初一数学整式的加减的知识点

合集下载

初一整式知识点总结归纳

初一整式知识点总结归纳

初一整式知识点总结归纳整式是初中数学中的重要概念,它是指由数及其相乘所得的代数式。

在初一阶段,我们学习了一些与整式相关的知识点,本文将对这些知识点进行总结和归纳。

一、基本概念整式由常数、变量及其相乘所得的代数式构成。

常数和变量的乘积称为单项式,多个单项式相加所得的代数式称为多项式。

在初一阶段,我们主要接触到一元整式,即只含有一个变量的整式。

二、整式的运算1. 同类项的合并:在多项式中,含有相同变量的项称为同类项。

合并同类项时,将它们的系数相加,保留相同的字母部分。

例如,2x +3x = 5x,2a^2b - 4a^2b = -2a^2b。

2. 整式的加减法:将多项式按照同类项进行合并,得到简化的整式。

例如,(3x + 2y) - (2x - y) = x + 3y。

3. 整式的乘法:将多项式中的每一项与另一个多项式中的每一项进行相乘,并将结果合并得到积。

例如,(2x + 3)(x - 4) = 2x^2 - 5x - 12。

4. 整式的乘方:将整式中的每一项进行乘方运算。

例如,(2x + 3)^2 = 4x^2 + 12x + 9。

5. 整式的乘方公式:对于一些常见的整式乘方,可以使用乘方公式进行化简。

例如,(a + b)^2 = a^2 + 2ab + b^2。

三、整式的因式分解因式分解是将整式表示为几个乘积的形式。

一般来说,整式的因式分解有以下几种方法:1. 公因式提取:提取整式中的公因子,将其拆分为公因子与括号中的因式乘积。

例如,2x + 6 = 2(x + 3)。

2. 完全平方式:当整式是二次三项式时,可以使用完全平方式进行因式分解。

例如,x^2 + 5x + 6 = (x + 2)(x + 3)。

3. 分组分解法:将整式中的项进行合理的分组,然后进行公式提取。

例如,ax + bx + ay + by = (a + b)(x + y)。

4. 特殊因式公式:对于一些特殊形式的整式,可以直接使用特殊因式公式进行因式分解。

初一上册数学整式的加减

初一上册数学整式的加减

初一上册数学整式的加减整式是指将数与字母按照一定的规则结合起来,并包含有加减乘除等运算符的代数表达式。

在初一上册的数学课程中,学生需要学习整式的加减运算。

整式的加减运算是指,将两个或多个整式相加或相减的过程。

在进行加减运算时,我们需要按照一定的规则进行合并同类项。

首先,回顾一下整式的基本概念。

整式由字母和系数相乘的项组成,例如3x、7y、2xy等都是整式的项。

整式由多个项相加或相减得到,例如3x+7y、2xy-4x等都是整式。

在整式中,字母表示未知数或变量,常数系数表示字母的倍数。

在整式的加减运算中,我们需要注意以下几个步骤:1.合并同类项:将具有相同字母幂的项进行合并。

例如,3x+5x可以合并为8x,2xy-3xy可以合并为-xy。

2.需要注意符号:合并同类项时要注意项的符号。

正项加正项得正项,负项加负项得负项。

例如,3x-5x可以合并为-2x,-3xy+4xy可以合并为xy。

3.保留未合并的项:合并同类项后,未合并的项保持不变。

例如,3x+5x-2x可以先合并为6x,再加上未合并的项-2x,结果为4x。

4.删除系数为零的项:合并同类项后,如果得到的项的系数为零,则该项可以删除。

在具体的计算中,我们可以使用运算规律和运算性质来简化计算过程。

首先,加减运算具有交换律。

即a+b=b+a,a-b=-(b-a)。

这意味着我们可以改变加法和减法的顺序,而结果不变。

其次,加减运算具有结合律。

即(a+b)+c=a+(b+c),(a-b)-c=a-(b+c)。

这意味着我们可以改变加减运算中的括号位置,而结果不变。

此外,加减运算还具有分配律。

即a(b+c)=ab+ac,a(b-c)=ab-ac。

这意味着我们可以将一个整式与另一个整式的和或差相乘,然后再进行加减运算。

在实际的计算中,我们可以先进行合并同类项,然后按照上述的运算规律和运算性质来简化计算过程,最后得到结果。

