四川省中考数学 考点系统复习 第三单元 函数 第11讲 反比例函数试题
中考数学 考点系统复习 第三章 函数 第四节 反比例函数 课时2 反比例函数的综合题

∴EF=3OH=12.,∴EM=8,
即点 E 的横坐标为-8.
1 ∵点 E 在直线 y=-2x-2 上,
∴点 E 的坐标为(-8,2).
1 (2)把 x=-2 代入 y=2x+2, 得 y=-2×12+2=1, ∴点 P(-2,1)在一次函数 y=k1x+b 的图象上.
(3)由图象得 x≥2 或-6≤x<0 时,k1x+b≥kx2.
8.(2021·温州)如图,点 A,B 在反比例函数 y
=kx(k>0,x>0)的图象上,AC⊥x 轴于点 C,BD⊥x
7.(2021·新疆)如图,一次函数 y=k1x+b(k1≠0)与反比例函数 y=kx2(k2 ≠0)的图象交于点 A(2,3),B(n,-1). (1)求反比例函数和一次函数的解析式; (2)判断点 P(-2,1)是否在一次函数 y= k1x+b 的图象上,并说明理由; (3)直接写出不等式 k1x+b≥kx2的解集.
k ∵点 A 在反比例函数 y=x(x>0)的图象上,∴k=1.
(2)作 AD⊥x 轴于点 D,BE⊥x 轴于点 E, ∵A(1,1),C(-2,0),∴AD=1,CD=3, 由题意,易得△BCE≌△CAD(AAS),
∴CE=AD=1,BE=CD=3,∴B(-3,3). 13
易得直线 AB 的解析式为 y=-2x+2.
11.(2021·聊城)如图,过 C 点的直线 y =-12x-2 与 x 轴,y 轴分别交于 A,B 两 点,且 BC=AB,过点 C 作 CH⊥x 轴,垂 足为点 H,交反比例函数 y=kx(x>0)的图 象于点 D,连接 OD,△ODH 的面积为 6.
(1)求 k 值和点 D 的坐标; (2)如图,连接 BD,OC,点 E 在直线 y=-12x-2 上,且位于第二象限内, 若△BDE 的面积是△OCD 面积的 2 倍,求点 E 的坐标.
中考数学 提升作业 考点系统复习 第三章 函数 第五节 反比例函数的综合题

3.★如图,在平面直角坐标系中,菱形OABC的边OA在x轴的正半轴上,反 k
比例函数y= x (x>0)的图象经过对角线OB的中点D和顶点C.若菱形OABC的 面积为12,则k的值为 4 .
4.(2022·深圳)如图,已知在Rt△ABO中,AO=1,将△ABO绕O点旋转 k
至△A′B′O的位置,且点A′为OB中点,点B′在反比例函数y= x 上, 则k的值为 3 .
k ∵反比例函数y1=x(k≠0)的图象经过点D, ∴k=6×4=24,
24 ∴反比例函数的解析式为y= x .
(2)若AB所在直线解析式为y2=ax+b(a≠0),当y1>y2时,求x的取值范围.Βιβλιοθήκη ∵A(0,2),B(6,8),
∴把点A,B的坐标代入y2=ax+b得
b=2,
a=1,
6a+b=8,解得b=2,
第五节 反比例函数的综 合题
1.如图,在平面直角坐标系中,点O为坐标原点,▱OBAD的顶点B在反比
例函数y=
6 x
的图象上,顶点A在反比例函数y=
k x
的图象上,顶点D在x轴
的负半轴上.若▱OBAD的面积是10,则k的值是
( D)
A.4
B.2
C.-2
D.-4
2.(2022·株洲)如图,矩形ABCD的顶点A,D在y轴上,顶点C在第一象限, x轴为该矩形的一条对称轴,且矩形ABCD的面积为6.若反比例函数y=kx的图 象经过点C,则k的值为 3 .
长的最小值是 2 2 .
(2)求反比例函数与一次函数的解析式;
将A(-2,4)代入y=mx,得-8=m, 8
∴反比例函数的解析式为y=-x. 将A(-2,4),B(-4,2)代入y=ax+b,得 4=-2a+b, a=1, 2=-4a+b,解得b=6, ∴一次函数的解析式为y=x+6.
