模态分析及意义介绍资料重点

合集下载

模态分析复习重点

模态分析复习重点

一、 概念题注:标红部分为2015年试题内容工作变形:频响函数第2估计:泄漏:采集的信号非整数个周期,测得的频谱不能表示为原时间信号所具有的单一频率,能量已泄漏到许多靠近真实频率的谱线上,谱扩展成一些谱线或窗。

混淆:如果在离散过程中采样频率过低,原信号中很高频率的分量可能造成曲解,某些高频分量就会出现在低频中,它也就不可能从低频分量中区分出来。

加窗:进行傅立叶变换以前,把一指定的外形置于时间信号上,且这外形或“窗”通常可以描述为时间函数。

灵敏度分析:分析各个结构参数或设计变量的改变对结构动态特性变化的敏感程度。

纯模态:根据特征相位延迟理论,只要对试件各自由度上分别安装一个激振器,使得他们的激振力满足{}{}K k k C F ϕω=,即频率相同且等于某一个固有频率、相位相同,那么这种激振力真好抵消了阻尼力,整个系统就呈现该阶纯模态的振动。

相干函数:输入信号与输出信号的相关程度。

如果相干函数为零,表示输出信号与输入信号不相干,那么,当相干函数为1时,表示输出信号与输入信号完全相干.若相干函数在 1之间,则表明有如下三种可能:(1)测试中有外界噪声干扰;(2)输出y(t)是输入x(t)和其它输入的综合输出;(3)联系x(t)和y(t)的线性系统是非线性的。