综上所述,初一上册的数学课程中,学生需要学习整式的加减运算。

七年级整式知识点总结归纳

七年级整式知识点总结归纳

七年级整式知识点总结归纳整式是代数学中非常重要的一种形式,是由一些常数和变量以及运算符号组成的多项式。

它是整体式子的表示,可以表示出一些非常重要的代数关系,是许多数学问题的关键。

在七年级的数学知识点中,整式的概念和应用非常重要,下面将对七年级整式进行总结归纳。

一、整式的基本概念整式是由常数、变量及其系数,以及加、减、乘、幂运算组成的多项式。

它有以下几个基本要素:1. 项:整式中加、减的单元就是项,由变量及其次数和常数乘积组成。

2. 单项式:只含有一个项的整式,也就是kx^n这样的式子,其中k是常数,x是变量,n是整数。

3. 多项式:由若干个单项式相加或相减得到的式子,也就是整数加减的组合。

4. 次数:整式中所有单项式中次数最高的那个就是整式的次数,只有多项式才有次数。

二、整式的基本性质整式有以下几个基本性质:1. 加法交换律和结合律:整式加法满足交换律和结合律,也就是说,不管多项式中各项的顺序如何,整式的值都一样。

2. 乘法交换律和结合律:整式乘法满足交换律和结合律,也就是说,不管整式中各项的顺序如何,整式的值都一样。

3. 同类项的加减:同类项指的是变量相同且次数相同的单项式,可以通过合并同类项来简化整式。

4. 因式分解:整式可以通过因式分解来化简,使得整式的阶数降低,计算更加简便。

三、整式的应用整式在数学中有很多重要应用,如下:1. 代数方程的解:代数方程可以通过变形将其变为整式形式,从而求解。

2. 几何问题的解:整式可以表示几何实体的属性,如面积、体积等,从而解决几何问题。

3. 理论分析:整式可以表示出很多复杂的代数关系,对理论的分析和研究提供了基础。

四、整式的乘法公式整式的乘法也有一些非常实用的公式,如下:1. (a+b)^2=a^2+2ab+b^22. (a-b)^2=a^2-2ab+b^23. (a+b)(a-b)=a^2-b^24. (a+b)^3=a^3+3a^2b+3ab^2+b^35. (a-b)^3=a^3-3a^2b+3ab^2-b^36. a^2-b^2=(a+b)(a-b)以上这些公式,在解决代数问题的时候会非常有用。

第二章 第5课 整式的加减(去括号)-七年级上册初一数学(人教版)

第二章 第5课 整式的加减(去括号)-七年级上册初一数学(人教版)

第二章第5课整式的加减(去括号)-七年级上册初一数学(人教版)一、整式的加减(去括号)概述整式是指由常数、变量及它们的积和商以及乘方构成的代数式。

整式的加减运算是指将两个或多个整式相加或相减的过程。

在进行整式的加减运算时,常常会遇到括号,而去括号是进行整式加减运算的关键步骤之一。

本课将重点讲解如何去括号进行整式的加减运算。

二、去括号的基本方法对于一个被括号包围的整式,去括号就是将括号内的表达式扩展成多项式。

去括号的方法包括:直接扩展法、分配律法则和合并同类项法则。

2.1 直接扩展法直接扩展法就是将括号内的每一项与括号外的每一项相乘。

例如,对于整式(3x+2)(4x−5)进行去括号,按照直接扩展法则,我们将(3x+2)(4x−5)扩展为$3x\\cdot4x + 3x\\cdot(-5) + 2\\cdot4x + 2\\cdot(-5)$。

2.2 分配律法则分配律是指将一个括号内的整式分别与括号外的整式相乘,再将所得的乘积相加。

例如,对于整式3x(4x+2)进行去括号,按照分配律法则,我们将3x(4x+2)分别与4x和2相乘,再将所得的乘积相加,即$3x\\cdot4x + 3x\\cdot2$。

2.3 合并同类项法则合并同类项法则是指将同类项相加或相减,得到的结果仍然是同类项。

同类项是指含有相同的字母和相同的幂的项。

例如,2x和5x是同类项,3x2和4x2是同类项。

三、整式的加减运算步骤整式的加减运算步骤如下:1.去括号:按照去括号的基本方法,对于括号内的整式进行扩展;2.合并同类项:对于得到的多项式,将同类项相加或相减,得到最简形式的整式。