中考数学考点系统复习 第三章 函数 方法技巧突破(一) 反比例函数中的面积问题

S 阴影=|k1|-|k2|
图形
S =S -S 阴影 △AOB △AOD 结论 1 1
=2|k1|-2|k2|
S =S -S 阴影 △COB △OCD 11
=2|k1|-2|k2|
图形
过点 D 作 DF⊥x 轴于点
结论
S 阴影=S 矩形 -S -S = OABC △OCD △OAE |k1|-|k2|
【模型示例】
图形
结论
S 四边形 PMON=|k|
S =S 四边形 ABCD
四边形 PQMD
2.(2021·荆州)如图,过反比例函数 y=kx(k>0,x>0) 图象上的四点 P1,P2,P3,P4 分别作 x 轴的垂线,垂足 分别为 A1,A2,A3,A4,再过 P1,P2,P3,P4 分别作 y 轴, P1A1,P2A2,P3A3 的垂线,构造了四个相邻的矩形.若这四个矩形的面积从 左到右依次为 S1,S2,S3,S4,OA1=A1A2=A2A3=A3A4,则 S1 与 S4 的数量关 系为 S1=S1=44SS44.
x 轴于点 B,连接 BC,则△ABC 的面积等于
A.8
B.6 C.4 D.2
( C)
模型四:两点两垂线 【模型特征】
反比例函数与正比例函数图象的交点及由交点向坐标轴所作两条垂 线围成的图形面积等于 2|k|.
【模型示例】
图形
结论
S△APP′=2|k| S 四边形 ANBM=2|k|
4.(2021·南京)如图,正比例函数 y=kx 与函数 y=6x的图象交于 A,B 两点,BC∥x 轴,AC∥y 轴,则 S△ABC=1 12 2.
A.4
B.6
C.8
D.12
( C)
中考数学 考点系统复习 第三章 函数 第四节 反比例函数 课时1 反比例函数的图象与性质

7.(2021·无锡)一次函数 y=x+n 的图象与 x 轴交于点 B,与反比例函
数 y=mx(m>0)的图象交于点 A(1,m),且△AOB 的面积为 1,则 m 的值是
( B)
A.1
B.2
C.3
D.4
3 8.(2021·黔东南州)如图,若反比例函数 y= x 的图象经过等边三角形 POQ 的顶点 P,则△POQ 的边长为 2 .
致为
( D)
9.(2021·深圳)如图,已知反比例函数过 A,B 两 点,A 点坐标(2,3),直线 AB 经过原点,将线段 AB 绕点 B 顺时针旋转 90°得到线段 BC,则 C 点坐 标为 (4,-7.)
10.(2021·聊城)已知二次函数 y=ax2+bx+c 的图象如图所示,则一次
函数 y=bx+c 的图象和反比例函数 y=a+xb+c的图象在同一坐标系中大
c =ax+b 和 y=x在同一平面直角坐标系中的图象大致是
( B)
3 5.(2018·天水)若点 A(a,b)在反比例函数 y=x的图象上,则代数式 ab -1 的值为__2__. 6.(2021·北京)在平面直角坐标系 xOy 中,若反比例函数 y=kx(k≠0) 的图象经过点 A(1,2)和点 B(-1,m),则 m 的值为_-___2.
