2017延庆九上数学期末答案
2017-2018学年九年级数学期末试卷及答案

2017-2018学年第二学期初三年级质量检测数学(2018年2月)本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷为1-12题,共36分,第Ⅱ卷为13-23题,共64分。
全卷共计100分。
考试时间为90分钟。
第I 卷(本卷共计36分)一、单项选择题(本部分共12小题,每小题3分,共36分)1.方程3x 2-8x-10=0的二次项系数和一次项系数分别为( )A.3和8B.3和10C.3和-10D.3和-82.如图所示的工件,其俯视图是( )3.若点A(a,b)在双曲线y=x 3上,则代数式ab-4的值为 A.-12 B.-7 C.-1 D.14.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是( )A.28B.24C.16D.65.如图,四边形ABCD 是平行四边形,下列说法不正确的是( )第5题 第6题 第7题A.当AC=BD 时,四边形ABCD 是矩形B.当AB=BC 时,四边形ABCD 是菱形C.当AC ⊥BD 时,四边形ABCD 是菱形D.当∠DAB=90°时,四边形ABCD 是正方形6.如图,△ABC 是△ABC 以点O 为位似中心经过位似变换得到的,若△A ′B ′C ′的面积与△ABC 的面积比是4:9,则0B ′:OB 为( )A.2:3B.3:2C.4:5D.4:97.如图,在平行四边形ABCD 中,EF ∥AB,DE:EA=2:3,EF=4,则CD 的长为( )A.6B.8C.10D.128.某小区2014年屋顶绿化面积为2000平方米,计划2016年屋顶绿化面积要达到2880平方米,若设屋顶绿化面积的年平均增长率为x,则依题意所列方程正确的是( )A.2000(1+x)2=2880B.200(1-x)2=2880C.2000(1+2x)=2880D.2000x 2=28809.二次函数y=x 2-3x+2的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限10.如图,从点A 看一山坡上的电线杆PQ,观测点P 的仰角是45°,向前走6m 到达B 点,测得顶端点P 和杆底端点Q 的仰角分别是60°和30°,则该电线杆PQ 的高度( )A.326+B.36+C.310-D.38+11.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2),点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为( )第11题 第12题A.10B.12C.24D.1612.如图,正方形ABCD 中,O 为BD 中点,以BC 为边向正方方形内作等边△BCE,连接并延长AE 交CD 于F,连接BD 分别交CE 、AF 于G 、H,下列结论:①∠CEH=45°;②GF ∥DE ;③2OH+DH=BD ;④BG=2DG ;⑤213+=BGC BEC S S △△:。
初中数学北京市延庆县九年级上期末数学考试卷含答案解析

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:⊙O的半径为R,点P到圆心O的距离为d,并且d≥R,则P点( )A.在⊙O内或⊙O上 B.在⊙O外 C.在⊙O上 D.在⊙O外或⊙O上试题2:把10cm长的线段进行黄金分割,则较长线段的长(≈2.236,精确到0.01)是( )A.3.09cm B.3.82cm C.6.18cm D.7.00cm试题3:如图,在△ABC中,DE∥BC,DE分别与AB、AC相交于点D、E,若AD=4,DB=2,则AE:EC的值为( )A.0.5 B.2 C. D.试题4:反比例函数y=的图象如图所示,则k的值可能是( )评卷人得分A. B.1 C.2 D.﹣1试题5:在Rt△ABC中,∠C=90°,BC=1,那么AB的长为( )A.sinA B.cosA C. D.试题6:如图,正三角形ABC内接于圆O,动点P在圆周的劣弧AB上,且不与A,B重合,则∠BPC等于( )A.30° B.60° C.90° D.45°试题7:抛物线y=x2的图象向左平移2个单位,在向下平移1个单位,得到的函数表达式为( )A.y=x2+2x+1 B.y=x2+2x﹣2 C.y=x2﹣2x﹣1 D.y=x2﹣2x+1试题8:已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确的结论有( )A.2个 B.3个 C.4个 D.5个试题9:如图所示,在正方形ABCD中,E是BC的中点,F是CD上的一点,AE⊥EF,下列结论:①∠BAE=30°;②CE2=AB•CF;③CF=FD;④△ABE∽△AEF.其中正确的有( )A.1个 B.2个 C.3个 D.4个试题10:如图所示,已知△ABC中,BC=8,BC上的高h=4,D为BC上一点,EF∥BC,交AB于点E,交AC于点F(EF不过A、B),设E到BC的距离为x.则△DEF的面积y关于x的函数的图象大致为( )A. B. C. D.试题11:若,则=__________.试题12:两个相似多边形相似比为1:2,且它们的周长和为90,则这两个相似多边形的周长分别是__________,__________.试题13:已知扇形的面积为15πcm2,半径长为5cm,则扇形周长为__________cm.试题14:在Rt△ABC中,∠C=90°,AC=4,BC=3,则以2.5为半径的⊙C与直线AB的位置关系是__________.试题15:请选择一组你喜欢的a、b、c的值,使二次函数y=ax2+bx+c(a≠0)的图象同时满足下列条件:①开口向下;②当x<2时,y随x的增大而增大;当x>2时,y随x的增大而减小.这样的二次函数的解析式可以是__________.试题16:如图,正方形OABC,ADEF的顶点A、D、C在坐标轴上,点F在AB 上,点B、E在函数(x>0)的图象上,若阴影部分的面积为12﹣,则点E的坐标是__________.试题17:计算:.试题18:如图:在Rt△ABC中,∠C=90°,BC=8,∠B=60°,解直角三角形.试题19:已知反比例函数图象的两个分支分别位于第一、第三象限.(1)求k的取值范围;(2)取一个你认为符合条件的K值,写出反比例函数的表达式,并求出当x=﹣6时反比例函数y的值.试题20:已知圆内接正三角形的边心距为2cm,求它的边长.试题21:已知:如图,D是BC上一点,△ABC∽△ADE,求证:∠1=∠2=∠3.试题22:如图,A、B两座城市相距100千米,现计划在两城市间修筑一条高速公路(即线段AB).经测量,森林保护区中心P点既在A城市的北偏东30°的方向上,又在B城市的南偏东45°的方向上.已知森林保护区的范围是以P为圆心,35千米为半径的圆形区域内.请问:计划修筑的这条高速公路会不会穿越森林保护区?请通过计算说明.(参考数据:≈1.732,≈1.414)试题23:如图,AB是⊙O的直径,CB是弦,OD⊥CB于E,交劣弧CB于D,连接AC.(1)请写出两个不同的正确结论;(2)若CB=8,ED=2,求⊙O的半径.试题24:密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.试题25:如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB的延长线上的一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.求证:DE是⊙O的切线.试题26:已知:抛物线y=x2+bx+c经过点(2,﹣3)和(4,5).(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x轴翻折,得到图象G,求图象G的表达式;(3)在(2)的条件下,当﹣2<x<2时,直线y=m与该图象有一个公共点,求m的值或取值范围.试题27:如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.试题28:(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.(2)结论应用:①如图2,点M,N在反比例函数y=(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F,试证明:MN∥EF;②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行.试题29:设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m.n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”.(1)反比例函数y=是闭区间[1,2016]上的“闭函数”吗?请判断并说明理由;(2)若二次函数y=x2﹣2x﹣k是闭区间[1,2]上的“闭函数”,求k的值;(3)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的表达式(用含m,n的代数式表示).试题1答案:D【考点】点与圆的位置关系.【分析】根据点与圆的位置关系进行判断.【解答】解:∵d≥R,∴点P在⊙O上或点P在⊙O外.故选D.【点评】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r点P在圆内⇔d<r.试题2答案:C【考点】黄金分割.【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.【解答】解:根据题意得:较长线段的长是10×=10×0.618=6.18cm.故选C.【点评】此题考查了黄金分割点的概念,熟记黄金分割的公式:较短的线段=原线段的,较长的线段=原线段的是本题的关键.试题3答案:B【考点】平行线分线段成比例.【专题】几何图形问题.【分析】首先由DE∥BC可以得到AD:DB=AE:EC,而AD=4,DB=2,由此即可求出AE:EC的值.【解答】解:∵DE∥BC,∴AD:DB=AE:EC,而AD=4,DB=2,∴AE:EC=AD:DB=4:2=2.故选B.