()5543221x ax bx cx dx ex f +=+++++,则a b c d e +++++的值为 ;a b c d e f -+-+-的值 .【练习】已知()66543232x ax bx cx dx ex fx g -=++++++,则a c e g +++的值为 ; b d f ++的值为 .知识回顾计算:(1)()()22x x +- (2)()()3131x x +- (3)()()a b a b +- (4)()()2323x x +-(5)()21x + (6)()221x - (7)()2a b + (8)()2a b -【解题方法及策略】平方差公式22()()a b a b a b +-=-平方差公式的特点:即两数和乘以它们的差等于这两数的平方差. ①左边是一个二项式相乘,这两项中有一项完全相同,另一项互为相反数. ②右边是乘方中两项的平方差(相同项的平方减去相反项的平方). 注意:①公式中的a 和b 可以是具体的数也可以是单项式或多项式. 如:2(2)(2)4a a a +-=-;22(3)(39x y x y x y +-=-); 22()()()a b c a b c a b c +++-=+-;3535610()()a b a b a b +-=-.②不能直接运用平方差公式的,要善于转化变形.如:97103(1003)(1003)9991⨯=-+=;22()()()()a b b a a b a b a b +-+=+-=-完全平方公式222()2a b a ab b +=++;222()2a b a ab b -=-+即两数和(或差)的平方,等于它们的平方和加上(或减去)它们积的2倍.完全平方公式的特点:左边是一个二项式的完全平方,右边是一个二次三项式,其中有两项是公式左边二项式中的每一项的平方,另一项是左边二项式中两项乘积的2倍,可简单概括为口诀:“首平方,尾平方,积2倍在中央”.注意:①公式中的a 和b 可以是单项式,也可以是多项式。

北师大版七年级数学下册第一章 整式的乘除1 同底数幂的乘法

北师大版七年级数学下册第一章  整式的乘除1 同底数幂的乘法
(4) b2m ·b2m+1 .
解:(1) 原式 = (-3)7 + 6 = (-3)13.
(2) 原式 = 1 3 1
1
4
.
111
111
(3) 原式 = -x3 + 5= -x8.
提醒:计算同底数 幂的乘法时,要注 意算式里面的负号 是属于幂的还是属 于底数的.
(4) 原式 = b2m + 2m + 1 = b4m + 1.
m 个 (-3) = (-3)m+n.
n 个 (-3)
猜一猜 am ·an = a (m + n ).
议一议 如果 m,n 都是正整数,那么 am ·an 等于什么? 为什么?
am·an = ( a ·a · … · a ) ·( a ·a · … · a ) (乘方的意义)
(m 个a) (n个a) = a ·a ·… ·a (乘法的结合律)
7
( m,n 都是正整数)
1
n
和 (-3)m×(-3)n 呢?
7
解:2m×2n=(2×2×···×2)× (2×2×···×2) =2m + n
m个2
1m 1n 1 1
1
11
7 7 77
7 77
n个2
1
1 mn
77
m

1 7
m

1 7
(-3)m×(-3)n
=[ (-3)×(-3)×···×(-3)]×[ (-3)×(-3)×···×(-3)]
( m+n个a)
= a( m+n ). (乘方的意义)
定义总结
同底数幂的乘法 运算法则:am ·an = am+n (m,n 都是正整数).

北师大版七年级下册 第一章 整式的乘除 复习巩固 讲义(全)

北师大版七年级下册 第一章 整式的乘除 复习巩固 讲义(全)

.