12 3.(2021·金华)已知点 A(x1,y1),B(x2,y2)在反比例函数 y=- x 的图
象上.若 x1<0<x2,则
( B)
A.y1<0<y2
B.y2<0<y1
C.y1<y2<0
D.y2< y1=ax2+bx+c(a≠0)的图象如图所示,则函数 y
第四节 反比例函数 课时1 反比例函数的图
中考数学备考专题复习反比例函数含解析

反比例函数一、单选题(共12题;共24分)1、(2016•龙东)已知反比例函数y= ,当1<x<3时,y的最小整数值是()A、3B、4C、5D、62、如果等腰三角形的底边长为x,底边上的高为y,则它的面积为定植S时,则x与y的函数关系式为()A、y=B、y=C、y=D、y=3、(2016•大庆)已知A(x1, y1)、B(x2, y2)、C(x3, y3)是反比例函数y= 上的三点,若x1<x2<x3, y2<y1<y3,则下列关系式不正确的是()A、x1•x2<0B、x1•x3<0C、x2•x3<0D、x1+x2<04、将一次函数y=x图象向下平移b个单位,与双曲线y=交于点A,与x轴交于点B,则OA2-OB2=( )A、-2B、2C、-D 、5、如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A、y=B、y=C、y=D、y=6、如图,△AOB为等边三角形,点A在第四象限,点B的坐标为(4,0),过点C(4,0)作直线l交AO于D,交AB于E,且点E在某反比例函数y=(k≠0)图象上,当△ADE和△DCO的面积相等时,k的值为()A、-B、-C、-3D、-67、教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A、7:20B、7:30C、7:45D、7:508、(2015•玉林)如图,反比例函数y=的图象经过二次函数y=ax2+bx 图象的顶点(﹣,m)(m >0),则有()A、a=b+2kB、a=b﹣2kC、k<b<0D、a<k<09、如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y= (x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A 、B 、C 、D 、10、(2016•济宁)如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A、60B、80C、30D、4011、(2016•湖北)一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()A 、B 、C 、D 、12、(2016•天津)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y= 的图象上,则y1, y2, y3的大小关系是()A、y1<y3<y2B、y1<y2<y3C、y3<y2<y1D、y2<y1<y3二、填空题(共5题;共6分)13、如果函数y=x2m-1为反比例函数,则m的值是________.14、(2015•黄石)反比例函数y=的图象有一支位于第一象限,则常数a的取值范围是________ .15、(2016•宁波)如图,点A为函数y= (x>0)图象上一点,连结OA,交函数y= (x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为________.16、(2016•丽水)如图,一次函数y=﹣x+b与反比例函数y= (x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D两点,连结OA,OB,过A作AE⊥x轴于点E,交OB于点F,设点A的横坐标为m.(1)b=________(用含m的代数式表示);(2)若S△OAF+S四边形EFBC=4,则m的值是________.17、(2016•绍兴)如图,已知直线l:y=﹣x,双曲线y= ,在l上取一点A(a,﹣a)(a>0),过A作x轴的垂线交双曲线于点B,过B作y轴的垂线交l于点C,过C作x轴的垂线交双曲线于点D,过D作y轴的垂线交l于点E,此时E与A重合,并得到一个正方形ABCD,若原点O在正方形ABCD的对角线上且分这条对角线为1:2的两条线段,则a的值为________.三、解答题(共3题;共15分)18、当m 取何值时,函数是反比例函数?19、(2016•苏州)如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y= (x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.20、已知与是反比例函数图象上的两个点.(1)求m和k的值(2)若点C(-1,0),连结AC,BC,求△ABC的面积(3)根据图象直接写出一次函数的值大于反比例函数的值的的取值范围.四、综合题(共4题;共45分)21、(2016•曲靖)在平面直角坐标系中,把横纵坐标都是整数的点称为“整点”.