【点评】本题主要考查平行线分线段成比例定理,有的同学因为没有找准对应关系,从而导致错选其他答案.试题4答案:A【考点】反比例函数图象上点的坐标特征.【分析】根据函数所在象限和反比例函数上的点的横纵坐标的积小于1判断.【解答】解:∵反比例函数在第一象限,∴k>0,∵当图象上的点的横坐标为1时,纵坐标小于1,∴k<1,故选A.【点评】本题考查的是反比例函数图象上点的坐标特点,用到的知识点为:反比例函数图象在第一象限,比例系数大于0;比例系数等于在它上面的点的横纵坐标的积.试题5答案:D【考点】锐角三角函数的定义.【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.【解答】解:Rt△ABC中,∠C=90°,BC=1,得sinA=.AB==,故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.试题6答案:B【考点】圆周角定理;等边三角形的性质.【专题】压轴题;动点型.【分析】由等边三角形的性质知,∠A=60°,即弧BC的度数为60°,可求∠BPC=60°.【解答】解:∵△ABC正三角形,∴∠A=60°,∴∠BPC=60°.故选B.【点评】本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.和等边三角形的性质求解.试题7答案:A【考点】二次函数图象与几何变换.【分析】根据“上加下减,左加右减”的原则进行解答即可.【解答】解:根据“上加下减,左加右减”的原则可知,二次函数y=x2的图象向左平移2个单位,再向下平移1个单位得到的图象表达式为y=(x+2)2﹣1,即y=x2+2x+1.故选A.【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.试题8答案:A【考点】二次函数图象与系数的关系.【专题】压轴题;数形结合.【分析】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0;当x=﹣1时图象在x轴下方得到y=a﹣b+c=0,即a+c=b;对称轴为直线x=1,可得x=2时图象在x轴上方,则y=4a+2b+c>0;利用对称轴x=﹣=1得到a=﹣b,而a﹣b+c<0,则﹣b﹣b+c<0,所以2c<3b;开口向下,当x=1,y有最大值a+b+c,得到a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1).【解答】解:开口向下,a<0;对称轴在y轴的右侧,a、b异号,则b>0;抛物线与y轴的交点在x轴的上方,c>0,则abc<0,所以①不正确;当x=﹣1时图象在x轴下方,则y=a﹣b+c=0,即a+c=b,所以②不正确;对称轴为直线x=1,则x=2时图象在x轴上方,则y=4a+2b+c>0,所以③正确;x=﹣=1,则a=﹣b,而a﹣b+c=0,则﹣b﹣b+c=0,2c=3b,所以④不正确;开口向下,当x=1,y有最大值a+b+c;当x=m(m≠1)时,y=am2+bm+c,则a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1),所以⑤正确.故选:A.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0)的图象,当a>0,开口向上,函数有最小值,a<0,开口向下,函数有最大值;对称轴为直线x=﹣,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c>0,抛物线与y轴的交点在x轴的上方;当△=b2﹣4ac>0,抛物线与x轴有两个交点.试题9答案:B【考点】相似三角形的判定与性质;正方形的性质.【分析】由正方形的性质和三角函数得出∠BAE<30°,①不正确;由题中条件可得△CEF∽△BAE,进而得出对应线段成比例,得出②正确,CF=FD,③不正确;进而又可得出△ABE∽△AEF,得出④正确,即可得出题中结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CAD,∠B=∠C=∠D=90°,∵E是BC的中点,∴BE=CE=BC=AB,∵AE>AB,∴sin∠BAE=<,∴∠BAE<30°,①不正确;∵AE⊥EF,∴∠BAE=∠CEF,∴△CEF∽△BAE,∴==,∴CE•BE=AB•CF,CF=BE=CD,∵BE=CE,CF=FD,∴CE2=AB•CF,②正确,③不正确;由△CEF∽△BAE可得,∴∠EAF=∠BAE的正切值相同,∴∠EAF=∠BAE,又∠B=∠C=90°.∴△ABE∽△AEF,∴④正确;正确的有2个,故选:B.【点评】本题主要考查了正方形的性质、相似三角形的判定及性质、三角函数;熟练掌握正方形的性质,证明三角形相似是解决问题的关键.试题10答案:D【考点】函数的图象;相似三角形的判定与性质.【专题】压轴题.【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【解答】解:过点A向BC作AH⊥BC于点H,所以根据相似比可知:,即EF=2(4﹣x)所以y=×2(4﹣x)x=﹣x2+4x.故选D.【点评】考查根据几何图形的性质确定函数的图象和函数图象的读图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.试题11答案:.【考点】比例的性质.【专题】计算题.【分析】根据已知条件,可得出a和b的值,代入原式即可得出结果.【解答】解:根据题意,得a=,b=,则==,故填.【点评】考查了比例的基本性质及其灵活运用.试题12答案:30,60.【考点】相似多边形的性质.【分析】根据相似多边形的周长之比等于相似比,求出两个多边形的周长比,根据题意列出方程,解方程即可.【解答】解:∵两个相似多边形相似比为1:2,∴两个相似多边形周长比为1:2,设较小的多边形的周长为x,则较大的多边形的周长为x,由题意得,x+2x=90,解得,x=30,则2x=60,故答案为:30;60.【点评】本题考查的是相似多边形的性质,掌握相似多边形的周长之比等于相似比是解题的关键.试题13答案:6π+10cm.【考点】扇形面积的计算.【分析】根据扇形的面积公式求出扇形弧长,根据扇形周长公式计算即可.【解答】解:由扇形的面积公式S=lr,得,l==6πcm,则扇形周长=(6π+10)cm,故答案为:6π+10.【点评】本题考查的是扇形的面积的计算,掌握S扇形=lR(其中l为扇形的弧长)是解题的关键.试题14答案:相交.【考点】直线与圆的位置关系.【分析】过C作CD⊥AB于D,根据勾股定理求出AB,根据三角形的面积公式求出CD,得出d<r,根据直线和圆的位置关系即可得出结论.【解答】解:以2.5为半径的⊙C与直线AB的位置关系是相交;理由如下:过C作CD⊥AB于D,如图所示:∵在Rt△ABC中,∠C=90,AC=4,BC=3,∴由勾股定理得:AB==5,∵△ABC的面积=AC×BC=AB×CD,∴3×4=5CD,∴CD=2.4<2.5,即d<r,∴以2.5为半径的⊙C与直线AB的关系是相交,故答案为:相交.【点评】本题考查了勾股定理,三角形的面积,直线和圆的位置关系的应用;解此题的关键是能正确作出辅助线,并进一步求出CD的长,注意:直线和圆的位置关系有:相离,相切,相交.试题15答案:y=﹣x2+4x.【考点】待定系数法求二次函数解析式.【专题】压轴题;开放型.【分析】根据①的条件可知:a<0;根据②的条件可知:抛物线的对称轴为x=2;满足上述条件的二次函数解析式均可.【解答】解:由①知:a<0;由②知:抛物线的对称轴为x=2;可设抛物线的解析式为y=a(x﹣2)2+h(a<0);当a=﹣1,h=4时,抛物线的解析式为y=﹣(x﹣2)2+4=﹣x2+4x.(答案不唯一)【点评】本题是一个开放性题目,主要考查二次函数的性质及解析式的求法.本题比较灵活,培养学生灵活运用知识的能力.试题16答案:(+1,﹣1).【考点】反比例函数系数k的几何意义.【专题】计算题.【分析】根据反比例函数系数k的几何意义得到S正方形OABC=S正方形ODEG=4,则S矩形BCGF=S正方形ADEF,所以S正方形ADEF=6﹣2,利用正方形的性质可计算出正方形的边长AD=DE==﹣1,则E点的纵坐标为﹣1,然后利用反比例函数图象上点的坐标特征可确定E点坐标.【解答】解:∵四边形OABC,ADEF为正方形,∴S正方形OABC=S正方形ODEG=4,∴S矩形BCGF=S正方形ADEF,而阴影部分的面积为12﹣,∴S正方形ADEF=6﹣2,∴AD=DE==﹣1,当y=﹣1时,x==+1,∴E点坐标为(+1,﹣1).故答案为(+1,﹣1).【点评】本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.试题17答案:【考点】特殊角的三角函数值.【分析】分别把sin30°=,cos45°=,tan60°=代入计算即可.【解答】解:原式=4×﹣×+=2﹣1+3=4.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握二次根式等考点的运算.试题18答案:【考点】解直角三角形.【分析】根据三角形的内角和求出∠A,再根据正弦定理求出AB,最后根据勾股定理即可求出AC.【解答】解:∵∠C=90°,∠B=60°,∴∠A=30°,∴sinA===,∴AB=16,∴AC===8.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.解直角三角形要用到的关系:锐角直角的关系:∠A+∠B=90°;三边之间的关系:a2+b2=c2;边角之间的关系:锐角三角函数关系.试题19答案:【考点】反比例函数的性质.【分析】(1)由反比例函数图象过第一、三象限,得到反比例系数k﹣1大于0,列出关于k的不等式,求出不等式的解集得到k的范围;(2)根据k的取值范围取k=2,得到y=,代入x=﹣6,求得即可.【解答】解:(1)∵反比例函数图象两支分别位于第一、三象限,∴k﹣1>0,解得:k>1;(2)∵k>1,∴取k=2,在反比例函数的表达式为y=,把x=﹣6代入得,y==﹣.【点评】此题考查了反比例函数的性质.反比例函数y=(k≠0),当k>0时函数图象位于第一、三象限;当k<0时,函数图象位于第二、四象限.试题20答案:【考点】正多边形和圆.【分析】如图,作辅助线;求出∠AOC=60°,借助直角三角形的边角关系求出AC的长,即可解决问题.