6、已知 a+b=3, a2+b2=5,求 ab 的值
7、若 m n 10 , mn 24 ,则 m2 n2
.
8、若 x y 8, xy 10 ,则 x 2 y 2 =
.
8、已知: x y 3, x 2 y 2 3xy 4 , 求: x3 y xy 3 的值

考点 5:不含项
【例 7】
1、要使 6x a2x 1 的结果中不含 x 的一次项,则 a 等于( )
A.0
B.1
C.2
D.3
2、使 x2 px 8 x2 3x q 的积中不含 x2 和 x3 ,求 p,q 的值。
变式训练
1、如果(x+1)(x2-5ax+a)的乘积中不含x2项,则a为

2、若
x
m
考点 4:乘法公式的灵活运用与拓展
【例 6】
1、已知 x y 6, xy 8 ;则 x2 y2 =
.
2、已知 m2 9m 1 0 ,则 m2 m2 =
.
3、若 x2 8x 18 2k 是一个完全平方式,则 k
.

变式训练
1、已知 x 2 5x 1 0 ,则 x 2 x 2 =
x
1 3
的乘积中不含
x
的一次项,则
m
等于______.
3、当 k =
时,多项式 x 2 3kxy 3y 2 1 xy 8 中不含 xy 项. 3
4、已知 ax2 bx 1 与 2x2 3x 1 的积不含 x3 的项,也不含 x 的项,试求 a 与 b 的值。
4、如(x+m)与(x+3)的乘积中不含 x 的一次项,则 m 的值。

北师版初一下第一章整式的乘除复习课件

北师版初一下第一章整式的乘除复习课件

(x)3 (x)2 (x) (x)6 x6
2、幂的乘方
法则:幂的乘方,底数不变,指数相乘。
数学符号表示: (a m ) n a mn
(其中m、n为正整数)
[(a m )n ] p amnp (其中m、n、P为正整数)
练习:判断下列各式是否正确。
(a4)4 a44 a8,[(b2)3]4 b234 b24
A 1,2; B 2,1 C 1,1, D 1,3
2、下列运算正确的是:( C )
A x3·x2=x6
B x3-x2=x
C(-x)2·(-x)=-x3 D x6÷x2=x3
3、已知代数式3y2-2y+6的值为8,则代数式 1.5y2-y+1的值为(B )
A1 B2
C 3 D4
4请你观察图形,依据图形面积间的关系,不需要添加辅助线,便 可得到两个你非常熟悉的公式,这两个公式分别是
1 c= 20 x+21
,则代
数式 a2+b2+c2-ab-bc-ca 的值是( B )
A. 4
B.3
C.2
D.1
12、若a,b都是有理数且满足 2a2 -2ab+b 2 +4a+4=0 ,
则2ab的值等于( B )
A. -8
B. 8
C.32
D.2004
13、下列算式正确的是( D )
A、—30=1
9、完全平方公式 法则:两数和(或差)的平方,等于这两数 的平方和再加上(或减去)这两数积的2倍。
数学符号表示:
(a b)2 a2 2ab b2; (a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.

(新北师大七下)第一单元整式的乘除基础知识+练习

(新北师大七下)第一单元整式的乘除基础知识+练习

(新北师大七下)第一单元整式的乘除基础知识+练习 姓名一.〈知识点〉回顾1、幂的运算法则:(1)同底数幂相乘:n m a a ∙= (m 、n 为正整数)=⋅⋅32a a a __ ; 108a a ∙= ;421010⋅=____ ;25()()()x x x ---=(2)幂的乘方:()n m a = (m 、n 为正整数) 22(10)= 22()a = ___)(32=a 25()x ⎡⎤-⎣⎦= (3)积的乘方:()nab = (n 为正整数) _____)(3=xy ; 32)2(mn -=_______ ; 23)102(⨯=_________ (4)同底数幂相除:m n a a ÷= (m 、n 为正整数,a ≠0) 87 a a ÷= ; 22b b ÷= ;(5)零指数0a = (a ≠ ) (-2)0= 负指数=-p a (a ≠ )(-1)-2= 2)21(-= 5-2= (6)科学记数法:0.00000058=2.整式的乘除① 单项式×单项式: _____5=⋅x x ; 2a ·2a= ; ______=⋅ab ab ; -4xy • 3x 2y=_______5343=⋅x x ; _______)2)((=--x x ;_________)2(32=-∙a b a② 单项式×多项式: ()m a b c ++=a (2a 2-4a +3)= ; -2a 2(3a 2+4a -2)= 。