(1)直接写出函数y= 图象上的所有“整点”A1, A2, A3,…的坐标;(2)在(1)的所有整点中任取两点,用树状图或列表法求出这两点关于原点对称的概率.22、(2015•广州)已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.23、(2016•枣庄)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y= (k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?24、(2016•雅安)已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,且与双曲线y= 交于点C(1,a).(1)试确定双曲线的函数表达式;(2)将l1沿y轴翻折后,得到l2,画出l2的图象,并求出l2的函数表达式;(3)在(2)的条件下,点P是线段AC上点(不包括端点),过点P作x轴的平行线,分别交l2于点M,交双曲线于点N,求S△AMN的取值范围.答案解析部分一、单选题【答案】A【考点】反比例函数的性质【解析】【解答】解:在反比例函数y= 中k=6>0,∴该反比例函数在x>0内,y随x的增大而减小,当x=3时,y= =2;当x=1时,y= =6.∴当1<x<3时,2<y<6.∴y的最小整数值是3.故选A.【分析】根据反比例函数系数k>0,结合反比例函数的性质即可得知该反比例函数在x>0中单调递减,再结合x的取值范围,可得出y的取值范围,取其内的最小整数,本题得解.本题考查了反比例函数的性质,解题的关键是找出反比例函数y= 在1<x<3中y的取值范围.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的系数结合反比例函数的性质得出该反比例函数的单调性是关键.【答案】C【考点】根据实际问题列反比例函数关系式,三角形的面积【解析】【解答】∵S=xy,∴y=.故选C.【分析】考查列反比例函数关系式,得到三角形高的等量关系是解决本题的关键.三角形的面积= 1 2 底×高,那么高=,把相关数值代入即可求解.【答案】A【考点】反比例函数图象上点的坐标特征【解析】【解答】解:∵反比例函数y= 中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3, y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2<0,故选A.【分析】根据反比例函数y= 和x1<x2<x3, y2<y1<y3,可得点A,B在第三象限,点C在第一象限,得出x1<x2<0<x3,再选择即可.本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.【答案】B【考点】一次函数图象与几何变换,反比例函数与一次函数的交点问题【解析】【解答】∵平移后解析式是y=x+b,代入y=得:x+b=,即x2+bx=,y=x+b与x轴交点B的坐标是(-b,0),设A的坐标是(x,y),∴OA2-OB2=x2+y2+(-b)2=x2+(x+b)2-b2=2x2+2xb=2(x2+xb)=2×=2,故选B.【分析】本题考查了一次函数和反比例函数的交点问题的应用,主要考查学生的计算能力的能力.【答案】D【考点】反比例函数图象的对称性【解析】【解答】由于函数图象关于原点对称,所以阴影部分面积为圆面积,则圆的面积为10π×4=40π.因为P(3a,a)在第一象限,则a>0,3a>0,根据勾股定理,OP=于是π=40π,a=±2,(负值舍去),故a=2.P点坐标为(6,2).将P(6,2)代入y=,得:k=6×2=12.反比例函数解析式为:y=.故选D.【分析】根据P(3a,a)和勾股定理,求出圆的半径,进而表示出圆的面积,再根据圆的面积等于阴影部分面积的四倍,求出圆的面积,建立等式即可求出a的值,从而得出反比例函数的解析式.【点评】此题是一道综合题,既要能熟练正确求出圆的面积,又要会用待定系数法求函数的解析式.【答案】C【考点】反比例函数系数k的几何意义,待定系数法求反比例函数解析式,三角形的面积【解析】【解答】如图,连接AC,∵点B的坐标为(4,0),△AO B为等边三角形,∴AO=OB=4.∴点A的坐标为(2,-2).∵C(4,0),∴AO=OC=4,∴∠OCA=∠OAC.∵∠AOB=60°,∴∠ACO=30°.又∵∠B="60°." ∴∠BAC=90°.∵S△ADE=S△DCO, S△AEC=S△ADE+S△ADC, S△AOC=S△DCO+S△ADC,∴∴S△AEC=S△AOC =×AE•AC=•CO•2,即•AE•2=×2×2,∴E点为AB的中点(3,-).把E点(3,-)代入y=中得:k=-3故选C.【分析】连接AC,由B的坐标得到等边三角形AOB的边长,得到AO与CO,得到AO=OC,利用等边对等角得到一对角相等,再由∠AOB=60°,得到∠ACO=30°,可得出∠BAC为直角,可得出A的坐标,由三角形ADE与三角形DCO面积相等,且三角形AEC面积等于三角形AED与三角形ADC面积之和,三角形AOC面积等于三角形DCO面积与三角形ADC面积之和,得到三角形AEC与三角形AOC面积相等,进而确定出AE的长,可得出E为AB中点,得出E的坐标,将E坐标代入反比例解析式中求出k的值,即可确定出反比例解析式。
中考数学 考点系统复习 第三章 函数 第三节 反比例函数 课时1 反比例函数的图象与性质

(2020·德州)函数 y=kx和 y=-kx+2(k≠0)在同一平面直角坐标系
中的大致图象可能是
( D)
【思路点拨】分 k>0 和 k<0 两种情况,分析两个函数的大致图象,从而 进行判断.