【解答】解:如图,连接OA、OB;∵AB为⊙O的内接正三角形的一边,OC⊥AB于点C;∴∠AOB==120°;∵OA=OB,∴∠AOC=∠AOB=60°,AC=BC;∵tan60°=,而OC=2,∴AC=2,AB=4(cm).【点评】该题主要考查了正多边形和圆的性质及其应用问题;解题的关键是作辅助线,灵活运用有关定理来分析、判断、推理或解答.试题21答案:【考点】相似三角形的性质.【分析】由相似三角形的性质易证∠1=∠2,再由三角形内角和定理易证∠2=∠3,进而可证明∠1=∠2=∠3.【解答】证明:∵△ABC∽△ADE,∴∠C=∠E,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠1=∠2,在△AOE和△DOC中,∠E=∠C,∠AOE=∠DOC(对顶角相等),∴∠2=∠3,∴∠1=∠2=∠3.【点评】本题考查了相似三角形的性质,熟记相似三角形的各种性质是解题关键.试题22答案:【考点】解直角三角形的应用-方向角问题.【分析】过点P作PC⊥AB,C是垂足.AC与BC就都可以根据三角函数用PC表示出来.根据AB的长,得到一个关于PC的方程,解出PC的长.从而判断出这条高速公路会不会穿越森林保护区.【解答】解:过点P作PC⊥AB,C是垂足,则∠A=30°,∠B=45°,AC==PC,BC==PC.∵AC+BC=AB,∴PC+PC=100,∴PC=50(﹣1)≈50×(1.732﹣1)=36.6>35.答:森林保护区的中心与直线AB的距离大于保护区的半径,所以计划修筑的这条高速公路不会穿越保护区.【点评】本题主要考查解直角三角形的应用﹣方向角问题,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.试题23答案:【考点】垂径定理;勾股定理.【分析】(1)根据直角所对的圆周角是直角、垂径定理写出结论;(2)根据勾股定理求出DE的长,设⊙O的半径为R,根据勾股定理列出关于R的方程,解方程得到答案.【解答】解:(1)∵AB是⊙O的直径,∴∠C=90°,∵OD⊥CB,∴CE=BE,=,则三个不同类型的正确结论:∠C=90°;CE=BE;=;(2)∵OD⊥CB,∴CE=BE=BC=4,又DE=2,∴OE2=OB2﹣BE2,设⊙O的半径为R,则OE=R﹣2,∴R2=(R﹣2)2+42,解得R=5.答:⊙O的半径为5.【点评】本题考查的是垂径定理和勾股定理的应用,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.试题24答案:【考点】二次函数的应用;二次函数的最值;待定系数法求二次函数解析式.【分析】因为拱门是抛物线形的建筑物,所以符合抛物线的性质,以CD的中垂线为y轴,CD所在的直线为x轴,可列出含有未知量的抛物线解析式,由A、B的坐标可求出抛物线的解析式,然后就变成求抛物线的顶点坐标的问题.【解答】解:如图所示建立平面直角坐标系,此时,抛物线与x轴的交点为C(﹣100,0),D(100,0),设这条抛物线的解析式为y=a(x﹣100)(x+100),∵抛物线经过点B(50,150),可得 150=a(50﹣100)(50+100).解得,∴.即抛物线的解析式为,顶点坐标是(0,200)∴拱门的最大高度为200米.【点评】本题考查的二次函数在实际生活中的应用,根据题意正确的建立坐标轴可使问题简单化,数形结合,很基础的二次函数问题.试题25答案:【考点】切线的判定;平行线的判定与性质;角平分线的性质;等腰三角形的性质.【专题】证明题.【分析】连接0C,根据等腰三角形的性质和角平分线性质求出∠EAC=∠ACO,推出OC∥AE,推出OC⊥ED即可.【解答】证明:连接0C,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠EAB,∴∠EAC=∠OAC,则∠OCA=∠EAC,∴OC∥AE,∵AE⊥DE,∴OC⊥DE,∴DE是⊙O的切线.【点评】本题主要考查对平行线的性质和判定,等腰三角形的性质,切线的判定,角平分线性质等知识点的理解和掌握,能推出OC⊥ED是解此题的关键.试题26答案:【考点】待定系数法求二次函数解析式;二次函数的性质;二次函数图象上点的坐标特征;二次函数图象与几何变换.【分析】(1)直接把A、B两点的坐标代入y=x2+bx+c得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线的解析式;利用配方法把解析式变形为顶点式,然后写出顶点坐标.(2)根据关于x轴对称的两点x坐标相同,y坐标互为相反数,即可求得图象G的表达式;(3)求得抛物线的顶点坐标和x=﹣2时的函数值,结合图象即可求得m的值.【解答】解:(1)根据题意得,解得,所以抛物线的解析式为y=x2﹣2x﹣3.∵抛物线的解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4).(2)根据题意,﹣y=x2﹣2x﹣3,所以y=﹣x2+2x+3.(3)∵抛物线y=x2﹣2x﹣3的顶点为(1,﹣4),当x=﹣2时,y=5,抛物线y=﹣x2+2x+3的顶点(1,4),当x=﹣2时,y=﹣5.∴当﹣2<x<2时,直线y=m与该图象有一个公共点,则4<m<5或﹣5<m<﹣4.【点评】本题考查了用待定系数法求二次函数的解析式,二次函数的性质,二次函数图象上点的坐标特征以及翻折的性质,(3)结合图象是解题的关键.试题27答案:【考点】相似三角形的判定;一元二次方程的应用;分式方程的应用;矩形的性质.【专题】压轴题;动点型.【分析】(1)关于动点问题,可设时间为x,根据速度表示出所涉及到的线段的长度,找到相等关系,列方程求解即可,如本题中利用,△AMN的面积等于矩形ABCD面积的作为相等关系;(2)先假设相似,利用相似中的比例线段列出方程,有解的且符合题意的t值即可说明存在,反之则不存在.【解答】解:(1)设经过x秒后,△AMN的面积等于矩形ABCD面积的,则有:(6﹣2x)x=×3×6,即x2﹣3x+2=0,解方程,得x1=1,x2=2,经检验,可知x1=1,x2=2符合题意,所以经过1秒或2秒后,△AMN的面积等于矩形ABCD面积的.(2)假设经过t秒时,以A,M,N为顶点的三角形与△ACD相似,由矩形ABCD,可得∠CDA=∠MAN=90°,因此有或即①,或②解①,得t=;解②,得t=经检验,t=或t=都符合题意,所以动点M,N同时出发后,经过秒或秒时,以A,M,N为顶点的三角形与△ACD相似.【点评】主要考查了相似三角形的判定,矩形的性质和一元二次方程的运用以及解分式方程.要掌握矩形和相似三角形的性质,才会灵活的运用.注意:一般关于动点问题,可设时间为x,根据速度表示出所涉及到的线段的长度,找到相等关系,列方程求解即可.试题28答案:【考点】反比例函数综合题.【专题】综合题;压轴题.【分析】(1)分别过点C,D,作CG⊥AB,DH⊥AB,垂足为G,H,根据CG∥DH,得到△ABC与△ABD同底,而两个三角形的面积相等,因而CG=DH,可以证明四边形CGHD为平行四边形,∴AB∥CD.(2)判断MN与EF是否平行,根据(1)中的结论转化为证明S△EFM=S△EFN即可.【解答】解:(1)分别过点C,D,作CG⊥AB,DH⊥AB,垂足为G,H,则∠CGA=∠DHB=90°,∴CG∥DH∵△ABC与△ABD的面积相等∴CG=DH∴四边形CGHD为平行四边形∴AB∥CD.(2)①证明:连接MF,NE,设点M的坐标为(x1,y1),点N的坐标为(x2,y2),∵点M,N在反比例函数(k>0)的图象上,∴x1y1=k,x2y2=k,∵ME⊥y轴,NF⊥x轴,∴OE=y1,OF=x2,∴S△EFM=x1•y1=k,S△EFN=x2•y2=k,∴S△EFM=S△EFN;∴由(1)中的结论可知:MN∥EF.②由(1)中的结论可知:MN∥EF.(若生使用其他方法,只要解法正确,皆给分.)【点评】本题考查了反比例函数与几何性质的综合应用,这是一个阅读理解的问题,正确解决(1)中的证明是解决本题的关键.试题29答案:【考点】二次函数综合题.【分析】(1)由k>0可知反比例函数y=在闭区间[1,2016]上y随x的增大而减小,然后将x=1,x=2016分别代入反比例解析式的解析式,从而可求得y的范围,于是可做出判断;(2)先求得二次函数的对称轴为x=1,a=1>0,根据二次函数的性质可知y=x2﹣2x﹣k在闭区间[1,2]上y随x的增大而增大,然后将x=1,y=1,x=2,y=2分别代入二次函数的解析式,从而可求得k的值;(3)当k>0时,将(m,m)、(n,n)代入直线的解析式得到关于k、b的方程组,从而可求得k=1、b=0,故此函数的表达式为y=x;当k<0时,将(m,n)、(n,m)代入直线的解析式得到关于k、b的方程组,从而可求得k=﹣1、b=m+n 的值,从而可求得函数的表达式.【解答】解:(1)∵k=2016>0,∴当1≤x≤2016时,y随x的增大而减小.∴当x=1时,y=2016;当x=2016时,y=1.∴1≤y≤2106.∴反比例函数y=是闭区间[1,2016]上的“闭函数”.(2)∵x=﹣=1,a=1>0,∴二次函数y=x2﹣2x﹣k在闭区间[1,2]上y随x的增大而增大.∵二次函数y=x2﹣2x﹣k是闭区间[1,2]上的“闭函数”,∴当x=1时,y=1;当x=2时,y=2.将x=1,y=1;x=2,y=2代入得:.解得:k=﹣2.∴k的值为﹣2.(3)∵一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,∴当k>0时,直线经过点(m,m)、(n,n).∴.解得:.∴直线的解析式为y=x.当k<0时,直线经过点(m,n)、(n,m)∴.解得:.∴直线的解析式为y=﹣x+m+n.综上所述,当k>0时,直线的解析式为y=x,当k<0,直线的解析式为y=﹣x+m+n.【点评】本题综合考查了二次函数图象的对称性和增减性,一次函数图象的性质以及反比例函数图象的性质.解题的关键是弄清楚“闭函数”的定义.解题时,也要注意“分类讨论”数学思想的应用.。
2016-2017学年北京市延庆县九年级(上)期末数学试卷与答案

12. (3 分)如图,抛物线 y=ax2(a≠0)与直线 y=bx+c(b≠0)的两个交点坐标 分别为 A(﹣2,4) ,B(1,1) ,则关于 x 的方程 ax2﹣bx﹣c=0 的解为 .