③多项式×多项式相乘:=++))((b a n m __________________(x -2)(x -6)= =(2x -1)(3x +2)= = ________________)75)(4(=-+y x y x =④单项式÷单项式:27x 3x ÷= 12mn 4mn ÷=-⑤多项式÷单项式:(4x 3y +6x 2y 2-xy 3)÷2xy=(6a 4-4a 3-2a 2)÷(-2a 2)=3.乘法公式: 平方差公式:___________________))((=-+b a b a完全平方和公式:______________________)(2=+b a 完全平方差公式:______________________)(2=-b a (1)(x +2)(x -2) (2)(x -8y )(x +8y ) (3)(2x -3)(-2x -3)解:原式= 解:原式= 解:原式=(4)2(3)a b -= (5)21(4)2x + (6)2(2)a b -+=解:原式= 解:原式= 解:原式=综合练习:1.x m =3,x n =5,则x m+n = ,x 3m+2n = , x m-n = , x 3m-2n = 。

北师大版七年级下册数学《第一章 整式的乘除--完全平方公式》知识点讲解!

北师大版七年级下册数学《第一章 整式的乘除--完全平方公式》知识点讲解!

北师大版七年级下册数学《第一章整式的乘除--完全平方公式》知识点讲解!1.完全平方公式:(a+b)2=a2+b2+2ab (a-b)2=a2+b2-2ab两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。

2.派生公式:(a+b)2-2ab=a2+b2(a-b)2+2ab=a2+b2(a-b)2+(a+b)2=2(a2+b2) (a+b)2-(a-b)2=4ab考点解析完全平方公式是进行代数运算与变形的重要知识基础。

该知识点重点是对完全平方公式的熟记及应用,难点是对公式特征的理解(如对公式中积的一次项系数的理解)。

两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式。

为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。

理解公式左右边特征(一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性;(二)学会用文字概述公式的含义:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.(三)这两个公式的结构特征是:1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.(四)两个公式的统一:因为所以两个公式实际上可以看成一个公式:两数和的完全平方公式。

这样可以既可以防止公式的混淆又杜绝了运算符号的出错。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章:整式的乘除1.1同底数幂的乘法➢ 复习回顾:复习七年级上册数学课本中介绍的有关乘方运算知识:➢ 探索新知1.利用乘方的意义,计算103×102. 解:103×102=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10 (乘法的结合律)=105. 2.建立幂的运算法则将上题中的底数改为a ,则有 a 3·a 2=(aaa)·(aa)=aaaaa =a 5, 即a 3·a 2=a 5=a 3+2. 用字母m ,n 表示正整数,则有即a m ·a n =a m+n .3.剖析法则思考以下问题:(1)等号左边是什么运算? (2)等号两边的底数有什么关系? (3)等号两边的指数有什么关系?(4)公式中的底数a 可以表示什么? (5)当三个以上同底数幂相乘时,上述法则是否成立? 请大家试着叙述这个法则:➢ 应用提高探讨pn m a a a ⋅⋅等于什么? ➢ 课堂训练(1)-a 2·a 6 (2)(-x)·(-x)3 (3)y m ·y m+1 (4)()3877⨯-(5)()3766⨯- (6)()()435555-⨯⨯- (7)()()b a b a -⋅-2 (8)()()b a a b -⋅-2(9)x 5·x 6·x 3 (10)-b 3·b (11)-a·(-a)3 (12)(-a)2·(-a)3·(-a)1.2 幂的乘方与积的乘方(一) ➢ 复习回顾复习已学过的幂的意义及幂运算的运算法则 1、幂的意义 2、.nm nmaa a +=⋅(m 、n 为正整数)同底数幂相乘,底数不变,指数相加。