以下是一些具体的例子,展示了整式的加减运算步骤。

3.1 例题1计算(2x+3)(4x−5)。

解答:首先,按照直接扩展法则去括号,得到:$2x\\cdot4x + 2x\\cdot(-5) +3\\cdot4x + 3\\cdot(-5)$。

然后,根据合并同类项法则,将同类项相加,得到最简形式的整式。

整式及其加减

整式及其加减

第 1 页 共 1 页 金牌数学专题系列专题一:整式的加减导入经典一笑:-----《知识点及题型精选》-----►►►类型一:单项式一.知识点:1、单项式:由 数或字母 的乘积组成的式子称为单项式。

补充,单独一个 数 或一个 字母 也是单项式,如a ,π,5 。

2、单项式系数:单项式是由数字因数和字母因数两部分组成的,其中的数字因数叫做单项式的系数。

3、单项式次数:单项式中所有 字母 的指数的 和 叫做单项式的次数。

注意:π是数字而不是字母。

二、典型例题判断下列各式子哪些是单项式?(1) πab ; (2)35a b -; (3) 1y x +。

指出各单项式的系数:(1) 31a 2h , ;(2) 322r , ;(3) 223ab π- , 。

注意:π是数字而不是字母。

指出各单项式的次数:(1)31a 2h , ;(2)3232r h , ;(3)423ab π-, ; 三、《过手训练》(1)y 9的系数是____ 次数是 ; 单项式2125R π-的系数是 _____ ,次数是____。

(2)232a b 的系数是 ___ 次数是 ;单项式-652y x 的系数是 ,次数是 . (3) 如果32(1)m x y +是关于x,y 的单项式,且系数是2,求m 的值;(4) 如果2k xy +-是关于x,y 一个5次单项式,求k 的值;(5) 如果3(1)k m xy +-是关于x,y 的一个5次单项式,且系数是2, 求m k +的值; (6) 如果32(2)m x y +是关于x,y 的单项式,且系数是3,则m= 。

古时有一位新上任的县令,让手下的管家买一根竹竿。

由于县令是外地人,口音与当地不同,管家将竹竿听成了猪肝,于是到集市上买了猪肝,顺便敲诈了两只猪耳朵,放在自己兜里。

回来后,县令大怒,说:“谁叫你买猪肝,你两只耳朵哪里去了?!”管家一听,吓坏了,忙从兜里掏出两只猪耳朵献上,说:“两只耳朵在这里。

初一数学整式的加减的知识点_知识点总结

初一数学整式的加减的知识点_知识点总结

初一数学整式的加减的知识点_知识点总结初一数学整式的加减的知识点 - 知识点总结在初一数学学习中,整式的加减是一个重要的知识点。

掌握了整式的加减运算规则,将有助于我们解决各种复杂的数学问题。

本文将对初一数学整式的加减的知识点进行总结和归纳。

一、整式的基本概念整式是指由数字、字母及其乘积按照代数运算法则相加减构成的代数式。

整式的加减运算是指按照相同变量的幂次相同的原则进行合并和化简。

二、整式的加法1. 同类项合并在整式的加法中,首先需要将同类项进行合并。

所谓同类项,是指它们具有相同的字母或常数因子。

例如:2x + 3x - 5x + 4y - 2y,将变量x和y的系数相同的项合并,得到:2x - 5x - 2y。

2. 合并同类项后的化简合并同类项后,我们可以对整式进行进一步的化简。

将同类项相加减得到一个系数,并保留原有的字母部分。

例如:2x - 5x - 2y 可进一步化简为 -3x - 2y。

三、整式的减法整式的减法也是按照相同变量的幂次相同的原则进行合并和化简,与加法类似。

例如:(2x + 3y) - (x - y),将括号内的加法运算符变为减法运算符,然后进行同类项合并,得到:2x + 4y。

四、整式加减混合运算整式的加减运算可以与其他运算符混合进行运算。

具体的计算顺序是按照数学运算的规则进行,先进行括号内的计算,然后按照乘方、乘法、除法、加法、减法的顺序进行计算。

例如:(2x^2 + 3xy) - (x^2 - 2xy) + 4y^2,首先进行括号内的运算,得到:2x^2 + 3xy - x^2 + 2xy + 4y^2,然后进行同类项合并,得到:x^2 + 5xy + 4y^2。

