机械工程测试技术第二章信号分析基础习题

合集下载

机械工程测试技术与信号分析计算题及答案(推荐文档)

机械工程测试技术与信号分析计算题及答案(推荐文档)

二、计算题(每题10分,共60分)1.已知某一线性电位器的测量位移原理如图所示。

若电位器的总电阻R=2k Ω,电刷位移为X 时的相应电阻Rx=1k Ω,电位器的工作电压V i =12V,负载电阻为R L 。

(1)已测得输出电压Vo=5.8V,求R L 。

(2)试计算此时的测量误差。

【解】(1) 当V 01=5.8时,5.8=5.8=(2)空载时RL=设测量出5.8V输出电压时的测量误差 则测量误差为3.3%2、某装置的正常工作温度保持在35—40℃之间。

在35 ℃以下时停止使用,等待升温;在40 ℃以上时,也停止使用,进行强制冷却。

已知25%的时间在35 ℃以下,5%的时间在40 ℃以上。

求以下三种生产报告所具有的信息量:(1)“不能使用”;(2)“能使用”;(3)“因为装置在冷却中不能使用”。

【解】(1)“不能使用”的情况所占时间为25% + 5%,故信息量为:74.13.0log )(2=-=a x I bit(2)“能使用”的情况所占时间为70%,其信息量为:51.07.0log )(2=-=b x I bit(3)“因装置冷却不能使用”所占时间为5%,其信息量:32.405.0log )(2=-=c x I bit3、有两个温度计,一个响应快,能在5秒钟内测完,但精度较差,只有3℃;另一个响应慢,需要1分钟才能测完,但精度高,达到1℃。

温度测定范围都在20~52℃之间。

问哪一个温度计能提供更多的信息?【解】被测温度是一个均匀分布的是x ,处于(20~52)℃(或a ~b )之间。

测量结果的示值为x d ,其误差也是均布的,分布区间为d ,它决定于仪表测量精度。

每测量一次所获得的信息量为:I =H (x )-H (d )式中H (x )是测量前被测量x 的熵;H (d )是测量后测量误差d 的熵,故有:32log )(log )(22=-=a b x H ;d d H 2log )(=用第一种温度计测量时,每测一次,单位时间内获得的信息量为:684.0)3log 32(log 51)]()([51221=-=-=d H x H C (bit/S ) 用第二种温度计测量时,每测一次,单位时间内获得的信息量为:12/1)1log 32(log 601)]()([601222=-=-=d H x H C (bit/S )4.模数转换器的输入电压为-10V ~+10V 。

第2章 信号分析基础 题库-答案

第2章 信号分析基础 题库-答案

(1)傅里叶级数实数形式的幅值谱、相位谱;
(2)傅里叶级数复数形式的幅值谱、相位谱;
(3)幅值谱密度。
解:(1)实数形式
傅里叶级数三角形式的展开式:
x(t)
a0 2
n1
(an
cos n0t
bn
sin
n0t )
x(t)
2 2
Acos(0t)
2 2
A sin(0t )
得: a0
0 , an
形脉冲。
x(t)
t
x1 (t )
x2 (t )
图2-31
解:矩形脉冲信号
x(t
)
E 0
| t | T1 的频谱密度 | t | T1 t
t
X ()
T1 T1
Ee
jt dt
2ET1
sinc(T1)
所以
X1
(
)
sinc(
1 2
)

X
2
(
)
3
sinc(
3 2
)
x(t)
1 2
x1 (t
2.5)
x2 (t
过程: T 0
A2
T 1 cos 2t dt
T0
2
A2 2
18.求正弦信号 xt Asin( t ) 的概率密度函数 p(x)。
解:
公式: p(x) lim P(x x(t) x x)
x0
x
过程:
在一个周期内Tx0 t1 t2 P[x x(t) x x] lim Tx Tx0
答:充分条件:绝对可积
充要条件:
(D) a X a f
6.判断对错:1、 随机信号的频域描述为功率谱。( V )

机械工程测试技术习题及解答答案

机械工程测试技术习题及解答答案

《机械工程测试技术》习题与题解第二章 习题解答2-1.什么是信号?信号处理的目的是什么?2-2.信号分类的方法有哪些?2-3.求正弦信号()t A t x ωsin =的均方值2x ψ。