➢ 探索新知根据已经学习过的知识,回忆并探讨以下实际问题:1. 乙正方体的棱长是 2 cm, 则乙正方体的体积 V 乙 = cm 3 。

甲正方体的棱长是乙正方体的 5 倍,则甲正方体的体积 V 甲 = cm 3 。

2. 乙球的半径为 3 cm, 则乙球的体积V 乙 = cm 3甲球的半径是乙球的10倍,则甲球的体积V 甲 = cm 3 . 如果甲球的半径是乙球的n 倍,那么甲球体积是乙球体积的 倍。

地球、木星、太阳可以近似地看作球体。

木星、太阳的半径分别约是地球的10倍和102倍,它们的体积分别约是地球的 倍和 倍.探究:为什么()6321010=?将式中的10换为a 又会得到什么结果?计算下列各式,并说明理由(1) (62)4 ; (2) (a 2)3 ; (3) (a m )2 ; (4) (a m )n .通过上面的探索活动,发现了什么?幂的乘方,底数__________,指数__________。

➢ 课堂训练1、计算:(1) (102)3 (2) (b 5)5 (3) (a n )3 (4) -(x 2)m (5) (y 2)3 · y (6) 2(a 2)6 - (a 3)42.计算:(1) (103)3 (2) -(a 2)5 (3) (x 3)4 · x 2 (4) [(-x )2 ]3 (5) (-a )2(a 2)2 (6) x ·x 4 – x 2 · x 33.判断下面计算是否正确?如果有错误请改正:(1) (x 3)3 = x 6 (2)a 6 · a 4 = a 244.完成下列各题⑴ a 12 =(a 3)( ) =(a 2)( )=a 3 a ( )=( )3 =( )4⑵ 32﹒9m =3( ) ⑶ y 3n =3, y 9n = .⑷ (a 2)m +1 = . ⑸ [(a -b )3]2 =(b -a )( )(6)若4﹒8m ﹒16m =29 ,则m = .(7)如果 2a =3 ,2b =6 ,2c=12, 那么 a 、b 、c 的关系是 .1.3 幂的乘方与积的乘方(二)➢ 复习回顾:复习前几节课学习的有关幂的三个知识点: 1.幂的意义2.同底数幂的乘法运算法则.nm nma a a +=⋅(m 、n 为正整数)3.幂的乘方运算法则(a m )n =a m n(m 、n 都是正整数)➢ 探索新知(1)根据幂的意义,(ab)3表示什么?(2)为了计算(化简)算式ab·ab·ab ,可以应用乘法的交换律和结合律。

又可以把它写成什么形式? (3)由特殊的 (ab)3=a 3b 3 出发, 你能想到一般的公式吗?此环节的三个连贯性问题用到了刚刚复习到的幂的意义及根据其建立的数学模型。

1.借助刚刚探讨的结果,完成下面三个问题。

①(3×5)7=3( )×5( ) ②(3×5)m =3( )×5( ) ③(ab)n =a ( )b ( )2.学会复述积的乘方的运算法则:(ab )n =a n b n积的乘方等于把各个因式分别乘方,再把所得的幂相乘。

3.进一步探讨:(abc)n =4.公式拓展:三个或三个以上的积的乘方,是否也具有上面的性质? 怎样用公式表示?➢ 课堂训练1. 下面的计算是否正确?如有错误请改正. (1)844)(ab ab =;(2)2226)3(q p pq -=- 2.计算下列各题:(1)(3x )2 ; (2)(-2b )5 ; (3)(-2x y )4 ; (4)(3a 2)n.3.地球可以近似地看做是球体,如果用V , r 分别代表球的体积和半径,那么334r V π=。

地球的半径约为6×103 千米,它的体积大约是多少立方千米? 4.公式逆用训练(1)23×53 ;(2) 28×58(3) (-5)16 × (-2)15 (4) 24 × 44 ×(-0.125)4(5) a 3·a 4·a+(a 2)4 +(-2a 4)2 (6) 2(x 3)2·x 3 –(3x 3)3+(5x )2·x 7(7)0.25100×4100 (8) 812×0.125135.提高练习 ①计算:21)1(5.022*********--⨯⨯- ②已知32=m,42=n 求n m 232+的值。