13. (3 分)如图,网高为 0.8 米,击球点到网的水平距离为 3 米,小明在打网球 时,要使球恰好能打过网,且落点恰好在离网 4 米的位置上,则球拍击球的高度 h为 米.
③关于 x 的方程 x2﹣2|x|=a 有 4 个实数根时,a 的取值范围是
24. (5 分)如图,△ABC 内接于⊙O,AB 为直径,点 D 在⊙O 上,过点 D 作⊙O 切线与 AC 的延长线交于点 E,ED∥BC,连接 AD 交 BC 于点 F. (1)求证:∠BAD=∠DAE; (2)若 AB=6,AD=5,求 DF 的长.
(2)求 y 与 x 的函数关系式,写出自变量 x 的取值范围; (3)当 x 为何值时,y 有最大值?
22. (5 分)如图,△ABC 中,AD 是△ABC 的中线,点 E 是 AD 的中点,连接 BE 并延长,交 AC 于点 F. (1)根据题意补全图形; (2)如果 AF=1,求 CF 的长.
2016-2017 学年北京市延庆县九年级(上)期末数学试卷
一、选择题: (共 10 个小题,每小题 3 分,共 30 分) 1. (3 分)如果 4x=5y(y≠0) ,那么下列比例式成立的是( A. = B. = C. = D. = )
2. (3 分)已知△ABC∽△A′B′C′,相似比为 1:2,则△ABC 与△A′B′C′的面积比 为( A.1:2 ) B.2:1 C.1: D.1:4 )
19. (5 分)求二次函数 y=x2﹣4x+3 的顶点坐标,并在所给坐标系中画出它的图 象.
2017-2018学年九年级(上)期末数学模拟试卷(解析版)

2017-2018学年九年级(上)期末数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列平面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+33.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=108B.168(1﹣x)2=108C.168(1﹣2x)=108D.168(1﹣x2)=1084.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6B.16C.18D.245.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2cm B.2.5cm C.3cm D.4cm6.一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°7.如图,△ABC和△DEF分别是⊙O的外切正三角形和内接正三角形,则它们的面积比为()A.4B.2C.D.8.如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°9.对实数a、b定义新运算“*”如下:,如3*2=3,.若x2+x﹣2=0的两根为x1,x2,则x1*x2是()A.1B.﹣2C.﹣1D.210.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E 经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.关于x的一元二次方程(m﹣2)x2+(m+3)x+m2﹣4=0有一个根是零,则m=.12.如图,在平面内将△ABC绕点B旋转至△A'BC'的位置时,点A'在AC上,AC∥BC',∠ABC=70°,则旋转的角度是.13.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1y2.(用“>”、“<”、“=”填空)14.如图,扇形纸扇完全打开后,阴影部分为贴纸,外侧两竹条AB、AC夹角为120°,弧BC的长为20πcm,AD的长为10cm,则贴纸的面积是cm2.15.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1,且过点(,0).有下列结论:①abc >0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正确的结论是(填写正确结论的序号).16.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.三.解答题(共8小题,满分72分)17.(8分)用适当的方法解下列方程:(1)x2+4x﹣1=0;(2)(x﹣1)(x+1)=(x+1).18.(8分)在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.19.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.20.(8分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?21.(8分)已知,如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E 作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.22.(10分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?23.(10分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE ,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.24.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.2017-2018学年九年级(上)期末数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下列平面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据中心对称图形,轴对称图形的定义进行判断.【解答】解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;B、是中心对称图形,也是轴对称图形,故本选项正确;C、不是中心对称图形,是轴对称图形,故本选项错误;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.2.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+3【分析】直接利用配方法将原式变形,进而利用平移规律得出答案.【解答】解:y=x2﹣6x+21=(x2﹣12x)+21= [(x﹣6)2﹣36]+21=(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+3.故选:D.【点评】此题主要考查了二次函数图象与几何变换,正确配方将原式变形是解题关键.3.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=108B.168(1﹣x)2=108C.168(1﹣2x)=108D.168(1﹣x2)=108【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是168(1﹣x),第二次后的价格是168(1﹣x)2,据此即可列方程求解.【解答】解:设每次降价的百分率为x,根据题意得:168(1﹣x)2=108.故选:B.【点评】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.4.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6B.16C.18D.24【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.【解答】解:∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1﹣15%﹣45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选:B.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.5.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2cm B.2.5cm C.3cm D.4cm【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4﹣x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2解得:x=2.5故选:B.【点评】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.6.一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是()A.120°B.180°C.240°D.300°【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,则=2πr=πR,解得,n=180°,故选:B.【点评】本题考查的是圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.7.如图,△ABC和△DEF分别是⊙O的外切正三角形和内接正三角形,则它们的面积比为()A.4B.2C.D.【分析】过点O作ON⊥BC垂足为N,交DE于点M,连接OB,则O,D,B三点一定共线,设OM=1,则OD=ON=2,再求得DE,BC的长,根据三角形的面积公式即可得出△DEF和△ABC的面积.【解答】解:过点O作ON⊥BC垂足为N,交DE于点M,连接OB,则O,D,B三点一定共线,设OM=1,则OD=ON=2,∵∠ODM=∠OBN=30°,∴OB=4,DM=,DE=2,BN=2,BC=4,=×4×6=12,∴S△ABC=×2×3=3,∴S△DEF∴==4.故选:A.【点评】本题考查了正多边形和圆,以及勾股定理、垂径定理,直角三角形的性质,明确边心距半径边长的一半正好组成直角三角形是解题的关键.8.如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60°D.70°【分析】连接OA、OB,由切线的性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由内角和定理知∠AOB=80°,根据圆周角定理可得答案.【解答】解:如图,连接OA、OB,∵BM是⊙O的切线,∴∠OBM=90°,∵∠MBA=140°,∴∠ABO=50°,∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°,故选:A.【点评】本题主要考查切线的性质,解题的关键是掌握切线的性质:①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.9.对实数a、b定义新运算“*”如下:,如3*2=3,.若x2+x﹣2=0的两根为x1,x2,则x1*x2是()A.1B.﹣2C.﹣1D.2【分析】首先解方程求得方程的两个解,根据已知条件可以得到:x1*x2的值是两个根中的最大的一个.【解答】解:由方程x2+x﹣2=0得到(x+2)(x﹣1)=0,解得x1=﹣2,x2=1,∵,∴x1*x2=1.故选:A.【点评】本题主要考查了一元二次方程的解法,关键是理解a*b=a(a≥b)或者a*b=b (a<b).10.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E 经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.【分析】分三段来考虑点E沿A→B运动,△ADE的面积逐渐变大;点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小,据此选择即可.【解答】解:点E沿A→B运动,△ADE的面积逐渐变大,设菱形的变形为a,∠A=β,∴AE边上的高为ABsinβ=a•sinβ,∴y=x•a•sinβ,点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小.y=(3a﹣x)•sinβ,故选:D.【点评】本题主要考查了动点问题的函数图象.注意分段考虑.二.填空题(共6小题,满分18分,每小题3分)11.关于x的一元二次方程(m﹣2)x2+(m+3)x+m2﹣4=0有一个根是零,则m=﹣2.【分析】把x=0代入方程(m﹣2)x2+(m+3)x+m2﹣4=0得m2﹣4=0,然后解方程后利用一元二次方程的定义确定m的值.【解答】解:把x=0代入方程(m﹣2)x2+(m+3)x+m2﹣4=0得m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2.故答案为﹣2.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.