解:()24sin 4222cos 12sin 2sin 11222022022022022A T T A T dtt A T tdt A T dtt A T dt t x T T T T T x =⎪⎭⎫ ⎝⎛-=-====⎰⎰⎰⎰ωωωωωψ 也可先求概率密度函数:221)(xA t p -=π则:⎰∞∞-==2)(222A dx x p x xψ。

2-4.求正弦信号())sin(ϕω+=t A t x 的概率密度函数p(x)。

解: 2221)(111,arcsin xA Ax A dx dt Ax t -=-=-=ωωϕω代入概率密度函数公式得:22222200122221lim 1lim)(xA x A x A T T dt dx T t x x p x x -=-=-=⋅=⎥⎥⎦⎤⎢⎢⎣⎡∆∆=∑→∆→∆πωπωω 2-5.求如下图所示周期性方波的复指数形式的幅值谱和相位谱txT 1-T 1T-T解 在x(t)的一个周期中可表示为⎩⎨⎧<<≤=21)(11T t T T t t x该信号基本周期为T ,基频ω0=2π/T ,对信号进行傅里叶复指数展开。

由于x (t )关于t =0对称,我们可以方便地选取-T /2≤t ≤T /2作为计算区间。

计算各傅里叶序列系数c n 当n =0时,常值分量c 0:T T dt T a c T T 1002111===⎰- 当n ≠0时,110110011T T t jn T T tjn n eTjn dt eTc -----==⎰ωωω最后可得⎥⎦⎤⎢⎣⎡-=-j e e T n c t jn t jn n 22000ωωω注意上式中的括号中的项即sin (n ω0 T 1)的欧拉公式展开,因此,傅里叶序列系数c n 可表示为0)(sin 2)sin(210010≠==n T n c TT n T n c n ,ωπωω其幅值谱为:)(sin 211T n c TT c o n ω=,相位谱为:ππϕ-=,,0n 。

《机械工程测试技术基础》期末试题及答案

《机械工程测试技术基础》期末试题及答案

第一章 信号及其描述(一)填空题1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来传输的。

这些物理量就是 信号 ,其中目前应用最广泛的是电信号。

2、 信号的时域描述,以 时间 为独立变量;而信号的频域描述,以 频率 为独立变量。

3、 周期信号的频谱具有三个特点: 离散性 , 谐波性 , 收敛性 。

4、 非周期信号包括 准周期 信号和 瞬变周期 信号。

5、 描述随机信号的时域特征参数有 均值 、 均方值 、 方差 。

6、 对信号的双边谱而言,实频谱(幅频谱)总是 关于Y 轴 (偶) 对称,虚频谱(相频谱)总是 关于原点(奇) 对称。

(二)判断对错题(用√或×表示)1、 各态历经随机过程一定是平稳随机过程。

( √ )2、 信号的时域描述与频域描述包含相同的信息量。

( √ )3、 非周期信号的频谱一定是连续的。

( × )4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。

( × )5、 随机信号的频域描述为功率谱。

( √ )(三)简答和计算题1、 求正弦信号t x t x ωsin )(0=的绝对均值μ|x|和均方根值x rms 。

2、 求正弦信号)sin()(0ϕω+=t x t x 的均值x μ,均方值2x ψ,和概率密度函数p(x)。

3、 求指数函数)0,0()(≥>=-t a Ae t x at 的频谱。

4、 求被截断的余弦函数⎩⎨⎧≥<=T t T t t t x ||0||cos )(0ω的傅立叶变换。

5、 求指数衰减振荡信号)0,0(sin )(0≥>=-t a t e t x at ω的频谱。

第二章 测试装置的基本特性(一)填空题1、 某一阶系统的频率响应函数为121)(+=ωωj j H ,输入信号2sin )(t t x =,则输出信号)(t y 的频率为=ω ,幅值=y ,相位=φ 。