模型修正:获得一个能够重现所有模态参数的模型或者是获得一个能够重现所有测得的频率响应函数的模型,或者是一个具有正确的质量、刚度、阻尼矩阵的模型。

两种方法:直接修正矩阵法、灵敏度分析的参数修改法。

响应模型:可以方便地表示结构在“标准”激励下响应分析(在任何特定情况下的解都可由此构造出来)。

空间模型:用质量、刚度、阻尼等描述特性的模型。

模态模型:对空间模型进行理论的模态分析,用一组振动模态、固有频率等来描述结构的特性。

模态模型由模态频率,模态振型,模态阻尼,模态质量矩阵和模态刚度矩阵给出。

动刚度:动载荷下抵抗变形的能力称为动刚度,即引起单位振幅所需要的动态力。

模态分析的目的和意义

模态分析的目的和意义

模态分析的目的和意义模态分析是关于寻找特征值和特征向量。

特征值是关于知道对应于结构的一些基本振动模式的频率。

实践中,为了避开这些基频,防止共振,有时需要加强振动。

根据实际需要,基本固有频率可以给我们一个判断我们结构变形快慢的准则,基本固有频率也可以代表整个结构的刚度:频率低说明结构刚度很低(结构很软),反之频率高。

该结构的硬度根据需求而变化。

比如刚性的高层设计虽然不会晃动太大,但是不容易吸收地震能量。

相反,高层建筑的柔性设计往往可以吸收很多地震能量,虽然会晃动很多。

振动模式有什么实用价值?从振动状态的形状可以知道结构在某一固有共振频率下的变形趋势。

要加强结构的刚性,可以从这些薄弱部位加强。

举个例子,在高层建筑的设计中,如果模态分析显示最低频率的振动状态是在整个高层建筑的扭转方向,那就说明这个方向的刚度是首先要加强的部分。

模态截断理想情况下,我们希望得到结构的完整模态集,这在实际应用中既不可能也没有必要。

实际上,并非所有模式对响应的贡献都相同。

对于低频响应,高阶模态的影响较小。

就实际结构而言,我们往往对它的前几个或十几个模态感兴趣,高阶模态往往被丢弃。

虽然这样会造成一点误差,但是频响函数的矩阵阶次会大大降低,工作量也会大大减少。

这种处理方法称为模态截断。

实例解释模态分析简单地说,模态分析是根据用结构的固有特征,包括频率、阻尼和模态振型,这些动力学属性去描述结构的过程。

那只是一句总结性的语言,现在让我来解释模态分析到底是怎样的一个过程。

不涉及太多的技术方面的知识,我经常用一块平板的振动模式来简单地解释模态分析。

这个解释过程对于那些振动和模态分析的新手们通常是有用的。

考虑自由支撑的平板,在平板的一角施加一个常力,由静力学可知,一个静态力会引起平板的某种静态变形。

但是在这儿我要施加的是一个以正弦方式变化,且频率固定的振荡常力。

改变此力的振动频率,但是力的峰值保持不变,仅仅是改变力的振动频率。

同时在平板另一个角点安装一个加速度传感器,测量由此激励力引起的平板响应。

模态分析及意义介绍

模态分析及意义介绍

六 模 态 分 析 总 结
五 模 态 举 例 CAE
四 模 态 试 验 举 例
三 模 态 问 题 举 例
二 整 车 模 态 分 布
一 模 态 基 础 理 论
车架前三阶模态振型:

图2-1 第一阶频率
模 态 举 例 CAE
图2-2 第二阶频率
图2-3 第三阶频率
五 模 态 举 例 CAE
阶次
CAE计算
一 模 态 基 础 理 论
1.3模态分析基本原理 模态分析有很多种方法,仅介绍频域法模态拟合的基本原理:
一 模 态 基 础 理 论
经离散化处理后,一个结构的动态特性可由N 阶矩阵微分方程描述:
经过拉普拉斯变换等处理,可得到频率响应函数矩阵H(ω),该矩阵 中矩阵中第i行第j列的元素
ωr、ξr 、Φr分别称为第r 阶模态频率、模态阻尼比和模态振型 。
100
0.056
4.79
3.47
0.229
0.748
0.646
Mode3
26.684 Hz
0.013
0.056
100
0.012
0.11
5.384
0.002
0.003
Mode4
36.487 Hz
2.957
4.79
0.012
100
1.377
0.003
1.179
1.786
Mode5
51.299 Hz
1.022
3.2方向盘低速抖动问题 某样车5档缓加方向盘12点Z向振动colormap图

2700.00 2.01 4.90
模 态 问 题 举 例
Tacho1 (T1)

模态分析意义

模态分析意义

模态分析意义模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。

模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。

这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。

这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。

通常,模态分析都是指试验模态分析。

振动模态是弹性结构的固有的、整体的特性。

如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。

因此,模态分析是结构动态设计及设备的故障诊断的重要方法。

机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息变化。

模态分析提供了研究各种实际结构振动的一条有效途径。

首先,将结构物在静止状态下进行人为激振,通过测量激振力与胯动响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。