如图,在平面内将△ABC绕点B旋转至△A'BC'的位置时,点A'在AC上,AC∥BC',∠ABC=70°,则旋转的角度是40°.【分析】根据旋转前后的两个图形全等,则:∠A=∠BA'C',∠ABC=∠A'BC'=70°,AB=A'B,所以∠A=∠AA'B=70°,根据三角形的内角和定理可得∠ABA'=40°.【解答】解:由旋转得:∠A=∠BA'C',∠ABC=∠A'BC'=70°,AB=A'B,∵AC∥BC',∴∠AA'B=∠A'BC'=70°,∴∠A=∠AA'B=70°,∴∠ABA'=180°﹣70°﹣70°=40°,即旋转角是40°,故答案为:40°.【点评】本题考查了旋转的性质:旋转前后两图形全等,明确对应点与旋转中心的连线段所夹的角等于旋转角.也考查了等腰三角形的性质和三角形内角和定理.13.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1<y2.(用“>”、“<”、“=”填空)【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:由二次函数y=x2﹣4x﹣1=(x﹣2)2﹣5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.【点评】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.14.如图,扇形纸扇完全打开后,阴影部分为贴纸,外侧两竹条AB、AC夹角为120°,弧BC的长为20πcm,AD的长为10cm,则贴纸的面积是cm2.【分析】分析题干知,贴纸的面积等于大扇形的面积﹣小扇形的面积.【解答】解:∵弧BC的长为20πcm,∴L=αr=20π,解得r=30,∴AB=30cm,贴纸的面积=大扇形的面积﹣小扇形的面积,==cm2.【点评】本题主要考查扇形面积的计算,知道扇形面积计算公式S=.15.如图,抛物线y=ax2+bx+c的对称轴是x=﹣1,且过点(,0).有下列结论:①abc >0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正确的结论是①②④(填写正确结论的序号).【分析】根据抛物线的开口方向、对称轴、与y轴的交点判定系数符号,及运用一些特殊点解答问题.【解答】解:①由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc>0,故①正确;②∵抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),∴抛物线与x轴的另一个交点坐标为(﹣,0),当x=﹣时,y=0,即a(﹣)2﹣b+c=0,整理得:25a﹣10b+4c=0,故②正确;③直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=﹣1,可得b=2a,a﹣2b+4c=a﹣4a+4c=﹣3a+4c,∵a<0,∴﹣3a>0,∴﹣3a+4c>0,即a﹣2b+4c>0,故③错误;④∵x=﹣1时,函数值最大,∴a﹣b+c≥m2a﹣mb+c,∴a﹣b≥m(am﹣b),所以④正确;⑤∵b=2a,a+b+c<0,∴b+b+c=0,即3b+2c<0,故⑤错误;故答案是:①②④.【点评】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.16.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为0<m<.【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【解答】解:把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m (m>0),设直线l与x轴、y轴分别交于点A、B,(如下图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m;在Rt△OAB中,AB=,过点O作OD⊥AB于D,=OD•AB=OA•OB,∵S△ABO∴OD•m=×m×m,∵m>0,解得OD=m由直线与圆的位置关系可知<6,解得0<m<.故答案为:0<m<.【点评】此题主要考查直线与圆的关系,关键是根据待定系数法、勾股定理、直线与圆的位置关系等知识解答.三.解答题(共8小题,满分72分)17.(8分)用适当的方法解下列方程:(1)x2+4x﹣1=0;(2)(x﹣1)(x+1)=(x+1).【分析】(1)将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2+4x=1,∴x2+4x+4=1+4,即(x+2)2=5,则x+2=,∴x=﹣2;(2)∵(x﹣1)(x+1)﹣(x+1)=0,∴(x+1)(x﹣2)=0,则x+1=0或x﹣2=0,解得:x=﹣1或x=2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.18.(8分)在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.【分析】(1)分别作出点A、B、C关于y轴的对称点,再顺次连接可得;(2)分别作出点A、B绕点C逆时针旋转90°得到其对应点,再顺次连接可得,绕后利用弧长公式计算可得答案.【解答】解:(1)如图所示,△A1B1C1即为所求,A1(﹣4,4)、B1(﹣1,1)、C1(﹣3,1);(2)如图所示,△A2B2C2即为所求,∵CA==、∠ACA2=90°,∴点A到A2的路径长为=π.【点评】本题主要考查作图﹣轴对称变换、旋转变换,解题的关键是熟练掌握轴对称变换和旋转变换的定义和性质及弧长公式.19.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.【分析】(1)用A等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.【解答】解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)700×=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.20.(8分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?【分析】(1)根据“总利润=单件利润×销售量”列出函数解析式,由“确保盈利”可得x 的取值范围.(2)将所得函数解析式配方成顶点式可得最大值.【解答】解:(1)根据题意得y=(70﹣x﹣50)(300+20x)=﹣20x2+100x+6000,∵70﹣x﹣50>0,且x≥0,∴0≤x<20;(2)∵y=﹣20x2+100x+6000=﹣20(x﹣)2+6125,∴当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.【点评】本题主要考查二次函数的应用,解题的关键是根据题意确定相等关系,并据此列出函数解析式.21.(8分)已知,如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E 作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.【分析】(1)连接CE和OE,因为BC是直径,所以∠BEC=90°,即CE⊥BE;再根据等腰三角形三线合一性质,即可得出结论;(2)证明OE是△ABC的中位线,得出OE∥AC,再由已知条件得出FE⊥OE,即可得出结论;(3)由切割线定理求出直径,得出半径的长,由平行线得出三角形相似,得出比例式,即可得出结果.【解答】(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3,∵OE∥AC,∴△FCG∽△FOE,∴,即,解得:CG=.【点评】本题考查了切线的判定、等腰三角形的性质、三角形中位线的判定、切割线定理、相似三角形的判定与性质;熟练掌握切线的判定,由三角形中位线定理得出OE ∥AC是解决问题的关键.22.(10分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?【分析】(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式y B=ax2+bx求解即可;(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;(3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值.【解答】解:(1)由题意得,将坐标(2,2.4)(4,3.2)代入函数关系式y B=ax2+bx,求解得:∴y B与x的函数关系式:y B=﹣0.2x2+1.6x(2)根据表格中对应的关系可以确定为一次函数,故设函数关系式y A=kx+b,将(1,0.4)(2,0.8)代入得:,解得:,则y A=0.4x;(3)设投资B产品x万元,投资A产品(15﹣x)万元,总利润为W万元,W=﹣0.2x2+1.6x+0.4(15﹣x)=﹣0.2(x﹣3)2+7.8即当投资B3万元,A12万元时所获总利润最大,为7.8万元.【点评】本题考查了函数关系式以及其最大值的求解问题.23.(10分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE ,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.【分析】(1)先利用勾股定理得出CE,再判断出△CEF∽△CAE,得出比例式即可得出结论;(2)先判断出∠ECA=∠ABF,进而得出△CEA∽△BFA,即可得出结论;(3)由(2)得出△CEA∽△BFA,即可表示出AB,最后利用锐角三角函数建立方程求出x,即可得出结论.【解答】解:(1)∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴,在Rt△CDE中,根据勾股定理得,CE=,∵CA=2,∴,∴CF=;(2)∵∠CFE=∠BFA,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠BAF=45°,∴△CEA∽△BFA,∴y====(0<x<2),(3)由(2)知,△CEA∽△BFA,∴,∴,∴AB=x+2,∵∠ABE的正切值是,∴tan∠ABE===,∴x=,∴AB=x+2=.【点评】此题是四边形综合题,主要考查了相似三角形的判定和性质,勾股定理,锐角三角函数,解(1)的关键是判断出△CEF∽△CAE,解(2)(3)的关键是判断出△CEA∽△BFA.24.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.【分析】(1)先求得点C(0,3)的坐标,然后设抛物线的解析式为y=a(x+1)(x﹣),最后,将点C的坐标代入求得a的值即可;(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.先求得AC的解析式,然后再求得BM的解析式,从而可求得点M的坐标,依据两点间的距离公式可求得MC=BM,最后,依据等腰直角三角形的性质可得到∠ACB的度数;(3)如图2所示:延长CD,交x轴与点E.依据题意可得到∠ECD>45°,然后依据相似三角形的性质可得到∠CAO=∠ECD,则CE=AE,设点E的坐标为(a,0),依据两点间的距离公式可得到(a+1)2=32+a2,从而可得到点E的坐标,然后再求得CE的解析式,最后求得CE与抛物线的交点坐标即可.【解答】解:(1)当x=0,y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x﹣).将C(0,3)代入得:﹣a=3,解得:a=﹣2,∴抛物线的解析式为y=﹣2x2+x+3.(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.∵OC=3,AO=1,∴tan∠CAO=3.∴直线AC的解析式为y=3x+3.∵AC⊥BM,∴BM的一次项系数为﹣.设BM的解析式为y=﹣x+b,将点B的坐标代入得:﹣×+b=0,解得b=.∴BM的解析式为y=﹣x+.将y=3x+3与y=﹣x+联立解得:x=﹣,y=.∴MC=BM═=.∴△MCB为等腰直角三角形.∴∠ACB=45°.(3)如图2所示:延长CD,交x轴与点F.∵∠ACB=45°,点D是第一象限抛物线上一点,∴∠ECD>45°.又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,∴∠CAO=∠ECD.∴CF=AF.设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.∴F(4,0).设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得:k=﹣.∴CF的解析式为y=﹣x+3.将y=﹣x+3与y=﹣2x2+x+3联立:解得:x=0(舍去)或x=.将x=代入y=﹣x+3得:y=.∴D(,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、两点间距离公式的应用、相似三角形的性质、等腰三角形的判定,依据相似三角形的性质、等腰三角形的判定定理得到AF=CF是解题的关键.。