2、 试求传递函数分别为5.05.35.1+s 和2224.141n n ns s ωωω++的两个环节串联后组成的系统的总灵敏度。

工程测试技术 第2章 信号分析基础-3

工程测试技术 第2章 信号分析基础-3

第二章、信号分析基础
Page 2 华中科技大学机械学院
2.5 信号的频域分析
信号频域分析是采用傅立叶变换将时域信号x(t)变换为 频域信号X(f),从而帮助人们从另一个角度来了解信号的特 征。
傅里叶 变换
8563A
SPECTRUM ANALYZER 9 kHz - 26.5 GHz
第二章、信号分析基础
2.5 信号的频域分析
频域分析
Page 25 华中科技大学机械学院
吉布斯现象(Gibbs)
• 吉布斯现象是由于展开式在间断点邻域不能均匀收敛 引起的。
• 例:方波信号
x(t)
T
T
t
2.5 信号的频域分析
频域分析
Page 26 华中科技大学机械学院
N=1
2.5 信号的频域分析
Page 27 华中科技大学机械学院
用线性叠加定理简化
X1(f)
+Page 38 华中科技大学机械学院
5、频谱分析的应用
频谱分析主要用于识别信号中的周期分量,是信号分析 中最常用的一种手段。
在齿轮箱故障诊断中,可
以通过齿轮箱振动信号频谱分 析,确定最大频率分量,然后 根据机床转速和传动链,找出 故障齿轮。
2 T
T /2
T /2 x(t) sin n0tdt;
ω0―基波圆频率; f0 ―基频:f0= ω0/2π
An an2 bn2 ;
n
arctan bn an
;
2.5 信号的频域分析
傅里叶级数的复数表达形式:
x(t) Cne jn0t , (n 0,1,2,...) n
Page 9 华中科技大学机械学院
2.5 信号的频域分析

机械工程测试技术基础课后习题答案

机械工程测试技术基础课后习题答案

《机械工程测试技术基础》课后答案章节测试题第1章 信号及其描述(一)填空题1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来传输的。

这些物理量就是 ,其中目前应用最广泛的是电信号。

2、 信号的时域描述,以 为独立变量;而信号的频域描述,以 为独立变量。

3、 周期信号的频谱具有三个特点: , , 。

4、 非周期信号包括 信号和 信号。

5、 描述随机信号的时域特征参数有 、 、 。

6、 对信号的双边谱而言,实频谱(幅频谱)总是 对称,虚频谱(相频谱)总是 对称。

(二)判断对错题(用√或×表示)1、 各态历经随机过程一定是平稳随机过程。

( )2、 信号的时域描述与频域描述包含相同的信息量。

( )3、 非周期信号的频谱一定是连续的。

( )4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。

( )5、 随机信号的频域描述为功率谱。

( )(三)简答和计算题1、 求正弦信号t x t x ωsin )(0=的绝对均值μ|x|和均方根值x rms 。

2、 求正弦信号)sin()(0ϕω+=t x t x 的均值x μ,均方值2x ψ,和概率密度函数p(x)。

3、 求指数函数)0,0()(≥>=-t a Ae t x at 的频谱。

4、求被截断的余弦函数⎩⎨⎧≥<=T t T t t t x ||0||cos )(0ω的傅立叶变换。

5、求指数衰减振荡信号)0,0(sin )(0≥>=-t a t e t x at ω的频谱。

第二章 测试装置的基本特性(一)填空题1、 某一阶系统的频率响应函数为121)(+=ωωj j H ,输入信号2sin )(t t x =,则输出信号)(t y 的频率为=ω ,幅值=y ,相位=φ 。