【易错提醒】确定 k 值时忽略图象所在象限
过双曲线 y=kx(k≠0)上任意一点引 x 轴、y 轴的垂线,垂线段与坐
重难点:反比例函数的图象和性质 a
已知反比例函数 y=x(a≠0). a
(1)若反比例函数 y=x(a≠0)的图象在每一个象限内, y 都随 x 的增大 而增大, a 的取值范围是 a<a<00; (2)若点 P(m,n)在反比例函数图象上,则点 Q(-m,-n)在 在 (选填 “在”或“不在”)该反比例函数图象上;
坐标轴围成的矩形的面积为
(B )
A.3 B.6 C.9 D.12
5.(2017·黔南州第 11 题 4 分)反比例函数 y=-3x(x<0)
的图象如图所示,则矩形 OAPB 的面积是
( A)
A.3 B.-3 C.32 D.-32
6.(2020·贵阳第 12 题 4 分)如图,点 A 是反比例函数 y 3
4.如图,已知反比例函数 y=kx(k 为常数,k≠0)的图象经过点 A,过点 A 作 AB⊥x 轴,垂足为 B,点 C 为 y 轴上的一点,若△ABC 的面积为52,则 k 的值为--55.
命题点 1:反比例函数的图象与性质(2021 年考查 2 次,2019 年考查 2
次,2018 年考查 1 次,2017 年考查 2 次)
第三节 反比例函数 课时1 反比例函数的图
象与性质
1.当矩形面积一定时,下列图象中能表示它的长 y 和宽 x 之间函数关系
人教版初中数学中考考点系统复习 方法技巧微专题(二) 反比例函数中的面积问题模型

1
第11题 图
-12
对点训练
-8
第3题 图
8
第4题 图
模型3 两点一垂线 模型展示
S△ABM=|k|
S△
模型解读 过正比例函数与反比例函数的一个交点作坐标轴的垂
线,两交点与垂足构成的三角形的面积等于|k|.
对点训练
D
A.k
B.k2
C.2
D.3
第5题 图
C A.k1=-6 B.k1=-3 C.k2=-6 D.k2=-12
第一轮 中考考点系统复习
第三章 函数及其图象 方法技巧微专题(二) 反比例函数中的
面积问题模型
模型1 一点.3
B.2
D.1
第1题 图
3
第2题 图
模型2 一点两垂线 模型展示
S四边形
模型解读 过反比例函数图象上一点作两条坐标轴的垂线,垂线与
坐标轴所围成的矩形面积等于|k|.
点)所构成的三角形面积,若两交点在同一支上,用减法; 若两交点分别在两支上,用加法.
对点训练
A.-12
C
B.-8
C.-6
D.-4
第8题 图
第9题 图
模型6 两曲一平行
模型解读 两条双曲线上的两点的连线与一条坐标轴平行,求这两
点与原点或坐标轴围成的图形面积,结合k的几何意义求解.
对点训练 13
第6题 图
模型4 两点两垂线 模型展示
S△APP'=2|k|
S▱
模型解读 过反比例函数与正比例函数的交点作两条坐标轴的垂
线,两交点与两垂足(或两垂线的交点)连线围成的图形面 积等于2|k|.
对点训练 8
模型5 两点和一点 S△AOB=S△COD-S△AOC-S△BOD
2025年中考数学总复习 第十一讲 函数的表达式++++课件+

对角线AC,BD相交于点E,反比例函数y= (x>0)的图象经过点A.
(1)求这个反比例函数的表达式.
(2)请先描出这个反比例函数图象上不同于点A的三个
格点,再画出反比例函数的图象.
(3)将矩形ABCD向左平移,当点E落在这个反比例函
数的图象上时,平移的距离为_________.
19
【自主解答】(1)∵反比例函数y= (x>0)的图象经过点A(3,2),
已知抛物线上三点的坐标
选用表达式的形式
y=ax2+bx+c(a,b,c为常数,a≠0)