2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017学年度第一学期九年级数学期末检测试卷一、选择题(本大题8小题,每小题3分,共24分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)1. 民族图案是数学文化中的一块瑰宝,下列图案中,既不是中心对称图形也不是轴对称图形的是( )2.一元二次方程240+=x x 的解为( )A .4=xB .4=-xC .121,3=-=x xD .120,4==-x x 3.如果关于x 的一元二次方程ax 2+x ﹣1=0有实数根,则a 的取值范围是( ) A .14a >-B .14a ≥- C .14a ≥-且a ≠0 D .14a >且a ≠0 4.抛物线262y x x =-+的顶点坐标是( )A .(-3,7)B .(3,2)C .(3,-7)D .(6,2)5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上一点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 的度数为( ) A .20° B .30° C .40° D . 50°6. 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .197.若反比例函数1232)12(---=k kx k y 的图象位于第二、四象限,则k 的值是( )A . 0B . 0或23 C . 0或23- D . 4 8. 已知面积为2的三角形ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示正确的是( )9.如图,Rt △ABC 的斜边AB 与量角器的直径恰好重合,B 点与0刻度线的一端重合,∠ABC=40°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC 分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是( )A .40°B .80°或140°C .70°D .70°或80° 10.如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE∥AC,交BC 于点E ;过点E 作EF⊥DE,交AB 的延长线于点F.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x函数关学校 班级 姓名 座位号系的图象是( )二、填空题(本题共4小题,每小题4分,共16分)11.某药品2013年的销售价为50元/盒,2015年降价为42元/盒,若平均每年降价百分率是x ,则可以列方程 ; 12.如图,在平面直角坐标系中,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为__________;13.如图,在平面直角坐标系xOy 中,直线AB 经过点A(6,0)、B(0,6),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为= ;14. 如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是 .三、解答题(本大题2小题,每小题8分,共16分)15. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?16.设点A 的坐标为(x ,y ),其中横坐标x 可取﹣1、2,纵坐标y 可取﹣1、1、2. (1)求出点A 的坐标的所有等可能结果(用树状图或列表法求解); (2)试求点A 与点B (1,﹣1)关于原点对称的概率.四、(本大题2小题,每小题8分,共16分)17. 如图,正比例函数12y x =-与反比例函数2y 相交于点E (m ,2). (1)求反比例函数2y 的解析式.(2)观察图象直接写出当120y y >>时,x 的取值范围.18.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.求点C 的坐标.五、(本大题2小题,每小题10分,共20分)19.如图所示,已知△ABC 的三个顶点的坐标分别为A (﹣2,3),B (﹣6,0),C (﹣1,0). (1)点A 关于原点O 对称的点的坐标为 ;(2)将△ABC 绕坐标原点O 逆时针旋转90°,画出图形并求A 点经过的路径长; (3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.20. 实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数2200400y x x =-+;1.5小时后(含1.5小时)y 与x 可近似地用反比例函数(0ky k x=>)刻画,如图.(1)喝酒后血液中酒精含量达到最大值?最大值是多少? (2)当x=5时,y=45,求k 的值;(3)按照国家规定,驾驶员血液中酒精含量大于或等于20毫克/百毫升时,属于“酒后驾驶”,不能驾车,假设某驾驶员晚上20:00在家喝了半斤低度白酒,第二天早上7:00能否驾车去上班?说明理由.六、本题12分21. 如图,△ABC 中,BE 是它的角平分线,∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E ,交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若∠A =30°,连接EF ,求证:EF ∥AB ;(3)在(2)的条件下,若AE =2,求图中阴影部分的面积.七、本题12分22. 操作:在△ABC 中,AC=BC=2,∠C =90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:y (毫克/百毫升)455x (时)(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.八、本题14分23.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2016-2017九年级数学参考答案一、选择题: 1-10:C D CCD D A C B A二、填空题11、250(1)42x -=; 12、4; 13、 14; 14、513三、解答题:15、解:设每件衬衫应降价x 元,可使商场每天盈利2100元.根据题意得(45﹣x )(20+4x )=2100, 化简得:2403000x x -+=…………………………..5分 解得x 1=10,x 2=30.因尽快减少库存,故x=30.(未作讨论的酌情扣1-2分) 答:每件衬衫应降价30元.…………………………..10分16、(1)列举所有等可能结果,画出树状图如下由上图可知,点A 的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、 (2,1)、(2,2),共有6种,…………………………6分 (2)点B (1,﹣1)关于原点对称点的坐标为(-1,1). ∴P (点A 与点B 关于原点对称)=16…………………………10分 四、17、解:(1)设反比例函数解析式为xky =2………………1分 ∵x y 21-=过点)2,(m E ∴122-==-m m ∴)2,1(-E …………4分∵xky =2过)2,1(-E ∴2-=k ∴反比例函数解析式为xy 22-=……………7分 (2)当x <-1时,120y y >>.………………………10分18. 解:过点M 作MF ⊥CD 于点F ,过点C 作CE ⊥x 轴于点E ,连接CM. 在Rt △CMF 中,CF =12CD =12OB =4,CM =12OA =5,∴MF =CM 2-CF 2=3.∴CE =MF =3.又EM =CF =4,OM =12OA =5,∴OE =OM -EM =1. ∴C(1,3).五、19、解:(1)点A 关于原点O 对称的点的坐标为(2,﹣3);…………………………..1分(2)△ABC 旋转后的△A ′B ′C ′如图所示,…………………………..4分 点A ′的对应点的坐标为(﹣3,﹣2); OA ′,即点A;…………..7分(3)若AB 是对角线,则点D (﹣7,3), 若BC 是对角线,则点D (﹣5,﹣3), 若AC 是对角线,则点D (3,3).…………………………..10分 20.解:(1)证明:连接OE.∵OB =OE ,∴∠BEO =∠EBO.∵BE 平分∠CBO ,∴∠EBO =∠CBE. ∴∠BEO =∠CBE.∴EO ∥BC.∵∠C =90°,∴∠AEO =∠C =90°. ∴AC 是⊙O 的切线.(2)证明:∵∠A =30°,∴∠ABC =60°. ∴∠OBE =∠FBE =30°.∴∠BEC =90°-∠FBE =60°. ∵∠CEF =∠FBE =30°,∴∠BEF =∠BEC -∠CEF =60°-30°=30°. ∴∠BEF =∠OBE.∴EF ∥AB. (3)连接OF.∵EF ∥AB ,BF ∥OE ,OB =OE ,∴四边形OBFE 是菱形. ∴S △EFB =S △EOF. ∴S 阴影=S 扇EOF.设圆的半径为r ,在Rt △AEO 中,AE =2,∠A =30°,∴r =OE =233.∴S 阴影=S 扇EOF =60π×(233)2360=2π9.六、21、解:(1)22200400200(1)200y x x x =-+=--+,∴饮酒后1小时血液中酒精含量达到最大值,最大值为200(毫克/百毫升)(2)k=225(3)不能驾车上班,理由:晚上20:00到第二天早上7:00共计11小时,把x=11代入22522511y y x ==得,>20,所以不能.七、22、解:(1)由图①可猜想PD=PE ,再在图②中构造全等三角形来说明.即PD=PE .y (毫克/百毫升)455x (时)理由如下:连接PC,因为△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=12∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE.(2)△PBE是等腰三角形,①当PE=PB时,此时点C与点E重合,CE=0;②当BP=BE时,E在线段BC上,;E在CB的延长线上,;③当EP=EB时,CE=1.八、23、解(1)由图象可知,300=a×302,解得a=,n=700,b×(30﹣90)2+700=300,解得b=﹣,∴y=,(2)由题意﹣(x﹣90)2+700=684,解得x=78,∴=15,∴15+30+(90﹣78)=57分钟所以,馆外游客最多等待57分钟.。
2016-2017年九年级数学上《旋转》期末复习专题练习及答案

37.在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点 B 按逆时针方向旋转,得到△A1BC1. (1)如图 1,当点 C1 在线段 CA 的延长线上时,求∠CC1A1 的度数; (2)如图 2,连接 AA1,CC1.若△ABA1 的面积为 4,求△CBC1 的面积; (3)如图 3,点 E 为线段 AB 中点,点 P 是线段 AC 上的动点,在△ABC 绕点 B 按逆时针方向旋转过程中,点 P 的 对应点是点 P1,求线段 EP1 长度的最大值与最小值.
32.如图,在平面直角坐标系中,Rt△ABC 的三个顶点分别是 A(﹣3,2),B(0,4),C(0,2). (1)将△ABC 以点 C 为旋转中心旋转 180°,画出旋转后对应的△A1B1C;平移△ABC,若点 A 的对应点 A2 的坐
标为(0,﹣4),画出平移后对应的△A2B2C2; (2)若将△A1B1C 绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标; (3)在 x 轴上有一点 P,使得 PA+PB 的值最小,请直接写出点 P 的坐标.
则△O1BO2 的面积为
.
25.将七个边长都为 1 的正方形如图所示摆放,点 A1、A2、A3、A4、A5、A6 分别是六个正方形的中心,则这七个正
方形重叠形成的重叠部分的面积是
.
第 4 页 共 13 页
26.△ABC 在直角坐标系中的位置如图⑥所示, 点 P 为边 AC 上一点,且 P( a ,b ),现将△ABC 绕点(-1 ,0 ) 逆时针旋转 180°,那么点 P 的对应点 P′的坐标为
34.如图 1,正方形 ABCD 与正方形 AEFG 的边 AB、AE(AB<AE)在一条直线上,正方形 AEFG 以点 A 为旋转中心逆 时针旋转,设旋转角为α.在旋转过程中,两个正方形只有点 A 重合,其它顶点均不重合,连接 BE、DG. (1)当正方形 AEFG 旋转至如图 2 所示的位置时,求证:BE=DG; (2)当点 C 在直线 BE 上时,连接 FC,直接写出∠FCD 的度数; (3)如图 3,如果α=45°,AB=2,AE= ,求点 G 到 BE 的距离.