2、 试求传递函数分别为5.05.35.1+s 和2224.141n n n s s ωωω++的两个环节串联后组成的系统的总灵敏度。

《机械工程测试技术基础》期末试题及答案

《机械工程测试技术基础》期末试题及答案

第一章 信号及其描述(一)填空题1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来传输的。

这些物理量就是 信号 ,其中目前应用最广泛的是电信号。

2、 信号的时域描述,以 时间 为独立变量;而信号的频域描述,以 频率 为独立变量。

3、 周期信号的频谱具有三个特点: 离散性 , 谐波性 , 收敛性 。

4、 非周期信号包括 准周期 信号和 瞬变周期 信号。

5、 描述随机信号的时域特征参数有 均值 、 均方值 、 方差 。

6、 对信号的双边谱而言,实频谱(幅频谱)总是 关于Y 轴 (偶) 对称,虚频谱(相频谱)总是 关于原点(奇) 对称。

(二)判断对错题(用√或×表示)1、 各态历经随机过程一定是平稳随机过程。

( √ )2、 信号的时域描述与频域描述包含相同的信息量。

( √ )3、 非周期信号的频谱一定是连续的。

( × )4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。

( × )5、 随机信号的频域描述为功率谱。

( √ )(三)简答和计算题1、 求正弦信号t x t x ωsin )(0=的绝对均值μ|x|和均方根值x rms 。

2、 求正弦信号)sin()(0ϕω+=t x t x 的均值x μ,均方值2x ψ,和概率密度函数p(x)。

3、 求指数函数)0,0()(≥>=-t a Ae t x at 的频谱。

4、求被截断的余弦函数⎩⎨⎧≥<=T t T t t t x ||0||cos )(0ω的傅立叶变换。

5、求指数衰减振荡信号)0,0(sin )(0≥>=-t a t e t x at ω的频谱。

第二章 测试装置的基本特性(一)填空题1、 某一阶系统的频率响应函数为121)(+=ωωj j H ,输入信号2sin )(t t x =,则输出信号)(t y 的频率为=ω ,幅值=y ,相位=φ 。

2、 试求传递函数分别为5.05.35.1+s 和2224.141n n n s s ωωω++的两个环节串联后组成的系统的总灵敏度。

机械工程测试技术基础课后习题答案

机械工程测试技术基础课后习题答案

第一章习题一、选择题1.描述周期信号的数学工具是( )。

A.相关函数B.傅氏级数C. 傅氏变换D.拉氏变换2. 傅氏级数中的各项系数是表示各谐波分量的( )。

A.相位B.周期C.振幅D.频率3.复杂的信号的周期频谱是( )。

A .离散的 B.连续的 C.δ函数 D.sinc 函数4.如果一个信号的频谱是离散的。

则该信号的频率成分是( )。

A.有限的B.无限的C.可能是有限的,也可能是无限的5.下列函数表达式中,( )是周期信号。

A. 5cos10()0x t ππ ≥⎧= ⎨≤⎩当t 0当t 0 B.()5sin2010cos10)x t t t t ππ=+ (-∞<<+∞ C.()20cos20()at x t e t t π-= -∞<<+∞6.多种信号之和的频谱是( )。

A. 离散的B.连续的C.随机性的D.周期性的7.描述非周期信号的数学工具是( )。

A.三角函数B.拉氏变换C.傅氏变换D.傅氏级数8.下列信号中,( )信号的频谱是连续的。

A.12()sin()sin(3)x t A t B t ωϕωϕ=+++B.()5sin 303sin 50x t t t =+ C.0()sin at x t e t ω-=⋅9.连续非周期信号的频谱是( )。

A.离散、周期的B.离散、非周期的C.连续非周期的D.连续周期的10.时域信号,当持续时间延长时,则频域中的高频成分( )。

A.不变B.增加C.减少D.变化不定11.将时域信号进行时移,则频域信号将会( )。

A.扩展B.压缩C.不变D.仅有移项12.已知 ()12sin ,()x t t t ωδ=为单位脉冲函数,则积分()()2x t t dt πδω∞-∞⋅-⎰的函数值为( )。

A .6 B.0 C.12 D.任意值13.如果信号分析设备的通频带比磁带记录下的信号频带窄,将磁带记录仪的重放速度( ),则也可以满足分析要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 信号分析基础
(一)填空题
1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来
传输的。

这些物理量就是 ,其中目前应用最广泛的是电信号。

2、 信号的时域描述,以 为独立变量;而信号的频域描述,以 为独立变量。

3、 周期信号的频谱具有三个特
点: , , 。

4、 非周期信号包括 信号和 信号。

5、 描述随机信号的时域特征参数有 、 、 。

6、 对信号的双边谱而言,实频谱(幅频谱)总是 对称,虚频谱(相频谱)总是 对
称。

7、信号x(t)的均值μx 表示信号的 分量,方差2
x σ描述信号的 。

7、 当延时τ=0时,信号的自相关函数R x (0)= 均方值 ,且为R x (τ)的 最大 值。

9、 周期信号的自相关函数是 周期信号,但不具备原信号的 信息。

10、 为了识别信号类型,常用的信号分析方法有 概率密度函数 、和 自相关函数 。

11、为了获得测试信号的频谱,常用的信号分析方法有 傅立叶变换法 、 和 滤波器法
12、 设某一信号的自相关函数为)cos(ωτA ,则该信号的均方值为2
x ψ= ,均方根值为x rms = 。