用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。

根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。

近十多年来,由于计算机技术、FFT 分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。

已有多种档次、各种原理的模态分析硬件与软件问世。

在各种各样的模态分析方法中,大致均可分为四个基本过程:(1)动态数据的采集及频响函数或脉冲响应函数分析1)激励方法。

试验模态分析是人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号,用各种参数识别方法获取模态参数。

激励方法不同,相应识别方法也不同。

模态分析及意义介绍

模态分析及意义介绍

模态分析及意义介绍模态分析是一种定量研究手段,用于解释和预测决策问题。

它基于概率理论和数学模型,结合多个影响因素,以及不确定性和风险因素,分析不同情景下的决策结果。

模态分析具有广泛的应用领域,例如项目管理、金融投资和政策制定等。

模态分析的基本原理是通过建立数学模型,模拟在不同情景下的决策结果。

这些情景通常包括决策变量的不同取值,以及其他相关因素的变化。

通过计算模型中不同情景下的决策结果,可以比较不同方案的优劣,并预测可能出现的风险和不确定性。

模态分析的意义主要体现在以下几个方面:1.提供决策支持:模态分析可以帮助决策者在制定决策方案时考虑到多种不确定因素和风险。

通过模拟不同情景下的决策结果,决策者可以更全面地评估不同方案的风险和潜在收益,从而做出更明智的决策。

2.预测可能的风险和不确定性:在现实生活中,决策过程往往伴随着不确定因素和风险。

模态分析可以通过模拟不同情景下的决策结果,识别可能的风险和不确定性,并为决策者提供相应的预测和应对策略。

3.评估方案的可行性和稳定性:模态分析可以帮助决策者评估不同方案的可行性和稳定性。

通过模拟不同情景下的决策结果,可以比较各种方案的优劣,并评估其在不同情况下的表现。

4.提供决策方案的灵活性:模态分析可以提供决策方案的灵活性。

通过分析不同情景下的决策结果,决策者可以调整决策方案,以适应不同情况下的需求和要求。

5.优化资源利用和风险控制:模态分析可以帮助决策者优化资源利用,降低风险。

通过模拟不同情景下的决策结果,可以找到最佳方案和最合理的资源配置,从而达到资源的最大利用和风险的最小化。

总之,模态分析是一种重要的决策支持工具。

它可以帮助决策者全面评估决策方案的优劣,并预测可能出现的风险和不确定性。

通过模态分析,决策者可以做出更明智、更有针对性的决策,以实现最佳的决策结果。

什么是模态分析,模态分析有什么用

什么是模态分析,模态分析有什么用

什么是模态分析,模态分析有什么用什么是模态分析模态分析有什么用结构劢力学分析中,最基础、也是最重要的一种分析类型就是"结构模态分析"。

模态分析主要用亍计算结构的振劢频率和振劢形态,因此,又可以叫做频率分析戒者是振型分析。

劢力学分析可分为时域分析不频域分析,模态分析是劢力学频域分析的基础分析类型。

基础理论劢力学控制方程可表示为微分方程:其中,[ M ] 为结构质量矩阵,[ C ] 为结构阷尼矩阵,[ K ] 为结构刚度矩阵,{ F } 为随时间变化的外力载荷函数,{ u } 为节点位移矢量,为节点速度矢量,{ ü } 为节点加速度矢量。

在结构模态分析中丌需要考虑外力的影响,因此,模态分析的劢力学控制方程可表示为:理想情况下,结构在振劢过程中,丌考虑阷尼效应,也就是所谓的自由振劢情况,模态分析又可描述为:对上迚一步分析,假设此时的自由振劢为谐响应运劢,也就是说 u = u 0 sin( ωt ),上又可迚一步描述为:对上式求解,可得方程的根是 ω i²,即特征值,其中 i 的范围是从 1 到结构自由度个数 N (有限元分析中,自由度个数 N 一般丌超过分析模型网格节点数的三倍)。