已知抛物线顶点坐标或对称轴与最 y=a(x-h)2+k(a≠0),(h,k)为二次函数的顶点
大(小)值
坐标
已知抛物线与x轴的两个交点的横坐 y=a(x-x1)(x-x2)(a≠0),x1,x2为抛物线与x轴
标
交点的横坐标
_________________.
高频考点·释疑难
考点1
10
确定一次函数表达式
【例1】(2024·广州中考)一个人的脚印信息往往对应着这个人某些方面的基本特
征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和
分析,发现身高y和脚长x之间近似存在一个函数关系,部分数据如表:
脚长x(cm)
第十一讲
函数的表达式
必备知识·夯根基
高频考点·释疑难
山东3年真题
必备知识·夯根基
知识要点
1.一次函数表达式
(1)确定正比例函数表达式:将正比例函数图象上原点外的一点坐标(m,n)代入
x
y=kx,可得k=_____,则y=______.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11讲 反比例函数1.反比例函数y =-5x的图象在( D )A .第一、二象限B .第三、四象限C .第一、三象限D .第二、四象限2.(2016·哈尔滨)点(2,-4)在反比例函数y =kx 的图象上,则下列各点在此函数图象上的是( D )A .(2,4)B .(-1,-8)C .(-2,-4)D .(4,-2)3.(2016·河南)如图,过反比例函数y =kx (x>0)的图象上一点A 作AB⊥x 轴于点B ,连接AO ,若S △AOB =2,则k 的值为( C )A .2B .3C .4D .54.(2016·成都高新区一诊)在反比例函数y =1-3mx 图象上有两点A(x 1,y 1),B(x 2,y 2),x 1<0<x 2,y 1<y 2,则m的取值范围是( B )A .m >13B .m <13C .m ≥13D .m ≤135.(2016·株洲)已知一次函数y 1=ax +b 与反比例函数y 2=kx 的图象如图所示,当y 1<y 2时,x 的取值范围是( D )A .x<2B .x>5C .2<x<5D .0<x<2或x>56.(2016·乐山模拟)如图,矩形ABCD 的一边CD 在x 轴上,顶点A ,B 分别落在双曲线y =1x ,y =4x 上,边BC 交y=1x于点E ,连接AE ,则△ABE 的面积为( D ) A.94 B.34 C.38 D.987.(2016·达州渠县模拟)已知反比例函数y =kx (k 是常数,k ≠0)的图象在第一、三象限,请写出符合上述条件的k的一个值:答案不唯一,k >0即可,如:1.8.(2016·常州)已知正比例函数y =ax(a≠0)与反比例函数y =kx (k≠0)图象的一个交点坐标为(-1,-1),则另一个交点坐标是(1,1).9.(2016·德阳旌阳区一模)如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,点A ,C 分别在坐标轴上,点B 的坐标为(4,2),直线y =-12x +3交AB ,BC 分别于点M ,N ,反比例函数y =kx 的图象经过点M ,N.(1)求反比例函数的解析式;(2)若点P 在y 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.解:(1)∵B(4,2),四边形OABC 是矩形, ∴OA =BC =2.将y =2代入y =-12x +3,得x =2.∴M(2,2).把M 的坐标代入y =kx ,得k =4.∴反比例函数的解析式是y =4x.(2)将x =4代入y =4x ,得y =1.∴N(4,1).由题意可得:S 四边形BMON =S 矩形OABC -S △AOM -S △CON =4×2-12×2×2-12×4×1=4.∵S △OPM =S 四边形BMON , ∴12OP·AM=4. ∵AM =2,∴OP =4.∴点P 的坐标是(0,4)或(0,-4).10.(2016·攀枝花)如图,在平面直角坐标系中,O 为坐标原点,△ABO 的边AB 垂直于x 轴,垂足为点B ,反比例函数y =kx (x >0)的图象经过AO 的中点C ,且与AB 相交于点D ,OB =4,AD =3.(1)求反比例函数y =kx 的解析式;(2)求cos ∠OAB 的值;(3)求经过C ,D 两点的一次函数解析式.解:(1)设点D 的坐标为(4,m)(m >0),则点A 的坐标为(4,3+m). ∵点C 为线段AO 的中点, ∴点C 的坐标为(2,3+m2).∵点C ,D 均在反比例函数y =kx 的图象上,∴2·3+m 2=4m ,解得m =1.∴C(2,2),D(4,1),A(4,4). ∴反比例函数的解析式为y =4x.(2)由(1)知,OB =4,AB =4.