最新北京市延庆区届九年级上期末考试数学试题含答案.doc

延庆区2016-2017学年第一学期期末测试卷初 三 数 学一、 选择题:(共10个小题,每小题3分,共30分) 1.如果4x =5y (y ≠0),那么下列比例式成立的是A .45x y = B .54x y= C .45x y = D .yx 54= 2.已知△ABC ∽△A′B′C′,相似比为1:2,则△ABC 与△A′B′C′ 的面积比为 A .1:2 B .2:1C .1:2D . 1:43.在Rt △ABC 中,∠C =90°,BC =3,AC =4,则sin A 的值是A .43 B .34 C .53 D .54 4.如图,AC 与BD 相交于点E ,AD ∥BC .若AE =2,CE =3,AD =3,则BC 的长度是A . 2B . 3C .4D .4.55.如图,在⊙O 中,∠BOC =100°,则∠A 等于 A . 100°B . 50°C . 40°D . 25°6.已知∠A 为锐角,且sin A =12,那么∠A 等于A .15°B .30°C .45°D .60°7.把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+8.如图,弦AB ⊥ OC ,垂足为点C ,连接OA ,若OC =2,AB =4,则OA 等于 A .22 B .23 C .32 D .259.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=3,AB=6,那么AD的值为A.32B.92C.332D.3310.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.二、填空题(共6个小题,每题3分,共18分)11.请你写出一条经过原点的抛物线的表达式.12.如图,抛物线y=ax2(a≠0)与直线y=bx+c(b≠0)的两个交点坐标分别为A(-2,4),B(1,1),则关于x的方程ax2-bx-c=0的解为__________.13.如图,网高为0.8米,击球点到网的水平距离为3米,小明在打网球时,要使球恰好能打过网,且落点恰好在离网4米的位置上,则球拍击球的高度h为米.14.在正方形网格中,△ABC 的位置如图所示,则tan B 的值为__________.15.如图,⊙O 的半径为2,OA =4,AB 切⊙O 于点B ,弦BC ∥OA ,连结AC ,则图中阴影部分的面积为 .16.阅读下面材料:下面是“作角的平分线”的尺规作图过程.请回答:该作图的依据是 .三、解答题17.计算:cos30sin602sin 45tan 45︒︒+︒∙︒- .18.如图,点C 为线段BD 上一点,∠B =∠D =90°,且AC ⊥CE 于点C ,若AB =3,DE =2,BC =6,求CD 的长.19.求二次函数342+-=x x y 的顶点坐标,并在所给坐标系中画出它的图象.20.小明想要测量公园内一座楼CD 的高度.他先在A 处测得楼顶C 的仰角=α30°,再向楼的方向直行10米到达B 处,又测得楼顶C 的仰角=β60°,若小明的眼睛到地面的高度AE 为1.60米,CEADByxO 11已知:∠AOB .求作:射线OC ,使它平分∠AOB .如图,作法如下:(1)以点O 为圆心,任意长为半径作弧,交OA 于E ,交OB 于D ; (2)分别以点D ,E 为圆心,以大于21DE 的同样长为半径 作弧,两弧交于点C ; (3)作射线OC .则射线OC 就是所求作的射线. EDCA OB请你帮助他计算出这座楼CD 的高度(结果精确到0.1米).参考数据:41.12≈,73.13≈,24.25≈.21.为了美化生活环境,小明的爸爸要在院墙外的一块空地上修建一个矩形花圃.如图所示,矩形花圃的一边利用长10米的院墙,另外三条边用篱笆围成,篱笆的总长为32米,设AB 的长为x 米,矩形花圃的面积为y 平方米.(1)用含有x 的代数式表示BC 的长,BC = ; (2)求y 与x 的函数关系式,写出自变量x 的取值范围; (3)当x 为何值时,y 有最大值?22.如图,△ABC 中,AD 是△ABC 的中线,点E 是AD 的中点,连接BE 并延长,交AC 于点F .(1)根据题意补全图形; (2)如果AF =1,求CF 的长.23.某班“数学兴趣小组”对函数y =x 2﹣2|x |的图象和性质进行了探究,探究过程如下. (1)自变量x 的取值范围是全体实数,x 与y 的几组对应值如下: x … ﹣3 ﹣25﹣2 ﹣1 0 1 2 25 3 … y…345 m﹣1﹣145 3…其中,m = .(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请你画出该函数图象的另一部分. (3)观察函数图象,写出一条性质. (4)进一步探究函数图象发现:βαG F E DCBACB A①方程x2﹣2|x|=0有个实数根;②关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是.切线与AC的延长线交于点E,且ED∥BC,连接AD交BC于点F.(1)求证:∠BAD=∠DAE;(2)若AB=6,AD=5,求DF的长.25.体育测试时,九年级一名学生,双手扔实心球.已知实心球所经过的路线是某个二次函数图象的一部分,如果球出手处A点距离地面的高度为2m,当球运行的水平距离为4m时,达到最大高度4m的B处(如图),问该学生把实心球扔出多远?(结果保留根号)BACD26.阅读材料:如果一个矩形的宽与长的比值恰好为黄金比,人们就称它为“黄金矩形” (Golden Rectangle) .在很多艺术品以及大自然中都能找到它,希腊雅典的巴特农神庙、法国巴黎圣母院就是很好的例子.小明想画出一个黄金矩形,经过思考,他决定先画一个边长为2的正方形ABCD ,如图1,取CD 边的中点E ,连接BE ,在BE 上截取EF =EC ,在BC 上截取BG =BF ;然后,小明作了两条互相垂直的射线,如图2,OF ⊥OG 于点O .小明利用图1中的线段,在图2中作出一个黄金矩形OMPN ,且点M 在射线OF 上,点N 在射线OG 上.请你帮助小明在图1中完成作图,要求尺规作图,保留作图痕迹. (1)求CG 的长;(2)图1中哪两条线段的比是黄金比?请你指出其中一组线段;(3)请你利用(2)中的结论,在图2中作出一个黄金矩形OMPN ,且点M 在射线OF 上,点N 在射线OG 上.要求尺规作图,保留作图痕迹.EDCBAGFO27.在平面直角坐标系xOy 中,直线y = -x +2与y 轴交于点A ,点A 关于x 轴的对称点为B ,过点B 作y 轴的垂线l ,直线l 与直线y = -x +2交于点C ;抛物线y =nx 2-2nx +n +2 (其中n <0)的顶点坐标为D . (1)求点C ,D 的坐标;(2)若点E (2,-2)在抛物线y =nx 2-2nx +n +2(其中n <0)上,求n 的值; (3)若抛物线y =nx 2-2nx +n +2(其中n <0)与线段BC 有唯一公共点,求n 的取值范围.图1图2xy1 1O28.在△ABC 中,∠B =45°,∠C =30°. (1)如图1,若AB =52,求BC 的长;(2)点D 是BC 边上一点,连接AD ,将线段AD 绕点A 逆时针旋转90°,得到线段AE .①如图2,当点E 在AC 边上时,求证:CE =2BD ; ②如图3,当点E 在AC 的垂直平分线上时,直接写出CEAB的值.29.在平面直角坐标系xOy 中,点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2),若a =|x 1-x 2|,b =|y 1-y 2|,则记作(P ,Q )→{a ,b }.(1)已知(P ,Q )→{a ,b },且点P (1,1),点Q (4,3),求a ,b 的值; (2)点P (0,-1),a =2,b =1,且(P ,Q )→{a ,b },求符合条件的点Q 的坐标; (3)⊙O 的半径为5,点P 在⊙O 上,点Q (m ,n )在直线y =-x 21 +29上, 若(P ,Q )→{a ,b },且a =2k ,b =k (k >0),求m 的取值范围.1 1OxyEDAB CCB AEDAB C图1图2图3延庆区2016-2017学年第一学期期末试卷初三数学参考答案及评分标准一、选择题(本题共30分,每小题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案BDCDBBCAAD二、填空题(本题共18分,每小题3分)1112 13 14 15 16 答案 略 -2,11.40.7532π 略三、解答题17.(本小题满分5分)解:原式33221222=-+⨯⨯ ……………………………………………………………………4分 2=. ………………………………………………………………………………………5分18.(本小题满分5分)解:∵ 在△ABC 中,∠B =90º, ∴ ∠A +∠ACB = 90º. ∵ AC ⊥CE , ∴ ∠ACB +∠ECD =90º.∴ ∠A =∠ECD . ……………………………………2分 ∵ 在△ABC 和△CDE 中, ∠A =∠ECD ,∠B =∠D =90º,∴ △ABC ∽△CDE . ……………………………………3分 ∴DEBCCD AB =. ……………………………………4分 CE ADB∵ AB = 3,DE =2,BC =6,∴ CD =1. ……………………………………5分 19.(本小题满分5分)解:243y x x =-+2(2)1x =--.∴顶点坐标 为()2,1-………………………………2分如图 ………………………………5分20.(本小题满分6分)∵=α30°,=β60°,∴∠ECF =αβ-=30°. ∴10==EF CF . 在Rt △CFG 中,.35cos =⋅=βCF CG∴3.106.135≈+=+=GD CG CD . ………………………………………………6分 答:这座教学楼的高度约为10.3米. 21.(本小题满分5分)(1)32-2x ………………………………1分(2)y =-2x 2+32x (11≤x <16)………………………………4分 (3)11………………………………5分 22.(本小题满分5分)(1)画图………………………………2分(2)过点D 作DG ∥BF ,交AC 于点G .