特征值开平方根是 ω i ,即固有圆周频率,这样,结构振劢频率(结构固有频率)f i就可通过公式 f i = ω i /2 π 得到。

有限元模态分析可以得到 f i戒者ω i ,都可以用来描述结构的振劢频率。

特征值对应的特性矢量为{ u } i 。

特征矢量{ u } i表示结构在以固有频率 f i振劢时所具有的振劢形状(振型)。

模态分析中的矩阵 1. 模态分析微分方程组包含六个矩阵:[ K ] 代表刚度矩阵。

可参考"结构静力学"中的解释说明。

{ u } 代表位移矢量。

主要用来描述模态分析的振型。

第八章 模态分析

第八章  模态分析
– 是一种功能强大的方法,当提取中型到大型模型(50.000 ~ 100.000个自由度)的大量振型时(40+),这种方法很有效; – 经常应用在具有实体单元或壳单元的模型中; – 在具有或没有初始截断点时同样有效。(允许提取高于某个 给定频率的振型); – 可以很好地处理刚体振型; – 需要较高的内存。
• 子空间法比较适合于提取类似中型到大型模型的较 少的振型(<40)
– 需要相对较少的内存; – 实体单元和壳单元应当具有较好的单元形状,要对任何关于 单元形状的警告信息予以注意; – 在具有刚体振型时可能会出现收敛问题; – 建议在具有约束方程时不要用此方法。
• PowerDynamics 法适用于提取很大的模型(100.000个自由
建议: 由于结构的振动特性决定结构对于各种动力载荷的响应
情况,所以在准备进行其它动力分析之前首先要进行模态分析。
计算模态分析
通用运动方程:
• 假定为自由振动并忽略阻尼:
• 假定为谐运动:
这个方程的根是ωi平方, 即特征值, i 的范围从1到自由度的 数目, 相应的向量是{u}I, 即特征向量。
注意• 模态分析假定结构是线性的(如, [M]和[K]保持为常数)
• 在模态分析中一般忽略阻尼,但如果阻尼的效果比较明显, 就要使用阻尼法: – 主要用于回转体动力学中,这时陀螺阻尼应是主要的; – 在ANSYS的BEAM4和PIPE16单元中,可以通过定义实常数 中的SPIN(旋转速度,弧度/秒)选项来说明陀螺效应; – 计算以复数表示的特征值和特征向量。 • 虚数部分就是自然频率; • 实数部分表示稳定性,负值表示稳定,正值表示不确定。
工程实例
① 振动筛—利用共振 ② 破碎机---利用共振 ③ 汽车—避免共振 ④ 电脑机箱—避免共振 ⑤ 悬索桥—避免共振 ⑥ 飞机机翼颤振—避免共振 ⑦ 风扇叶片—表面共振 ⑧ 机床—避免共振

模态分析基本内容简介

模态分析基本内容简介

模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。

模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。

这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。

这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。

通常,模态分析都是指试验模态分析。

概述振动模态是弹性结构固有的、整体的特性。

通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内的各阶主要模态的特性,就可以预言结构在此频段内在外部或内部各种振源作用下产生的实际振动响应。

因此,模态分析是结构动态设计及设备故障诊断的重要方法。

机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动模态各不相同。

模态分析提供了研究各类振动特性的一条有效途径。

首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。

用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。

根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。

近十多年来,由于计算机技术、FFT分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。

已有多种档次、各种原理的模态分析硬件与软件问世。

用处模态分析的最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。

模态分析技术的应用可归结为以下几个方面:1) 评价现有结构系统的动态特性;2) 在新产品设计中进行结构动态特性的预估和优化设计;3) 诊断及预报结构系统的故障;4) 控制结构的辐射噪声;5) 识别结构系统的载荷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

320.16
Hz backM:01:-Z (CH25)
0.00 500.00
3.3车内噪声问题
某样车3档缓加进气噪声(高位进气)colormap图
三 100.00
80.00

AutoPower intake:01:S (A) WF 278 [0-138.5 s]





Time s
dB(A) Pa
Log
/
°
Phase
1.00e-6 0.00 180.00 0.00
-180.00 0.00
Hz Linear Linear
Hz
Hz
19052..6490 102.40
95.69 102.40

模 态 试 验 举 例
/ Amplitude Amplitude
1.00
F
Coherence FrespFR:01:-Z/Multiple

中矩阵中第i行第j列的元素



ωr、ξr 、Φr分别称为第r 阶模态频率、模态阻尼比和模态振型 。
试验模态分析或模态参数识别的任务就是由一定频段内的实测频率响 应函数数据,确定系统的模态参数——模态频率、模态阻尼比和振型


















CAE
















5
后视镜模态
避开怠速频率

6
仪表板模态
怠速振动问题

7
转向系模态
方向盘低速振动等问题
8
动力总成
车内噪声和共振疲劳
9
车架
驾驶室振动、中速和高速抖动
2.3 某项目标杆样车整车模态分布

整 车 模 态 分 布


















CAE






















(m/s2) Log Amplitude
500.00
40.00
3.3车内噪声问题
某样车3档缓加驾驶室后围噪声colormap图

2600.00
2.02
1.00
模 态
AutoPower backM:01:+X WF 96 [760.62-2581 rpm]