(二)判断对错题(用√或×表示)
1、 各态历经随机过程一定是平稳随机过程。

(√)p39-40
2、 信号的时域描述与频域描述包含相同的信息量。

( √ )
3、 非周期信号的频谱一定是连续的。

( ×)(离散傅立叶变换)
4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。

(×)
5、 随机信号的频域描述为功率谱。

(√)
6、 互相关函数是偶实函数。

( × )
(三)单项选择题
1、下列信号中功率信号是( B )。

A.指数衰减信号
B.正弦信号、
C.三角脉冲信号
D.矩形脉冲信号
2、周期信号x(t) = sin(t/3)的周期为(B )。

A. 2π/3
B. 6π
C. π/3
D. 2π
3、下列信号中周期函数信号是(C )。

A.指数衰减信号
B.随机信号
C.余弦信号、
D.三角脉冲信号
4、设信号的自相关函数为脉冲函数,则自功率谱密度函数必为(D )。

A. 脉冲函数
B. 有延时的脉冲函数
C. 零
D. 常数
5、两个非同频率的周期信号的相关函数为(A )。

A. 0
B. 1
C. π
D. 周期信号
6、概率密度函数提供的信号的信息是(C )。

A. 沿频率轴分布
B. 沿时域分布
C. 沿幅值域分布
D. 沿强度分布
7、不能用确定的数学公式表达的信号是(C )。

A .复杂周期信号
B .瞬态信号
C .随机信号 D.非周期信号
8、已知函数x(t)的傅里叶变换为X(f),则函数y(t)=2x(3t)的傅里叶变换为( B )。

A . )3(
2f X B .)3(32f X C . )(32f X D . 2X(f)
(四)简答和计算题
1、 求正弦信号t x t x ωsin )(0=的绝对均值μ|x|和均方根值x rms 。

2、 求正弦信号)sin()(0ϕω+=t x t x 的均值x μ,均方值2x ψ,和概率密度函数p(x)。

3、 求指数函数)0,0()(≥>=-t a Ae t x at 的频谱。

4、 求被截断的余弦函数⎩⎨
⎧≥<=T t T t t t x ||0||cos )(0ω的傅立叶变换。

5、 求指数衰减振荡信号)0,0(sin )(0≥>=-t a t e
t x at ω的频谱。

6、已知信号)42cos(4)(0π
π-=t f t x ,试计算并绘图表示
(1)傅里叶级数实数形式的幅值谱、相位谱;
(2)傅里叶级数复数形式的幅值谱、相位谱;
(3)幅值谱密度。

7、 已知信号)s in ()c o s ()(2221110ϕωϕω
++++=t A t A A t x ,求信号的自相关函数)(τx R ,并画出自功率谱)(ωx S (双边幅值谱)。

(含有直流的自相关,在积分时为余弦积分,积分值为0)
8、 求频率相同的单位方波和正弦波的互相关函数。

20
A
(也可以将方波信号分解成为周期正弦,同频率的正弦的互相关为周期信号,其余为0)
9、 相关滤波器的基本原理是什么?举例说明其工程应用。

10、 试根据一个信号的自相关函数图形,讨论如何确定该信号中的常值分量和周期成
分。

11、 某一系统的输入信号为x(t),若输出y(t)与输入x(t)相同,输入的自相关函数)
(τx R 和输入—输出的互相关函数)(τxy R 之间的关系为)()(T R R xy x +=ττ,试说明该系统起什么作用?
12、 答:由于)T (R )(R xy x +τ=τ (2分) dt )T t (y )t (x T 1dt )t (x )t (x T
1)(R T 0T T 0T x lim lim ⎰=⎰+τ+τ+=τ∞→∞→
)t (x )T t (y τ+=+τ+ (2分)
所以 )T t (*)t (x )T t (x )t (y -δ=-=
jTw e )jw (H ),T t ()t (h -=-δ= (2分)
该系统为一延时系统。

相关文档
最新文档