………………………………3分 ∴DBCDGF CG =. ∵AD 是△ABC 的中线, ∴CD=DB . ∴CG=GF . 同理AF=GF . ∵AF =1,∴CG=GF =1.GF ECBA∴CF =2. …………5分 23.(本小题满分6分)解:(1)m =0.……………………………1分 (2)如图所示.………………………2分 (3)略.………………………………3分 (4)①有3个交点……………………4分②﹣1<a <0.……………………6分 24.(本小题满分5分) 解:(1)连接OD ,∵ED 为⊙O 的切线, ∴OD ⊥ED . ∵AB 为⊙O 的直径, ∴∠ACB =90° ∵BC ∥ED ,∴∠ACB =∠E =∠EDO . ∴AE ∥OD . ∴∠DAE =∠ADO . ∵OA =OD , ∴∠BAD =∠ADO .∴∠BAD =∠DAE . ………………………………2分 (2)连接BD , ∴∠ADB =90°. ∵AB =6,AD =5,∴BD =2211AB AD -=.……………………………………………………………4分 ∵∠BAD =∠DAE =∠CBD , ∴tan ∠CBD = tan ∠BAD =115. 在Rt △BDF 中, ∴DF =BD ·tan ∠CBD =115. ……………………………………………………………5分 25.(本小题满分5分)解:以DC 所在直线为x 轴,过点A 作DC 的垂线为y 轴,建立平面直角坐标系 …………1分则()0,2A ,B (4,4) …………………………2分设抛物线解析式为y =a (x -4)2+4(a ≠0), …………………………3分 ∵()0,2A 在抛物线上∴ 代入得:a =-81………………4分∴y =-81(x -4)2+4令0y =A BCD∴x 1=4-42(舍),x 1=4+42, ∴DC =4+42答:该同学把实心球扔出(4+42)米 ……………… 5分 26.(本小题满分5分)(1)画图………………………………2分 (2)3-5………………………………3分 (3)CG ,BG ………………………………4分 (4)画图………………………………5分 27.(本小题满分6分)(1)(4,-2)、 (1,2)………………………………2分 (2)-4………………………………4分 (3)-4<n ≤94-………………………………6分 28.(本小题满分6分)(1)如图1中,过点A 作AH ⊥BC 于H . ∴∠AHB =∠AHC =90°,在Rt △AHB 中,∵AB =52,∠B =45°,∴BH =ABcosB =5, AH=ABsinB =5,在Rt △AHC 中,∵∠C=30°,∴AC=2AH =10,CH =ACcosC =5,∴BC=BH+CH =5+53. ………………………………3分(2)①证明:如图1中,过点A 作AP ⊥AB 交BC 于P ,连接PE ,∴△ABD ≌△APE ,∴BD=PE ,∠B =∠APE =45°, ∴∠EPB =∠EPC =90°,∵∠C=30°, ∴CE =2PE ,∴CE =2BD . …………………………5分 ②213 …………………………6分29.(本小题满分8分)(1)3,2………………………………2分(2)(-2,0)、(-2,-2)、(2,0)、(2,-2)………………………………6分(3)2≤m≤7………………………………8分。
北京市延庆区2017届九年级上期末考试数学试题含答案

A.1:2
B.2:1
C.1: 2
D. 1:4
3.在 Rt△ABC 中,∠C=90°,BC=3,AC=4,则 sinA 的值是
3 A. 4
4 B. 3
3 C. 5
4 D. 5
4.如图,AC 与 BD 相交于点 E,AD∥BC.若 AE=2,CE=3,AD=3,则 BC 的长度是
A. 2
B. 3
C.4
D.4.5
延庆区 2016-2017 学年第一学期期末测试卷
初三数学
一、选择题:(共 10 个小题,每小题 3 分,共 30 分)
1.如果4x=5y(y≠0),那么下列比例式成立的是
A.
x 4
y 5
B.
x 5
y 4
C. x 4 y5
D. 4x 5y
2.已知△ABC∽△A′B′C′,相似比为 1:2,则△ABC 与△A′B′C′ 的面积比为
如图,作法如下:
(1)以点 O 为圆心,任意长为半径作弧,交 OA 于 E,交 OB 于 D;
1
(2)分别以点 D,E 为圆心,以大于 2 DE 的同样长为半径
A
作弧,两弧交于点 C;
E
(3)作射线 OC.
C
O
DB
请回答:该作图的依据是
.
三、解答题 17.计算:cos30-sin60 2 sin 45 tan 45 . 18.如图,点 C 为线段 BD 上一点,∠B =∠D=90°,且 AC⊥CE 于点 C,
A. y x 3
B. y x 32 3
2 1
C. y x 3
D. y x 32 3
8.如图,弦 AB OC,垂足为点 C,连接 OA,若 OC=2,AB=4,则 OA 等于
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
延庆区2017-2018学年第一学期期末试卷
初三数学参考答案及评分标准
一、选择题(本题共30分,每小题3分)
二、填空题(本题共
18分,每小题3分)
三、解答题
17.(本小题满分5分)
解:原式21=
+ ……………………………………………………………………4分 = ………………………………………………………………………………………5分
18.(本小题满分5分)
解:∵ 在△ABC 中,∠B =90º, ∴ ∠A +∠ACB = 90º. ∵ AC ⊥CE , ∴ ∠ACB +∠ECD =90º.
∴ ∠A =∠ECD . ……………………………………2分 ∵ 在△ABC 和△CDE 中, ∠A =∠ECD ,∠B =∠D =90º,
∴ △ABC ∽△CDE .
……………………………………3分 ∴
DE
BC
CD AB =
. ……………………………………4分 ∵ AB = 3,DE =2,BC =6,
∴ CD =1. ……………………………………5分 19.(本小题满分5分)
解:243y x x =-+2(2)1x =--.
∴顶点坐标 为()2,1-………………………………2分
如图 ………………………………5分
E A
D
B
20.(本小题满分6分)
∵=α30°,=β60°,∴∠ECF =αβ-=30°. ∴10==EF CF . 在Rt △CFG 中,.35cos =⋅=βCF CG
∴3.106.135≈+=+=GD CG CD . ………………………………………………6分 答:这座教学楼的高度约为10.3米. 21.(本小题满分5分)
(1)32-2x ………………………………1分
(2)y =-2x 2+32x (11≤x <16)………………………………4分 (3)11………………………………5分 22.(本小题满分5分)
(1)画图………………………………2分
(2)过点D 作DG ∥BF ,交AC 于点G .………………………………3分 ∴
DB
CD
GF CG =
. ∵AD 是△ABC 的中线, ∴CD=DB . ∴CG=GF . 同理AF=GF . ∵AF =1,
∴CG=GF =1.
∴CF =2. …………5分 23.(本小题满分6分)
解:(1)m =0.……………………………1分 (2)如图所示.………………………2分 (3)略.………………………………3分 (4)①有3个交点……………………4分
②﹣1<a <0.……………………6分 24.(本小题满分5分) 解:(1)连接OD ,
∵ED 为⊙O 的切线, ∴OD ⊥ED . ∵AB 为⊙O 的直径, ∴∠ACB =90° ∵BC ∥ED ,
∴∠ACB =∠E =∠EDO . ∴AE ∥OD . ∴∠DAE =∠ADO . ∵OA =OD , ∴∠BAD =∠ADO .
∴∠BAD =∠DAE . ………………………………2分 (2)连接BD , ∴∠ADB =90°. ∵AB =6,AD =5,
∴BD
.……………………………………………………………4分 ∵∠BAD =∠DAE =∠CBD , ∴tan ∠CBD = tan ∠BAD
. 在Rt △BDF 中, ∴DF =BD ·tan ∠CBD =11
5
. ……………………………………………………………5分 25.(本小题满分5分)
解:以DC 所在直线为x 轴,过点A 作DC 的垂线为y 轴,建立平面直角坐标系 …………1分
则()0,2A ,B (4,4) …………………………2分
设抛物线解析式为y =a (x -4)2+4(a ≠0), …………………………3分 ∵()0,2A 在抛物线上
∴ 代入得:a =-8
1
………………4分
∴y =-8
1
(x -4)2+4
令0y =
∴x 1=4-42(舍),x 1=4+42, ∴DC =4+42
答:该同学把实心球扔出(4+42)米 ……………… 5分 26.(本小题满分5分)
(1)画图………………………………2分 (2)3-5………………………………3分 (3)CG ,BG ………………………………4分 (4)画图………………………………5分 27.(本小题满分6分)
(1)(4,-2)、 (1,2)………………………………2分 (2)-4………………………………4分 (3)-4<n ≤9
4
-………………………………6分
28.(本小题满分6分)
(1)如图1中,过点A作AH⊥BC于H.
∴∠AHB=∠AHC=90°,
在Rt△AHB中,∵AB=52,∠B=45°,
∴BH=ABcosB=5,
AH=ABsinB=5,
在Rt△AHC中,∵∠C=30°,
∴AC=2AH=10,CH=ACcosC=5,
∴BC=BH+CH=5+53.………………………………3分
(2)①证明:如图1中,过点A作AP⊥AB交BC于P,连接PE,∴△ABD≌△APE,
∴BD=PE,∠B=∠APE=45°,
∴∠EPB=∠EPC=90°,
∵∠C=30°,
∴CE=2PE,
∴CE=2BD.…………………………5分
②
21
3
…………………………6分
29.(本小题满分8分)
(1)3,2………………………………2分
(2)(-2,0)、(-2,-2)、(2,0)、(2,-2)………………………………6分(3)2≤m≤7………………………………8分。