在Rt △ABO 中,OB =4,AB =4,∠ABO =90°, ∴OA =OB 2+AB 2=42, cos ∠OAB =AB OA =442=22.(3)设经过点C ,D 的一次函数的解析式为y =ax +b ,则有⎩⎪⎨⎪⎧2=2a +b ,1=4a +b.解得⎩⎪⎨⎪⎧a =-12,b =3.∴经过C ,D 两点的一次函数解析式为y =-12x +3.11.(2016·绵阳南山模拟)如图,正方形OABC ,ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函数y =4x(x>0)的图象上,则点E 的坐标是( A ) A .(5+1,5-1) B .(3+5,3-5) C .(5-1,5+1) D .(3-5,3+5)12.(2016·菏泽)如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =∠ADB=90°,反比例函数y =6x 在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC -S △BAD 为( D )A .36B .12C .6D .313.(2015·广元)如图,矩形ABCD 中,AB =3,BC =4,点P 从A 点出发,按A→B→C 的方向在AB 和BC 上移动.记PA =x ,点D 到直线PA 的距离为y ,则y 关于x 的函数大致图象是( D )14.(2016·成都锦江区一诊)如图,在Rt △ABC 中,∠ABC =90°,点B 在x 轴上,且B(-1,0),点A 的横坐标是2,AB =3BC ,双曲线y =4m x (m >0)经过点A ,双曲线y =-m x 经过点C ,则Rt △ABC 的面积为152.15.(2016·成都高新区一诊)如图,在平面直角坐标系中,直线y =-x +2与反比例函数y =1x 的图象有唯一公共点,若直线y =-x +b 与反比例函数y =1x的图象没有公共点,则b 的取值范围是-2<b <2.16.(2016·雅安中学一诊)如图,已知点A ,P 在反比例函数y =kx (k <0)的图象上,点B ,Q 在直线y =x -3的图象上,点B 的纵坐标为-1,AB ⊥x 轴,且S △OAB =4,若P ,Q 两点关于y 轴对称,设点P 的坐标为(m ,n). (1)求点A 的坐标和k 的值; (2)求n m +mn的值.解:(1)∵点B 在直线y =x -3的图象上,点B 的纵坐标为-1,∴当y =-1时,x -3=-1.解得x =2. ∴B(2,-1).设点A 的坐标为(2,t),则t <-1,AB =-1-t. ∵S △OAB =4,∴12(-1-t)·2=4.解得t =-5. ∴点A 的坐标为(2,-5).∵点A 在反比例函数y =kx (k <0)的图象上,∴-5=k2.解得k =-10.(2)∵P,Q 两点关于y 轴对称,点P 的坐标为(m ,n), ∴Q(-m ,n).∵点P 在反比例函数y =-10x的图象上,点Q 在直线y =x -3的图象上, ∴n =-10m ,n =-m -3.∴mn =-10,m +n =-3.∴n m +m n =m 2+n 2mn =(m +n )2-2mn mn =(-3)2-2×(-10)-10=-2910.17.(2015·资阳)如图,直线y =ax +1与x 轴,y 轴分别相交于A ,B 两点,与双曲线y =kx (x >0)相交于点P ,PC⊥x 轴于点C ,且PC =2,点A 的坐标为(-2,0). (1)求双曲线的解析式;(2)若点Q 为双曲线上点P 右侧的一点,且QH⊥x 轴于点H ,当以点Q ,C ,H 为顶点的三角形与△AOB 相似时,求点Q 的坐标.解:(1)把A(-2,0)代入y =ax +1,得-2a +1=0. 解得a =12.∴y =12x +1.把y =2代入y =12x +1,得x =2.∴P(2,2).把P(2,2)代入y =kx ,得k =4.∴双曲线解析式为y =4x .(2)设Q(a ,b), ∵Q(a ,b)在y =4x上,∴b =4a.当△QCH∽△BAO 时,可得CH AO =QH BO ,即a -22=b1,∴a -2=2b ,即a -2=8a .解得a =4或a =-2(舍去). ∴Q(4,1).当△QCH∽△ABO 时,可得CH BO =QH AO ,即a -21=b2,∴2a -4=4a .解得a 1=1+3,a 2=1-3(舍).∴Q(1+3,23-2).综上,Q(4,1)或Q(1+3,23-2).18.(2016·荆门)如图,已知点A(1,2)是反比例函数y =kx 图象上的一点,连接AO 并延长交双曲线的另一分支于点B ,点P 是x 轴上一动点,若△PAB 是等腰三角形,则点P 的坐标是(-5,0),(-3,0),(5,0)或(3,0).。