Tacho1 (T1) rpm
Amplitude (m/s2)
700.00 0.00

2700.00
模 态 问 题 举 例
Tacho1 (T1) rpm
Amplitude (m/s2)
2.01
4.90
AutoPower wheel12h:01:+Z WF 96 [770.09
700.00 0.00
27.00
Hz w heel12h:01:+Z (CH6)
0.00 100.00
3.3车内噪声问题
10.00 0.00
Hz intake:01:S (CH1)
320.11
500.00
40.00


















CAE























模 态 试 验 举 例

模 态 试 验 举 例

模 态 试 验 举 例
1.00
FRF FrespRL:02:-Z/ForceFR:01:+Z FRF FrespFR:01:-Z/ForceRL:02:+Z
(5)用来进行响应计算和载荷识别。由于理论模型计算很难得到模
态阻尼,因而进行响应计算结果往往不理想。利用模态试验结果进行
响应计算则无此弊端。
1.3模态分析基本原理 模态分析有很多种方法,仅介绍频域法模态拟合的基本原理: 经离散化处理后,一个结构的动态特性可由N 阶矩阵微分方程描述:



经过拉普拉斯变换等处理,可得到频率响应函数矩阵H(ω),该矩阵
3.1方向盘怠速抖动问题 某样车怠速方向盘12点Z向振动overall图

10.00
模 态 问 题 举 例
Curve 3.09 37.91 Mean
s
7.53 7.62 7.58 m/s^2 m/s^2
F
Overall level WHEEL:01:+Z0.103.09Fra bibliotek0.00
s Time
1.00
37.91 0.00 41.00

1.2模态分析的主要应用:

(1)用于振动测量和结构动力学分析。可测得比较精确的固有频率、

模态振型、模态阻尼、模态质量和模态刚度。

(2)可用模态试验结果去指导有限元理论模型的修正,使理论模型 更趋完善和合理。

(3)用模态试验建立一个部件的数学模型,然后再将其组合到完整

的结构中去。这通常称为"子结构方法"。 (4)用来进行结构动力学修改、灵敏度分析和反问题的计算。
(m/s2) Log Amplitude
3.1方向盘怠速抖动问题
某样车怠速方向盘12点Z向振动谱图

F 6.78
AutoPower WHEEL:01:+Z
模 态 问 题 举 例
642e-6 0.00
24.92 Hz
1.00
0.00 50.00
3.2方向盘低速抖动问题 某样车5档缓加方向盘12点Z向振动colormap图
F
Coherence FrespRL:02:-Z/Multiple






2.1研究整车模态分布的意义
(1)使整车中各部件模态分离,防止各部件之间共振引起的振动噪

声问题。
(2)使整车中各部件与发动机的怠速频率分离,防止整车中部件在
怠速时因发动机激励而共振。

(3)研究各部件模态频率与发动机阶次激励中的重合点,防止在重

合点处振动噪声放大。

(4)研究各部件模态频率与路面激励频率的重合,防止路面激励带 来振动噪声和平顺性问题。

(5)研究人体敏感频率和车身、 座椅等系统的频率重合,增加驾

驶员和乘客的舒适度感觉。

2.2整车模态分布设定的一般原则

系统模态
相关NVH性能
1
悬挂系统偏频
平顺性及低速抖动

2
簧下固有频率
原则上高于人体敏感频率8Hz

3
驾驶室模态
驾驶室稳定及车内低速共鸣

4
座椅模态
垂直平动刚体模态应高于偏频

辛雨 2012年10月


















CAE






















1.1 模态分析的定义
模态分析实质上是一种坐标变换,其目的在于把原物理坐标系统中
描述的相应向量,转换到“模态坐标系统”中来描述,模态试验就是

通过对结构或部件的试验数据的处理和分析,寻求其“模态参数”。
某样车3档缓加车内噪声colormap图

2600.00
70.00
模 态
AutoPower Pout:01:S (A) WF 93 [763.2-2582.7 rpm]




Tacho1 (T1) rpm
dB(A) Pa
700.00 23.41 0.00
Hz Pout:01:S (CH21)
319.93
相关文档
最新文档