五、整式加减的注意事项1. 不同变量之间的项不能合并。

例如:2x + 3y - x,2x和-x是同类项,可以合并为x,但是3y是与其他项不同类的项,不能与其它项合并。

所以最终结果为:x + 3y。

2. 注意减法的特殊处理。

七年级整式知识点大全

七年级整式知识点大全

七年级整式知识点大全整式在初中数学课程中是一个非常重要的知识点,是初中代数的基础。

学好整式对于后面的数学学习有着非常重要的作用。

本文将为大家讲解七年级整式知识点,包括定义、加减乘除四则运算等方面的内容。

一、整式的定义整式是一类以字母和数字为基本元素,仅包含加减和乘法运算的数学表达式。

常见的整式有单项式和多项式两种,其中单项式指只包含一个项的整式,多项式指包含多个项的整式。

例如,2x+3y和4x^2+5xy-6y^2就是两个多项式。

二、单项式的基本性质单项式可以看做是数字与字母的乘积,其中的数字叫做系数,字母叫做未知数。

对于单项式的基本性质,我们可以总结如下几点:1. 系数可以是整数、分数、甚至是负数。

2. 未知数的指数可以是自然数、0或负整数。

当指数为0时,该项的值为1。

3. 同一未知数可以有多个,不同未知数之间可以相乘。

例如,2x和-3/4xy^2就是两个单项式。

三、多项式的基本性质多项式是由单项式相加或相减而成,通常用多个单项式相加或相减的形式表示。

对于多项式的基本性质,我们可以总结如下几点:1. 多个单项式相加或相减得到的式子称为多项式。

2. 每一个单项式在多项式中称作一项。

3. 不同项之间可以相加或相减。

4. 多项式中各项的次数可以不同。

例如,2x+3y和4x^2+5xy-6y^2就是两个多项式。

四、整式的加减法整式的加法是指将相同次数的单项式或多项式相加,得到一个新的同次数的单项式或多项式。

整式的减法和加法是类似的,只需要将相同次数的单项式或多项式相减即可。

例如,(2x+3y)+(4x-5y)就可以化简为6x-2y,(4x^2+5xy-6y^2)-(2x^2-3xy+7y^2)就可以化简为2x^2+8xy-13y^2。

五、整式的乘法整式的乘法是指将两个或多个单项式或多项式相乘,得到一个新的单项式或多项式。

在进行整式的乘法时,需要遵循以下原则:1. 我们可以先将系数相乘,再将未知数相乘,最后将得到的系数和指数相乘。

初一上册数学第一次月考知识点

初一上册数学第一次月考知识点

初一上册数学第一次月考知识点
一、代数部分
1. 整式的加减
重点:同类项的概念及合并同类项。

考试题目:选择题、填空题、解答题。

2. 一元一次方程
重点:一元一次方程的解法及应用。

考试题目:选择题、填空题、解答题。

3. 几何部分
重点:线段、角的概念及性质。

考试题目:选择题、填空题、解答题。

二、几何部分
1. 线段与角
重点:线段的性质及角的概念。

考试题目:选择题、填空题、解答题。

2. 相交线与平行线
重点:相交线和平行线的性质及应用。

考试题目:选择题、填空题、解答题。

三、数与代数部分
1. 数的认识
重点:数的概念及性质。

考试题目:选择题、填空题、解答题。

2. 代数式与方程
重点:代数式的概念及方程的解法。

考试题目:选择题、填空题、解答题。

四、统计与概率部分
1. 数据的收集与整理
重点:数据的收集与整理的方法。

考试题目:选择题、填空题、解答题。

2. 概率初步知识与事件的概率
重点:概率初步知识与事件的概率计算方法。

考试题目:选择题、填空题、解答题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学整式的加减的知识点
?单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
初一数学上册整式的加减
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.
5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.
整式分类为:.
6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项. 7.合并同类项法则:系数相加,字母与字母的指数不变.
8.去(添)括号法则:去(添)括号时,若括号前边是"+"号,括号里的各项都不变号;若括号前边是"-"号,括号里的各项都要变号.
一般说来,“教师”概念之形成经历了十分漫长的历史。

杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。

这儿的“师资”,其实就是先秦而后历代对教师的别称之一。

《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。

这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。

9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.
“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

其中“师傅”更早则意指春秋时国君的老师。

《说文解字》中有注曰:“师教人以道者之称也”。

“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。

“老师”的原意并非由“老”而形容“师”。

“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。

“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。

慢慢“老师”之说也不再有年龄的限制,老少皆可适用。

只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。

今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。

10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.
教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。

如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,
幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。

相关文档
最新文档