③已知5=nx 3=ny 求ny x 22)(的值。

④已知552=a ,443=b ,335=c ,试比较a 、b 、c 的大小。

1.4 同底数幂的除法一、情境引入活动内容:一种液体每升含有 1012 个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀虫剂可以杀死 109 个此种细菌,要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?你是怎样计算的?二、了解同底数幂除法的运算及应用计算下列各式,并说明理由(m>n );1010)1(58÷ ;1010)2(n m ÷ ;)3()3)(3(n m -÷-从中归纳出同底数幂除法的运算性质。

从上面的练习中你发现了什么规律? 。

猜一猜:()n m n m a a a n m >都是正整数,且,,0≠=÷。

三、同底数幂除法运算的应用【例1】计算:;)1(47a a ÷ ;)())(2(36x x -÷- );())(3(4xy xy ÷;)4(222b b m ÷+ ;)())(5(38m n n m -÷- .)())(6(24m m -÷-【例2】地震的强度通常用里克特震级表示,描绘地震级数的数字表示地震的强度是10的若干次幂。

例如用里克特震级表示地震是8级,说明地震的强度是710。

1992年4月荷兰发生了5级地震,12天后,加利福尼亚发生了7级地震。

加利福尼亚地震强度是荷兰地震强度的多少倍?x四、探索零指数幂和负整数指数幂的意义想一想:10000=104 , 16=24 1000=10(), 8=2() 100=10() , 4=2() 10=10(), 2=2() 猜一猜:1=10() 1=2()0.1=10()21=2() 0.01=10() 41=2()0.001=10() 81=2()通过以上的计算,你得到的规律是什么?【例3】 计算:用小数或分数分别表示下列各数:➢ 课堂训练1.下列计算中错误的有( )5210)1(a a a =÷ 55)2(a a a a =÷ 235)())(3(a a a -=-÷- 33)4(0=A.1个B.2个C.3个D.4个 2.计算()()2232a a -÷的结果正确的是( )A.2a - B.2a C.-a D.a 3.用科学记数法表示下列各数: (1)0.000876 (2)-0.00000014.计算:(1)()())2(2224y x x y y x -÷-÷- (2)()()[]()()989y x x y y x y x --÷-÷-+5.计算=÷÷3927m m 6.若b a y x ==3,3,求的yx -23的值1.5 整式的乘法(一)➢ 复习回顾问题1:前面学习了哪三种幂的运算?运算方法分别是什么? 请分别用语言和字母表示幂的三种运算性质。

问题2:运用幂的运算性质计算下列各题:(1)(-a 5)5 、 (2) (-a 2b)3 、(3) (-2a)2(-3a 2)3 (4) (-y n )2 y n-1➢ 探索新知一七年级三班举办新年才艺展示,小明的作品是用同样大小的纸精心制作的两幅剪贴画,如右图所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有x 81米的空白,你能表示出两幅画的面积吗? 问题1:以上求矩形的面积时,会遇到 mx x ⋅,)43()(x mx ⋅,这是什么运算呢 ? 问题2:什么是单项式?(表示数与字母的积的代数式叫做单项式)4203106.1)3(;87)2(10)1(---⨯⨯我们知道,整式包括单项式和多项式,从这节课起我们就来研究整式的乘法,先学习单项式乘以单项式。

➢ 探索新知二思考以下三个问题:问题1:对于实际问题的结果mx x ⋅,)43()(mx mx ⋅可以表达得更简单些吗?说说你的理由? 问题2:类似地,3a 2b·2ab 3和(xyz )·y 2z 可以表达的更简单一些吗?问题3:如何进行单项式与单项式相乘的运算?单项式乘法的法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

相关文档
最新文档